天地波高频雷达阵列校准和直达波抑制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
天地波高频雷达利用天波反射/地波绕射的传播模式,能够探测到视距以外的海面舰船和低空飞行目标。相对于传统的天波雷达和地波雷达,天地波雷达具有更大的灵活性,可实现岸基和舰载接收,且天地波雷达属于双基地雷达,地波接收机“静默”接收目标回波,提高雷达的生存能力。此外易于建立天波、地波结合的TR-RN型多基地高频雷达信息网,实现天波和地波超视距雷达资源共享。目前已成为高频超视距雷达研究的热点。天地波雷达是一种新体制雷达,在信号处理方面有许多难点,本文针对天地波雷达阵列补偿和直达波抑制两方面内容进行研究。
     本文主要研究岸基地波接收天地波雷达系统,首先分析了天地波雷达工作方式,并给出了其信号处理基本过程。为了抑制强大的干扰、杂波和噪声,天地波雷达采用距离-方位-多普勒三维联合处理方法,详细推导了其处理过程。文中就天地波雷达直达波问题进行特性分析,直达波是高频无线电波经电离层反射直接到达接收机,不经过海面绕射传播。结合实测数据分析出直达波具有能量强、方向稳定且包含发射站信息、零多普勒频率和存在多径传播现象等特点,在信号处理中是理想的参考信号和校准源,但同时也是一种强干扰,需要进行抑制。文中还简单介绍了天地波雷达信号处理中的几个关键技术,包括收/发同步、阵列校准、直达波抑制、电离层污染和目标定位问题,本文主要对阵列校准和直达波抑制两方面问题进行研究。
     本文研究了高频雷达阵列校准技术,提出了一种基于空间相关矩阵(SCM)的阵列校准算法。根据天地波雷达直达波特点,选取直达波作为校准源,利用直达波构造空间相关矩阵,阵列相位误差可从空间相关矩阵的相位中估计得到,幅度误差可从空间相关矩阵的主对角线估计得到。空间相关矩阵可以从时域和频域估计得到,研究在不同信噪比和快拍次数情况下,时域和频域方法性能。结合计算机仿真研究SCM算法所适用的信噪比和阵列误差范围,结果表明SCM算法在阵列误差较大情况下性能依然良好,在低信噪比情况下,频域方法性能良好。实测数据验证了算法的正确性和实用性。
     接着,本文探讨了稳健的自适应波束形成技术,分析了常规波束形成和Capon波束形成在实际应用中所遇到的问题,引入了稳健的波束形成问题。重点研究了对角加载方法(LSMI)、稳健的最小方差波束形成(RMVB)和稳健的Capon波束形成(RCB)三种方法,详细分析了三种方法提高波束形成器稳健性的原理,深入讨论了三种方法参数的选取、阵列方向图以及输出信干噪比(SINR)。比较这三种算法性能,LSMI方法简单易行,但缺点在于无法确定加载量,信号功率估计偏低;RMVB方法对干扰抑制能力最强,在干扰方向形成的零陷最深,但代价是旁瓣高,对噪声抑制能力弱,信号功率估计接近真实值;RCB方法在同样条件下输出信干噪比较高,能同时抑制干扰和噪声,且估计信号功率最准确。
     最后,对天地波雷达直达波抑制进行仿真,考虑阵列幅相误差,利用SCM算法进行校正,由于正交投影算法对误差敏感,本文主要采用稳健的波束形成方法进行直达波抑制。为了评判直达波抑制性能,定义自适应方法输出SINR与常规波束形成输出SINR之比为目标改善因子。详细分析了影响直达波抑制性能的因素,当存在阵列误差和信号非平稳性时,直达波抑制性能受到影响。仿真和实测数据结果表明,存在阵列误差和信号非平稳性时,三种方法能对直达波进行部分抑制,而无法完全对消直达波,在一定程度上能提高目标检测性能。
High frequency hybrid sky-surface wave radar utilizes ionosphere reflection and surface diffraction propagation modes to detect targets beyond the horizon such as vessels on the sea and low altitude flying targets. Compare with traditional HF sky wave and surface wave radar, HF hybrid sky-surface wave radar is more flexible to build shore-based and shipborne receiver. The receiver of the HF hybrid sky- surface wave radar that can be classified as bistatic radar system receives radar echoes in silence, which improves invisibility and survival of the radar in wartime. What’s more, it is more convenient to build TR-RN multistatic HF radar net in purpose of sharing sky wave radar and surface wave radar resources. As a result, it is becoming a hot topic in HF OTHR field. Since HF hybrid sky-surface wave radar is a new radar system, there are considerable difficulties in signal processing. This thesis focuses on array calibration and direct wave suppression in HF hybrid sky-surface wave radar system.
     This thesis mainly studies shored-based radar system. First it analyses operation mode of HF hybrid sky-surface wave radar, and illustrates the signal processing of this radar system. In order to suppress strong interferences, clutters, and noise, HF hybrid sky-surface wave radar exploits range-azimuth-doppler processing method, illustrating its process in detail. This thesis analyses the characteristics of direct wave in the radar system. Direct wave is the high frequency radio waves reflected by the ionosphere directly to the receiver, not diffracting along ocean surface. According to analysis of experimental data, direct wave has a strong energy, stable azimuth and contains information of transmission station, zero Doppler frequency, and multipath propagation characteristics. Therefore, direct wave is the ideal reference signal, calibration source in the signal processing, but strong interference at the same time, which needs to be cancelled. Thesis also introduces some key technologies, such as transmitter and receiver systems synchronizing, array calibration, direct wave suppression, ionosphere phase distortion, and target positioning.
     In order to achieve good array response, HF radar array calibration is studied. This thesis proposes a novel array calibration method based on spatial correlation matrix (SCM) for HF hybrid sky-surface wave radar. According to characteristics of HF hybrid sky-surface wave radar, direct wave is chosen to be calibration source. It is utilized to construct spatial correlation matrix, which contains array errors. Then, phase errors could be estimated by phase matrix of SCM, while gain errors could be estimated from the main diagonal elements of SCM. SCM could be estimated in temporal domain and frequency domain, and performances of this proposed algorithm are studied under different conditions such as signal-to-noise ratios (SNRs) and snapshots. The results show that SCM method still has a good performance in case of large phase errors. That means it is suitable for large array errors. In low SNR case, frequency method has a better performance.
     Next, this thesis discusses robust adaptive beamforming. Thesis analyses conventional beamforming (CBF), Capon beamforming, and their problems in practical. Then, the robust adaptive beamforming is introduced. This thesis mainly studies diagonal loading (LSMI), robust minimum variance beamforming (RMVB), and robust Capon beamforming (RCB), analyzing the principles of improving robustness of the beamformers in detail. Thesis discusses about choosing parameters, array beam patterns, and beamforming output signal-to-interference-plus-noise ratios (SINRs) of the three methods. Compared these three algorithms, LSMI is simple, but the disadvantage is that the diagonal load cannot be determined exactly. Further, the signal power estimated by LSMI is lower than the truth. RMVB has the strongest ability to suppress interferences. But it has the deepest nulls for the interferences at a cost of worse noise gain, resulting in high sidelobes. The estimated signal power in RMVB method is much closer to the truth. RCB has the highest SINR compared to other two methods at the same situation. It could suppress interferences and noise at the same time. What’s more, the signal power estimated by RCB method is the most accurate.
     Finally, a system of HF hybrid sky-surface wave radar is simulated, considering the array errors, which are calibrated by SCM method. Since orthogonal projection method is sensitive to array error, robust adaptive beamforming methods are applied to suppress direct wave. In order to evaluate the performance of the direct wave suppression, the improvement factor is defined to be the ratio of adaptive bemforming output SINR and CBF output SINR. Thesis analyzes the conditions that could affect the performances of direct wave suppression. When the array has errors and the signal is nonstationary simultaneously, the performances of direct wave suppression are affected seriously. Simulation and experimental data results show that three methods all can suppress direct wave partly, and cannot cancel direct wave completely. And target detection can be improved.
引文
[1] Shearman E D R, Moorhead M D. Pisces: A Coastal Ground-Wave HF Radar for Current, Wind and Wave Mapping to 200 Km Ranges [C]. Proceedings of the 1988 International Geoscience and Remote Sensing Symposium on Remote Sensing: Moving Towards the 21st Century. 1988, 2: 773-776.
    [2] Sherwin C W, Ruina J P and Raweliffe R D. Some Early Developments in Synthetic Aperture Radar System [J]. IRE Trans. MIL. 1962, 6(2): 111-115.
    [3] Williams F C. The Pioneer Venus Orbiter Radar [J]. WESCON Sess. 4, Los Angeles, 1976, 9: 14-17.
    [4] Randy Howell and John Walsh. Measurement of Ocean Wave Spectra Using A Ship-Mounted HF Radar [J]. IEEE Journal of Oceanic Engineering. 1993, 18(3): 306-310.
    [5] Baker C J, Hume A L. Netted Radar Sensing [J]. IEEE AES Magazine, 2003, 18(2): 3-6.
    [6] Robey F C, Coutts S, Weikle D. MIMO Radar Theory and Experimental Results [C]. Proceedings of 38th Asilomar Conference on Signals, Systems and Computers. 2004, 1: 300-304.
    [7]周文瑜,焦培南.超视距雷达技术[M].北京:电子工业出版社,2008.
    [8] Headrick J M, Skolnik M I. Over-the-Horizon Radar in the HF Band [C]. Proceedings of the IEEE. 1974, 62(6): 664-676.
    [9] Georges T M, Harlan J A. New Horizons for Over-the-Horizon Radar [J]. IEEE Antennas and Propagation Magazine. 1994, 36(4): 14-24.
    [10]焦培南,杨龙泉,凡俊梅.短波天波反射/地波绕射组合新传播模式及其可能应用[J].电波科学学报. 2007, 22(5): 746-750.
    [11]孟玮,王俊.天地一体化雷达系统及其波束形成研究[J].中国电子科学研究院学报. 2008, 3(1): 65-69.
    [12]杨龙泉,焦培南,凡俊梅.短波天波/地波联合传播模式下定位方法研究[J].中国电子科学研究院学报. 2010, 5(3): 311-314.
    [13] Riddolls R J. Limits on the Detection of Low-Doppler Targets by a High Frequency Hybrid Sky-Surface Wave Radar System [C]. IEEE Radar Conference. Rome Italy, 2008: 1-4.
    [14] Thomason J F. Development of Over-the-Horizon Radar in the United States [C]. Proceedings of the International Radar Conference. 2003: 599-601.
    [15]朱宝明.国外超视距雷达发展状况[J].电子工程信息,1999(8): 1-8.
    [16] Vouras P, Freburger B. Application of Adaptive Beamforming Techniques to HF Radar [C]. IEEE Radar Conference. 2008: 795-800.
    [17] Frazer G J. Forward-based Receiver Argumentation for OTHR [C]. IEEE Radar Conference. Boston, MA, 2007: 373-378.
    [18] Haykin S, Litva J, Shepherd T J. Radar Array Processing [M]. New York: Springer, 1992.
    [19] Van Trees H L. Optimum Array Processing: Part IV of Detection, Estimation, and Modulation Theory [M]. New York: Wiley, 2002.
    [20] Friedlander B. A Sensitivity Analysis of the MUSIC Algorithm [J]. IEEE Trans. Acoustics, Speech, and Signal Processing. 1990, 38(10): 1740-1751.
    [21] Weiss A J, Friedlander B. Effects of modeling errors on the resolution threshold of the MUSIC algorithm [J]. IEEE Trans. Signal Processing. 1994, 42(6): 1519-1526.
    [22] Quazi A H. Array Beam Response in the Presence of Amplitude and Phase Fluctuations [J]. J. Acoust. Soc. Am. 1982, 72(1): 171-180.
    [23]王永良等.空间谱估计理论与算法[M].北京:清华大学出版社,2004.
    [24] Weijers B, Choi D S. OTH-B Coordinate Registration Experiment Using an HF Beacon [C]. IEEE International Radar Conference. Alexandria, VA , USA, 1995: 49-52.
    [25] Wu Xiongbin, Cheng Feng, Yang Zijie and Ke Hengyu. Broad Beam HFSWR Array Calibration Using Sea Echoes [C]. Proceedings of 2006 CIE International Conference on Radar. Shanghai, China, 2006:1-3.
    [26]曾奋.复杂环境下阵列幅相误差的校正[D].哈尔滨:哈尔滨工业大学硕士学位论文,2009.
    [27] Paulraj A and Kailath T. Direction of Arrival Estimation by Eigenstructure Methods with Unknown Sensor Gain and Phase [C]. Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing. 1985, 10: 640-643.
    [28] Weiss A J, Friedlander B. Array Shape Calibration Using Sources in Unknown Location-A Maximum Likelihood Approach [J]. IEEE Trans. ASSP. 1989, 37(12): 1958-1966.
    [29] Weiss A J, Friedlander B. Eigen-structure Methods for Direction Finding with Sensor Gain and Phase Uncertainties [J]. Circuits System Signal Process. 1990, 9(3): 271-300.
    [30] Friedlander B, Weiss A J. Performance of Direction Finding Systems with Sensor Gain and Phase Uncertainties [J]. Circuits System Signal Process. 1993, 12(1): 3-35.
    [31] Pierrie J, Kaveh M. Experimental Performance of Calibration and Direction-Finding Algorithms [C]. IEEE International Conference on Acoustics, Speech, and Signal Processing. 1991, 2: 1356-1368.
    [32] Hung E K L. A Critical Study of a Self-Calibrating Direction-Finding Method for Arrays [J]. IEEE Trans. Signal Processing. 1994, 42(2): 471-474.
    [33] Wylie M P, Roy S, Messer H. Joint DOA Estimation and Phase Calibration of Linear Equispaced (LES) Arrays [J]. IEEE Trans. Signal Processing. 1994, 42(12): 3449-3459.
    [34] Attia E H, Steinberg B D. Self-Cohering Large Antenna Arrays Using the Spatial Correlation Properties of Radar Clutter [J]. IEEE Trans. Antennas and Propagation. 1989, 37(1): 30-38.
    [35]朱家兵,陶亮,许得刚等.基于非合作照射源的无源雷达直达波抑制技术[J].雷达与对抗,2006(1): 4-8.
    [36]陈多芳.岸-舰双基地波超视距雷达若干问题研究[D].西安:西安电子科技大学博士学位论文,2008.
    [37]陈多芳,陈伯孝,秦国栋.岸-舰双基地波超视距雷达直达波抑制方法及性能分析[J].电子学报,2010, 38(3): 611-616.
    [38] Rajesh Saini, Cherniakov M, Lenive V. Direct Path Interference Suppression in Bistatic System: DTV Based Radar [C]. Proceedings of the International Radar Conference. 2003(9): 309-314.
    [39]朱家兵,洪一,陶亮.基于自适应分数延迟估计的无源雷达直达波干扰对消方法[J].火控雷达技术,2006, 35: 46-50.
    [40]朱家兵,洪一,陶亮等.基于自适应分数延迟估计的FM广播辐射源雷达直达波对消[J].电子与信息学报,2007, 29(7): 1674-1677.
    [41]王俊,赵洪立,张守宏等.非合作连续波雷达中存在强直达波和多径杂波的运动目标检测方法[J].电子学报,2005, 33(3): 419-422.
    [42]王俊,水鹏朗,保铮等.基于分数延迟的外辐射源雷达杂波相消算法[J].西安电子科技大学学报(自然科学版),2005, 32(3): 378-382.
    [43] Fabrizio G, Colone F, Lombardo L, et al. Adaptive Beamforming for High- Frequency Over-the-Horizon Passive Radar [J]. IET Radar, Sonar and Navigation. 2009, 3(4): 384-405.
    [44] Capon J. High-Resolution Frequency-Wavenumber Spectrum Analysis [C]. Proceedings of the IEEE. 1969, 57(8): 1408-1418.
    [45]鄢社锋,马远良.传感器阵列波束优化设计及应用[M].北京:科学出版社,2009.
    [46] Cox H, Zeskind R M, Owen M M. Robust Adaptive Beamforming [J]. IEEE Trans. Acoustics, Speech and Signal Processing. 1987, 35(10): 1365-1376.
    [47] Carlson B D. Covariance-Matrix Estimation Errors and Diagonal Loading in Adaptive Arrays [J]. IEEE Trans. Aerospace and Electronic Systems. 1988, 24(4): 397-401.
    [48] Vorobyov S A, Gershman A B, Zhi-Quan Luo. Robust Adaptive Beamforming Using Worst-Case Performance Optimization: A Solution to the Signal Mismatch Problem [J]. IEEE Trans. Signal Processing. 2003, 51(2): 313-324.
    [49] Vorobyov S A, Gershman A B, Zhi-Quan Luo. Robust Adaptive Beamforming Using Worst-Case Performance via Second-Order Cone Programming [C]. IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP). 2002, 3: III2901-III2904.
    [50] Gershman A B. Robust Adaptive Beamforming: An Overview of Recent Tends and Advances in the Field [C]. International Conference on Antenna Theory and Techniques. Sevastopol, Ukraine, 2003: 30-35.
    [51] Haihua Chen, Gershman A B. Robust Adaptive Beamforming for General-Rank Signal Models Using Positive Semi-Definite Covariance Constraint [C]. IEEE International Conference on Acoustics, Speech, and Signal Processing. 2008: 2341-2344.
    [52] Lorenz R G, Boyd S P. Robust Minimum Variance Beamforming [J]. IEEE Trans. Signal Processing. 2005, 53(5): 1684-1696.
    [53] Stoica P, Zhisong Wang, Jian Li. Robust Capon Beamforming [J]. IEEE Signal Processing Letters. 2003, 10(6): 172-175.
    [54] Jian Li, Stoica P, Zhisong Wang. On Robust Capon Beamforming and Diagonal Loading [J]. IEEE Trans. Signal Processing. 2003, 51(7): 1702-1715.
    [55] Jian Li, Stoica P, Zhisong Wang. Doubly Constrained Robust Capon Beamformer [J]. IEEE Trans. Signal Processing. 2004, 52(9): 2407-2423.
    [56] Kim S J, Magnani A, Mutapcic A, et al. Robust Beamforming via Worst-Case SINR Maximization [J]. IEEE Trans. Signal Processing. 2008, 56(4): 1539-1547.
    [57]陈多芳,陈伯孝,刘春波等.基于子空间投影的双基地地波超视距雷达直达波抑制方法[J].电子与信息学报,2008, 30(11): 2702-2705.
    [58]郭欣.天波超视距雷达信号处理技术研究[D].南京:南京理工大学博士学位论文,2003.
    [59] Skolnik M I. Radar Handbook [M]. Third Edition. McGraw-Hill, 2008.
    [60] Song Xiaoguo, Wei Yinsheng, Cui Yan, et al. A Novel Array Calibration Method Based on Spatial Correlation Matrix [C]. IEEE 10th International Conference on Signal Processing. Beijing, 2010: 344-347.
    [61] Barrick D E, Lipa B J. Radar Angle Determination with MUSIC Direction Finding [P]. US Patent, 5,990,834, Nov. 23, 1999.
    [62]戈卢布,范洛恩著,袁亚湘等译.矩阵计算[M].北京:科学出版社,2001: 55-56.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700