数字波束形成(DBF)校准网络研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
DBF (Digital Beamforming数字波束形成)是通过控制各个阵元的权向量来实现空域滤波,以达到增强有用信号,同时抑制掉干扰信号的目的。但在实际工作中,常常存在各种误差。由于这些误差的存在,会使阵列方向图旁瓣过高或者使得主波束产生畸变,从而使得DBF性能下降,甚至失效,从而限制了这些技术的应用。因此,对阵列校准技术的研究具有重大意义。
     本文的内容概括如下:
     1)针对项目指标要求,设计了针对10×10 DBF天线阵列的内校准网络,通过在天线阵面上设计耦合口和天线阵列与校准网络之间对穿的绝缘子完成这两部分的能量传递以实现内校准。在仿真中对2×2校准网络、弱耦合天线以及2×2的子系统的性能进行讨论;并通过仿真模拟系统加工可能导致的某些天线阵元的弱耦合较弱和安装过程中可能碰到的端口匹配不好、天线单元接地不好、耦合微带线接地不好以及对穿的绝缘子有空气间隙等情况进行,详细的论证了系统的稳定性。从仿真结果来看,该DBF校准网络的稳定性良好,系统稳健。
     2)对DBF校准网络实测时发现,系统存在各阵列单元间的串扰严重和微带校准网络辐射较大两个不良现象。针对以上现象,依照能量传输路径依次实验,最终给出了能够保证系统正常工作的指导意见。同时讨论了T/R组件的屏蔽性,给出如何判定接收组件屏蔽性良好的依据。针对微带校准网络辐射较大会对接收组件产生不利影响的现象,提出了几种有效减少辐射的改进方案。
In order to enhance the useful signals and suppress the interfering signals, the Digital Beamforming (DBF) technology can achieve spatial filtering by controlling the weight vector of each array element. However, in practical work, the system usually have different kinds of errors. To achieve the desired radiation pattern, such as main beam shape and low sidelobes, it is necessary for the array to be well calibrated. So the research of array calibration technique has great significance.
     The main work has been concluded in the following:
     1) According to the project requirements, a 10×10 calibration array has been designed. Through the coupling structure in the microstrip antenna, energy can be transferred between the antenna aperture and the calibration network. Furthermore, the errors of the calibration network have been investigated in this thesis, such as the fabrication errors and the fix errors. Form the simulated results, the performances of the DBF calibration system are stable.
     2) From the measured results, the mutual coupling between the antenna elements and microstrip calibration network affect the accuracy of the calibration. To improve the performance of the calibration network, a series of experiments have been done. Some methods have been proposed as a guideline to guarantee the accuracy of the calibration network. Furthermore, the shielding of the T/R module is discussed. Several methods have been presented to reduce the radiation of the microstrip calibration network.
引文
[1]Sorace, R. Phased array calibration[J]. Antennas and Propagation on IEEE Transactions. 2001,49(4):517-525
    [2]Wang Yan, Wu Manqing, Jin Xueming, Lu Jiaguo. The development of DBF pahsed array radar system[C].2001 CIE International Conference on Radar Proceedings.2001:61-64
    [3]Dudas, L. Kovaces, P. Seller, R. Digital beamforming- linear and planar array[C]. Microwave techniques,2008.2008:1-5
    [4]Eli Brookner. Phased arrays around the world-progress and future trends. IEEE International Symposium on Phased Array Systems and Technology.2003:1-8
    [5]Eli Brookner. Never ending saga of phased array breakthroughs.2010 IEEE International Symposium on Phased Array Systems and Technology.2010:61-73
    [6]Cantrell, B. de Graaf, J. Willwerth, F.,Meurer, G.Development of a digital array radar[J]. Aerospace and Electronic Systems Magazine, IEEE,2002,17(3):22-27
    [7]Tohyame, H. Miura, R. Oodo, M.Katsuhiko, K. Ohiomo, I. SDMA experiments using a 64-element receiving DBF antenna in the Ka-band [C]. Wireless Communication Technolgy, 2003:402-403
    [8]张祖稷,金林,束咸荣.雷达天线技术[M].北京:电子工业出版社,2005
    [9]Eli Brookner. Active-phased-arrays and digital beamforming:amazing breakthroughs and future trends.2008 IEEE Radar Conference,2008
    [10]C. M. S. See, Msc, Method for Array Calibration in High—Resolution Sensor Array Processing, IEE Proc.-Radar,Sonar Naving,1995,1(142):90-95
    [11]M. Skolnik, Radar Handbook. New York:McGraw-Hill[J],1970
    [12]Boon Chong Ng and Chong Meng Samson See, SensovArray Calibration Using A Maximum—Likelood Approach, IEEE Trans. On Antennas and Propagation,1996,01(44):827-835
    [13]B. D. Steinberg, Microwave Imaging with Large Antenna Arrays:Radio Camera Principles and Techniques.1983
    [14]B. D. Steinberg and E. Yadin, Distributed airborne array concepts,IEEE Trans. Aerospace Electron.1982:219-227
    [15]A Sinsky and P Wang, Error analysis of a quadrature coherent detector processor, IEEE Trans. Aerospace and Electronic Systems,November 1974
    [16]A.Pauiraj and T. Kailath, Direction Arrival Estimation by Eigenstructure Methods with Unknown Sensor Gain and Phase,in Proc.IEEE ICASSP'85, Tampa,FL,1985:640-643
    [17]Wang.C,and Cadzow.J.A, Direction—Finding with Sensor Gain, Phase and Location Uncertainty,1991:1429-1432
    [18]Benjamin Friedlander and Anthony J.Weiss,Direction Finding in the Presence ofMutual Coupling,IEEE Trans.on Antennas and Propagation,1991,39(3):273-284.
    [19]McArthur,D. and Reilly,J. E, A Computationally Efficient Self-calibrating Direction of-arrival Estimator,1994:201-204
    [20]Hing—Yih Tseng, David D. Feldman and Lloyd J. Griffiths, Steering Vector Estimmion in Uncalibrated Arrays, IEEE Trans. on Signal Processing,1995,43(6):1397-1411
    [21]Anthony J. Weiss and Benj amin Friedlander, Algorithm for Steering Vector Estimation Using Second Order Moments,1995 Conference Record of the Twenty-Ninth Asilomar Conference on Signals, Systems and Computers,1995:782-786
    [22]李琼.阵列信号处理中的校准技术[D].合肥:中国科技大学,2003
    [23]Fulton.C,Chappell.W,Calibration techniques for digital phased arrays[C]. Microwaves, Communications, Antennas and Electronics Systems,2009:1-10
    [24]Dandekar, K.R, Hao Ling, Guanghan Xu. Smart antenna array calibration procedure including amplitude and phase mismatch and mutual coupling effects[C]. Personal Wireless Communications on 2000 IEEE International Conference,2000:293-297
    [25]Charles, C.T, Allstot, D.J,A calibrated phase and amplitude control system for a 1.9 GHz phased-array transmitter element[J]. Circuits and Systems I:Regular Papers on IEEE Transactions.2009,56(12):2728-2737
    [26]Pozar D M. Mi crostrip antennas. Proc. IEEE.1992,8(1):79-91
    [27]H. Aumann, A. Fenn, and F. Willwerth, Phased array antenna calibration and pattern prediction using mutual coupling measurements, IEEE Trans.1989,37(7)
    [28]C. Fulton and W. Chappell, Low-cost, panelized digital array radar antennas, COMCAS 2008, IEEE Intl. Conference,2008.2005:9-11
    [29]A. Garrod, Digital Module sf or Phased Array Radar,1995 IEEE International Radar Conference,1995:726-731
    [30]Kolc. R.F, Ozga.S.E, Jr. COBRA-lessons learned[J]. Telesystems Conference Proceedings,1994:23-26
    [31]Lefevre.R, Durand.R,Satterfield.R, Smart repeater for radar testing[C]. Autotestcon'98. IEEE Systems Readiness Technology Conference,1998:611-614
    [32]Moore.A.R, Salter.D.M, Stafford, W.K. MESAR(multi-function, electronically scanned, adaptive radar)[J]. Radar 97(Conf. Publ. No.499).1997:55-59
    [33]朱烨.DBF雷达系统中射频组件和校正网络的研究[D].南京:南京理工大学,2010
    [34]Billam. E.R,MESAR-the application of modern technology to phased array radar[J]. Phased Array Radar on IEEE Tutorial Meeting.1989:5/1-516
    [35]Zheng Shenghua, Han Hue, Xu Dazhuan, Jin Xueming. Evaluation and measurement of digital receiver for DBF radar[C]. Microwave and Millimeter Wave Technology,2004. ICMMT 4th International Conference on, Proceedings.2004:681-684.
    [36]D. Kelley and W. Stutzman, Array antenna pattern modeling methods that include mutual coupling effects, IEEE Trans. Ant.Prop.,1993:41(12)
    [37]A. Dreher, N. Niklasch, F. Klefenz, and A. Schroth, Antenna and receiver system with digital beamforming for satellite navigation and communications, IEEE Trans. Microwave Theory and Techniques,2003,51(7):1815-1821
    [38]唐玉芳.微带线损耗的理论研究及工程应用[D].南京:南京理工大学,2009
    [39]Sabban A. A comprehensive study of losses in mm wave [C] The 27th European Microwave Conference.1997:163-167.
    [40]K. Wu, D. Deslandes, and Y. Cassivi, The substrate integrated circuits A new concept for high-frequency electronics and optoeletronics, in Proc.6th Int. Conf:Telecommunications Modern Satellite, Cable, Broadcasting Service (TELSIKS'03),vol.1, Oct.1-3,2003
    [41]D. Deslandes and K. Wu, Integrated microstrip and rectangular waveguide in planar form, IEEE Microw. Wireless Compon.Lett.,2001:68-70
    [42]D. Deslandes and K. Wu, Analysis and Design of Current Probe Transition from Grounded Coplanar to Substrate Integrated Rectangular Waveguides,IEEE Trans. Microwave Theory & Tech,2005,53:2487-2494
    [43]M. P. Pozar, Microwave Engineering. New York:John Wiley & Sons, Inc.,1998, ch. 3:195
    [44]C.-J. Lee, H.-S. Wu, and C.-K.C. Tzuang, A Broadband Microstrip-to-waveguide Transition Using Planar Technique,"Proc IEEE APMC,2001:543-546.
    [45]Rong, Y., K. A. Zaki, M. Hageman, D. Stevens, and J. Gipprich, Low-temperature cofired ceramic (LTCC) ridge waveguide bandpass chip filters, IEEE Trans. Microwave Theory & Tech.,1999,41:2317-2324
    [46]R. Valois, D. Baillargeat, S. Verdeyme,and T. Jaakola, High Performances of Shielded LTCC Vertical Transitions from DC up to 50 GHz,IEEE Trans. Microwave Theory & Tech., 2005,53:2026-2032
    [47]Y. Huang and Ke-Li Wu, A Broad-Band LTCC Integrated Transition of Laminated Waveguide to Air-Filled Waveguide for Millimeter-Wave Applications, IEEE Trans. Microwave Theory & Tech.,1003,51(5):1613-1617
    [48]Nikolaos Grigoropoulos and Benito Sanz-Izquierdo, Substrate Integrated Folded Waveguides(SIFW) and Filters, IEEE Microw. Wireless Compon.Lett,2001,15:829-831
    [49]N. Grigoropoulos, B. S. Izquierdo and P. R. Young, Substrate integrated folded waveguides (SIFW) and filters, IEEE Microwave Wireless Components. Lett,2001,11(2): 68-70
    [50]Wenquan Che, Kuan Deng and Y. L. Chow, Equivalence between Waveguides with Side Walls of Cylinders (SIRW) and of Regular Solid Sheets,2005 Asia-Pacific Microwave Conference, Suzhou, China,Dec,2005,768-770
    [51]K. Wu and Y. L. Chow, Theoretical Investigation and Experimental Verification of Compact Folded Substrate Integrated Waveguide, Proceedings of the 37th European Microwave Conference,2005:380-383

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700