随机与混沌神经放电节律的时间序列分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
神经系统可以通过丰富的神经放电节律接收、传递和加工信息,因此,神经放电节律的识别是正确理解神经系统动力学行为的关键,随机、混沌、周期神经放电节律都是其基础形式之一。非线性科学尤其是混沌理论的发展为神经放电节律的识别提供了丰富的理论知识和分析方法,但过度依赖混沌时间序列分析方法容易对非混沌放电节律,尤其是随机节律,造成误判。同时,从非线性特征之外的角度考察混沌的细致特征,对于神经放电节律的鉴别也会起到积极作用。
     本文针对当前神经放电节律研究中存在的一些实际问题,采用生物学实验、数学模型数值仿真以及时间序列分析结合的研究方法,对实验中以及数学模型数值仿真中产生的多种随机神经放电节律进行了节律特征、产生机制、随机性强弱的分析:同时对一类阵发混沌从光滑性角度进行了分析,并对其阵发类型进行了鉴别。该研究对于随机和混沌神经放电节律的识别和理解,都有重要的借鉴意义,并提供了一定理论价值和实用方法。具体研究内容如下:
     1、利用同一数学模型在不同参数配置下,成功仿真了位于静息态与周期1放电态之间的随机整数倍节律和随机on-off节律,通过对峰峰间期(interspike interval, ISI)的多指标综合分析,展示了由这些结果所体现的两种节律的随机性:在将两种节律考虑为典型的Markov过程的基础上,将节律的ISI序列转换为01序列进行概率统计分析,进一步分层次细致说明了两种节律的随机性,展示了on-off节律连续放电或静息之间的概率依赖性;经分析功率谱与信噪比随不同噪声强度的变化,证实了两种节律均为噪声在平衡点与极限环之间的Hopf分岔点附近通过随机自共振机制诱发的随机节律。对应数学模型的数值仿真,利用相同时间序列方法分析实验性神经起步点中获得的与上述仿真结果类似的两种节律,验证了仿真节律分析结果。
     2、利用随机Chay模型仿真了出现于加周期分岔点附近的两类随机节律,两种节律对应着系统在分岔点两侧极限环之间的跃迁行为,一种呈短串簇交替出现,另一种呈长串簇交替出现。综合多项时间序列指标对两种节律进行分析显示,二者ISI序列表观上呈明显的确定性。通过对事件间期(inter-event interval, IEI)的分析发现,“短串簇交替节律”具有内在整数倍节律特征,“长串簇交替节律”具有内在on-off节律特征。通过分析不同噪声强度对交替节律功率谱、信噪比等各指标的影响,证实二者均为噪声在加周期分岔点附近通过随机自共振机制诱发的随机节律,确定性结构来自簇内放电的ISI顺序。对于实验中产生的与上述仿真结果相似的两种节律,同样进行了相关指标的综合分析,结果与仿真节律一致,证实了在实验中出现的两种节律其发生机制,亦均为噪声在分岔点附近诱发的随机节律。其中呈现内在on-off节律特征的长串簇交替节律,是新的实验发现。
     3、利用本实验室的数据,研究了实验性神经起步点放电实验中产生的阵发混沌节律,以周期3簇放电经混沌放电到周期2簇放电过程中靠近周期3簇的阵发混沌为例,通过时间序列分析展示了该阵发混沌以周期3簇节律为主要组成的内部特征,并结合定性分析和定量计算展示了其ISI回归映射的非光滑性。利用确定性Chay模型仿真了上述混沌节律并分析,结果与实验一致。通过计算不同参数下平均层流相长度随参数变化的规律,发现该类阵发混沌节律的标度率介于I型阵发和V型阵发之间,且随着Chay模型中表征慢变量时间尺度作用的参数λn的增大逐渐偏离I型阵发,而偏向V型阵发,为一类新型阵发。我们认为这种特殊标度率是由于Chay模型具有多个时间尺度造成,而标度率随λn的变化呈现的变化趋势,应当归因于慢变量作用强度的不同。
As the characteristic of nervous system that can receive, transmit and process the information by abundant neural firing rhythms, identification of various neural rhythm is essential for correctly understand of dynamic behaviors of the nervous system. Random, chaotic, periodic neural discharge rhythms are typical forms of neuronal firing rhythms. The development of nonlinear science, especially chaos theory, provides a rich theoretical knowledge and analytical methods for the identification of neural firing rhythms, but over-reliance on the chaotic time series analysis method may easily lead to misapprehend in non-chaotic discharge rhythm, particularly in random rhythms. Besides, it will be helpful for identification of chaotic neural firing rhythms when deeper study of them are performed from perspectives other than those of non-linear characteristics.
     For the current practical problems in the study of rhythm of neural firing, this paper, using the combinative methods of biological experiments, mathematical modelling and time series analysis, analyses rhythmic characteristics, mechanism and randomnrss on a variety of random neural firing rhythm produced from experiments and theoretical models. Non-smooth characteristics of some intermittenly chaotic firing rhythms are also studied. The results of the present study are helpful for recognition and understanding of the random and chaotic neural firing rhythm, and also provide some theoretical and practical methods. Specific contents are as follows:
     1. The integer multiple bursting and on-off firing lying between period 1 butsting and rest condition are numerically simulated with the same theoretical model. These two firing patterns exhibit stochastic characters by multi-method comprehensive analysis on interspike interval (ISI). Considering as Markov process, ISI series of the two patterns are transferred into 0.1 series. Then, the stochastic characters can exhibit significantly on two levels. The two firing pattern are suggested to be stochastic firing pattern generated near super-critical and sub-critical Hopf bifurcation, respectively. The experimental observation holds the same characters with simulated results.
     2. Two special stochastic neural firing patterns, generating near the bifurcation point in a period adding bifurcation scenario, are simulated in stochastic Chay model. The behavior of these two firing patterns is is transition between period n burst and period n+1 burst (n=1,2,3). On one hand, the firing patterns are found to show deterministic characteristics. On the other hand, when a period n burst (or period n+1 burst) is defined as an event, stochastic components can then be identified in the inter-event interval (IEI) series, one of which is integer multiple like characteristics, the other is on-off like characters, and the latter is a new discovery in experiment. The results of numerically simulation suggest the two patterns are all the stochastic behavior induced by stochastic noise near the bifurcation points in the period adding bifurcation scenario.
     3. A chaotic firing pattern, which was near the period 3 and then to period 2 bursting, was observed in experiments on a neural firing pacemaker. By the time series analysis, we found that most part of the firing train is composed of period 3 burst. And non-smooth like characteristics of the first return map of ISI was shown by the qualitative analysis and quantitative calculation. The experimentally observed intermittent chaos can be reproduced with the Chay model. It was shown that the intermittency is similar to both type I and type V intermittency, by computing the average length of laminar phase under different parameters. At the same time, with the increases of slow variable time-scale, the intermittency deviated from the type I intermittency to type V gradually. We suggest that it is due to the neuronal system with multiple time scale, including slow variable time-scale, which plays its important roles via parameterλ.
引文
[1]Benzi R, Sutera S., Vulpiani A. The mechanism of stochastic resonance [J]. Phys.A,1981,14:L453-L457.
    [2]McNamara B, Wiesendeld K, Roy R. Observation of stochastic resonance in a ring laser [J]. Physical Review Letters,1988,60:2626-2629.
    [3]Hu G., Ditzinger T., Ning C.Z. Stochastic resonance without external periodic force [J]. Physical Review Letters,1993,71:807-810.
    [4]Jung P., Moss F. Too quite to hear a whisper [J]. Nature,1997,385(6614):291.
    [5]Rose J.E., Brugge J.F., Anderson D.J., Hind J.E. Phase-locked response to low-frequency tones in single auditory nerve fibers of the squirrel monkey [J]. J. Neurophysiol,1967,30(4):769-793.
    [6]Longtin A, Bulsara A, Moss F. Time-interval sequences in bistable systems and the noise-induced transmission of information by sensory neurons [J]. Physical Review Letters,1991,67(5):656-659.
    [7]Douglass J.K., Wilkens L., Pantazelou E., Moss F. Noise enhancement of information transfer in crayfish mechanoreceptors by stochastic resonance [J]. Nature,1993,365:337-340.
    [8]Levin J.E., Miller J.P. Broadband neural encoding in the cricket cereal sensory system enhanced by stochastic resonance [J]. Nature,1996,380:165-168.
    [9]Greenwood P.E., Ward L.M., Russell D.F., Neiman A., Moss F. Stochastic resonance enhances the electrosensory information available to paddlefish for prey capture [J]. Physical Review Letters,2000,84:4773-4776.
    [10]Freund J.A., Schimansky-Geier L., Beisner B., Neiman A., Russell D.F., Yakusheva T., Moss F. Behavioral stochastic resonance:how the noise from a Daphnia swarm enhances individual prey capture by juvenile paddlefish [J]. Journal of Theoretical Biology,2002,214(1):71-83.
    [11]Stacey W.C., Durand D.M. Stochastic resonance improves signal detection in hippocampal CA1 neurons [J]. The Journal of Neurophysiology,2000.83(3): 1394-1402.
    [12]Stacey W.C., Durand D.M. Stochastic resonance improves signal detection in hippocampal CA1 neurons [J]. The Journal of Neurophysiology,2000,83(3): 1394-1402.
    [13]Chacron M.J., Longtin A., Maler L. Negative interspike interval correlations increases the neuronal capacity for encoding time-dependent stimuli [J]. The Journal of Neuroscience,2001,21(14):5328-5343.
    [14]Braun H.A., Wissing H., Schafer K. Christian Hirsch M. Oscillation and noise determine signal transduction in shark multimodal sensory cells [J]. Nature. 1994,367:270-273.
    [15]Longtin A. Autonomous stochastic resonance in bursting neurons [J]. Physical Review E,1997,55:868-876.
    [16]Pikovsky A.S., Kurth J. Coherence resonance in a noise-driven excitable system [J]. Physical Review Letters,1997,78:775-778.
    [17]Gu H.G., Ren W., Lu Q.S., Wu S.G., Yang M.H., Chen W.J. Integer multiple spiking in neural pacemakers without external periodic stimulation [J]. Physics Letters A,2001,285:63-68.
    [18]古华光.随机和混沌神经放电节律的复杂动力学分析[D].北京:北京航空航天大学,2009.
    [19]古华光,李莉,杨明浩,刘志强.任维.实验性神经起步点产生的整数倍簇放电节律[J].生物物理学报,2003,19(1):68-72.
    [20]古华光,任维,杨明浩,陆启韶.神经起步点产生的一种新型簇放电节律--阵发周期1节律[J].生物物理学报,2002,18(4):440-447.
    [21]Yang Z.Q., Lu Q.S., Gu H.G., Ren W. Integer multiple spiking in the stochastic Chay model and its dynamical generation mechanism [J]. Physics Letters A, 2002.299:499-506.
    [22]Gu H.G., Yang M.H., Li L., Liu Z.Q., Ren W. Dynamics of autonomou stochastic resonance in neural period adding bifurcation scenarios [J]. Physics Letters A.2003,319(1-2):89-96.
    [23]Xu Y.L., Yang M.H., Li L., Liu Z.Q., Liu H.J., Gu H.G., Ren W. Three cases of the bifurcation from period 1 to period 2 bursting in theoretical and experimental neural models [J]. Dynamics of Continuous, Discrete and Impulsive Systems (Series B),2007,14(S5):41-46.
    [24]Gong P.L., Xu J.X., Hu S.J., Long K.P. Chaotic interspike intervals with multipeaked histogram in neurons [J]. International Journal of Bifurcation and Chaos,2002,12:319-328.
    [25]Xing J.L., Hu S.J., Xu H., Han S., Wan Y.H. Subthreshold membrane oscillations underlying integer multiples firing from injured sensory neurons [J]. Neuroreport,2001,12:1311-1313.
    [26]Lisman J.E. Bursting as a source for predictability of neural information: making nureliable synapses reliable [J]. TINs,1997,20:38-43.
    [27]Wan Y.H., Jian Z., Hu S.J., Xu H., Yang H.J., Duan Y.B. Detection of determinism within time series of irregular burst firing from the injured sensory neuron [J]. NeuroReport,2000,11:3295-3298.
    [28]Jian Z., Xing J.L., Yang G.S., Hu S.J. A novel bursting mechanism of type A neurons in injured dorsal root ganglia [J]. Neurosignals,2004,13:150-156.
    [29]Menende L., Stollenwerk N., Sanchez-Andres J.V. Bursting as a source for predictability in biological neural network activity [J]. Physica D,1997,110: 323-331.
    [30]Del Negro C.A., Hsiao C.H., Chandler S.H., Garfinkel A. Evidence for a novel bursting mechanism in rodent trigeminal neurons [J]. Biophysical Journal,1998, 75:174-182.
    [31]杨明浩,古华光,李莉,刘志强,任维.神经放电加周期分岔中由随机自共振引起一类新节律[J].生物物理学报,2004.20(20)6:465-470.
    [32]Huber M.T., Krige J.C., Braun H.A., Pei X., Neiman A., Moss F. Noisy precursors of bifurcation in a neurodynamical model for disease states of mood disorder [J]. Neurocomputing,2000,32-33:823-831.
    [33]Gu H.G., Yang Z.Q., Li L., Ren W., Lu Q.S. Period adding bifurcation with chaotic and stochastic bursting in an experimental neural pacemaker [J]. Dynamics of Continuous, Discrete and Impulsive Systems (Series B),2007, 14(S5):6-11.
    [34]Lu Q.S., Yang Z.Q., Duan L.X., Gu H.G., Ren W. Dynamics and transitions of firing patterns in deterministic and stochastic neuronal systems [J]. Chaos, Solitons & Fractals,2009 40(2):577-597.
    [35]Lu Q.S., Gu H.G., Yang Z.Q., Duan L.X., Shi X., Zheng Y.H. Dynamics of firing patterns, synchronization and resonances in neuronal electrical activities: experiments and analysis [J]. Acta Mechanica Sinica,2008,24(6):593-628.
    [36]Gu H.G, Lu Q.S. Identify stochastic bursting from chaotic bursting generated in an experimental neural pacemaker [C]. Chapterl44, In "Advances in cognitive neurodynamics. Proceddings of International Conference on Cognitive Neurodynamics 2007", P827-830. R. Wang et al (eds) Springer Press,2008.
    [37]张建树,菅忠,于学文.混沌生物学[M].北京:科学出版社,,2006.
    [38]刘秉正.非线性动力学与混沌基础[M].长春:东北师范大学出版社,1994.
    [39]刘秉正.生命过程中的混沌[M].长春:东北师范大学出版社,1999.
    [40]刘秉正,彭建华.非线性动力学[M].北京:高等教育出版社,2004.
    [41]阮炯,顾凡及,蔡志杰.神经动力学模型方法和应用[M].北京:科学出版社,2002.
    [42]汪云九.神经信息学[M].北京:高等教育出版社,2006.
    [43]刘曾荣,文铁桥,姚晓东.脑与非线性动力学[M].科学出版社,2006.
    [44]利昂格·拉斯(Glass L.),迈克尔·C·麦基(Mackey M.C.).从摆钟到混沌—生命的节律[M].上海:上海远东出版社.1988.
    [45]弗里德里希·克拉默.混沌与秩序—生物系统的复杂结构[M].上海:上海科技教育出版社,2000.
    [46]约翰·C·泰勒.自然规律蕴蓄的统一性[M].北京:北京理工大学出版社,2004.
    [47]辛厚文.非线性化学[M].合肥:中国科学技术大学出版社,1999.
    [48]刘洪.经济系统预测的混沌理论-原理和方法[M].北京:科学出版社.2003.
    [49]Kantz H., Schreiber T. Nonlinear time series analysis [M]. Cambridge university press, Cambridge,England,1997. Tsinghua university press, Beijing, China,2000.
    [50]吕金虎.混沌时间序列分析及其应用[M].武汉:武汉大学出版社,2002.
    [51]王兴元.复杂非线性系统中的混沌[M].北京:电子工业出版社,2003.
    [52]Eliasson L.H. Perturbation of stable invariant tori for Hamiltonian systems. Ann Sup Norm Pisa,1988,15:115-148.
    [53]Poincare H. Sur le probleme des trois corps et les equations de la dynamique [J]. Acta Math,1890,13:1-270.
    [54]Lorenz E.N. Deterministic nonperiodic flow [J]. Journal of Atmospheric Sciences,1963,20:130-141.
    [55]Ruelle D., Takens F. On the nature of turbulence [J]. Communications in Mathematical Physics,1971,20:167-192.
    [56]Li T.Y., Yorke J.A. Period Three Implies Chaos [J]. The American Mathematical Monthly,1975,82 (10):985-992.
    [57]Feigenbaum, M.J. Quantitative Universality for a Class of Non-Linear Transformations [J]. Journal of Statistical Physics,1978,19(1):25-52.
    [58]Franceschini V. A Feigenbaum sequence of bifurcations in the Lorenz model [J]. Journal of Statistical Physics,1980,22(3):397-406.
    [59]Paul S. L. Period Doubling and Chaotic Behavior in a Driven Anharmonic Oscillator [J]. Physical Review Letters,1981,47:1349-1352.
    [60]Eckmann, J. P. "Roads to turbulence in dissipative dynamical systems [J]. Rev. Mod. Phys.1981.53:643-654.
    [61]Hao Bai-lin, ed., Chaos. An introduction and reprints volume [M]. Singapore: World Scientific,1984.
    [62]Hao Bai-Lin. Elementary Symbolic Dynamics and Chaos in Dissipative Systems [M]. Singapore:World Scientific,1989.
    [63]Ott E., Grebogi C., Yorke J.A. Controlling chaos [J]. Physical Review Letter, 1990,64:1196-1199.
    [64]Shinbrot T., Grebogi C., York J.A., OTT E. Using small perturbations to control chaos [J]. Nature,1993.363:411-417.
    [65]Packard N.H., Crutchfield J.D., Shaw R.S. Geometry from a time series [J]. Physical Review Letters,1980,45:712-716.
    [66]Takens F. Detecting strange attractors in turbulence. In Rand D.A., Yong L.S. Dynamical systems and turbulence [J]. Lecture Notes in Mathematics,1980, 898:366-281.
    [67]Grassberger P., Procaccia I. Measuring the strangeness of strange attractors [J]. Physica D,1983,9:189-208.
    [68]Eckmann, J.P., Ruelle, D. Ergodic theory of chaos and strange attractors [J]. Review of Modern Physics,1985,57:617-656.
    [69]Wolf A. Determining Lyapunov exponents from a time series [J]. Physica D, 1985,16:285-317.
    [70]Kantz H. A robust method to estimate the maximal Lyapunov exponent of a time series [J]. Physics Letters A,1994,185:77-87.
    [71]Theiler J., Eubank S., Longtin A., Galdrinkian B. Testing for nonlinearity in time series:the method of surrogate data [J]. Physica D,1992,58:77-94.
    [72]Farmer J.D., Sidorowich J.J. Predicating chaotic series [J]. Physical Review Letters,1987,59:845-849.
    [73]Sugihara, G., May, R.M. Nonlinear forecasting as a way of distinguishing chaos from measurement error in time series [J]. Nature,1990,344:734-741.
    [74]Sauer, T. Reconstruction of dynamical system from interspike intervals [J]. Physical Review Letters,1994,72:3811-3814.
    [75]Cvitanovic P. Invaraint measurement of strange sets in terms of cycles [J]. Physical Review Letters,1998,61(24):2729-2732.
    [76]Pierson D., Moss, F. Detecting periodic unstable points in noisy chaotic and limit cycle attractors with applications to biology [J]. Physical Review Letters, 1995,75:2124-2127.
    [77]So P., Ott E., Schiff S.J. Detecting unstable periodic orbits in chaotic experimental data [J]. Physical Review Letters,1996,76:4705-4708.
    [78]So P., Ott E., Sauer T. Extraction unstable periodic orbits from chaotic experimental data [J]. Physical Review E,1997,55:5398-5417.
    [79]So P., Francis J.T., Netoff T.I., Gluckma B.J., Schiff S.J. Periodic orbits:a new language for neuronal dynamics [J]. Biophysical Journal,1998,74:2776-2785.
    [80]Izhikevich E.M. Neural excitability, spiking and bursting [J]. International Journal of Bifurcation and Chaos,2000,10:1171-1266.
    [81]Izhikevich E.M. Dynamical system in neuroscience:The geometry of excitability and bursting [M]. Cambridge MA:The MIT Press,2007:284-285.
    [82]Stark J.. Hardy K. Chaos:Useful at Last [J]? Science,2003,301(5637): 1192-1193.
    [83]Mayer-Kress G., Haken H. Intermittent behavior of the logistic system [J]. Physics Letters A,1981,82(4):151-155.
    [84]Tian L.X., Xu G. Sudden Occurrence of Chaos in nonsmooth Maps [J]. International Journal of Bifurcation and Chaos,2007,17(1):271-282.
    [85]Qin Z.Y., Lu Q.S. Non-Smooth Bifurcation and Chaos in a DC-DC Buck Converter [J]. Chinese Physics Letters.2007,24(4):886-889.
    [86]Pomeau Y., Manneville P. Intermittent transition to turbulence in dissipative dynamical systems [J]. Communications in Mathematical Physics,1980,74(2): 189-197.
    [87]Grebogi C., Ott E., Yorke J.A. Chaotic Attractors in Crisis [J]. Physicals Review Letters,1982.48:1507-1510.
    [88]Grebogi C., Ott E., Yorke J.A. Crises, sudden changes in chaotic attractors, and transient chaos [J]. Physica D,1983,7(1-3):181-200.
    [89]Grebogi C., Ott E.. Romeiras F., Yorke J.A. Critical exponents for crisis-induced intermittency [J]. Physical Review A,1987,36(11):5365-5380.
    [90]Platt N., Spiegel E.A., Tresser C. On-off intermittency:A mechanism for bursting [J]. Physicals Review Letters,1993,70(3):279-282.
    [91]Heagy J.F., Platt N., Hammel S.M. Characterization of on-off intermittency [J]. Physics Review E,1994.49(2):1140-1150.
    [92]Bauer M., Habip S., He D.R, Martienssen W. New type of intermittency in discontinuous maps [J]. Physical Review Letters,1992,68(11):1625-1628.
    [93]Qu S.X., Wu S.G., He D.R. Multiple devil's staircase and type-V intermittency [J]. Physical Review E.1998,57(1):402-411.
    [94]He D.R., Bauerc M., Habip S., Krueger U., Martienssen W., Christiansen B., Wang B.H. Type V intermittency [J]. Physics Letters A,1992,171(1):61-65.
    [95]Hugo L. D., Rios Leite J. R. Fine structure in the scaling of type-Ⅰ intermittency bifurcations [J]. Physica A:Statistical Mechanics and its Applications.2004, 342:356-362.
    [96]Ebrowski J. J., Baranowski R. Type Ⅰ intermittency in nonstationary systems-models and human heart rate variability [J]. Physica A:Statistical and Theoretical Physics,2004,336(1-2):74-83.
    [97]Alexander D. Rae-Grant, Yong W. Kim. Type Ⅲ intermittency:a nonlinear dynamic model of EEG burst suppression [J]. Electroencephalography and Clinical Neurophysiology,1994.90(1):17-23.
    [98]Herzel H., Plath P., Svensson P.Experimental evidence of homoclinic chaos and type-II intermittency during the oxidation of methanol [J]. Physica D:Nonlinear Phenomena,1991,48(2-3):340-352.
    [99]汪颖梅,候榆青,张凯,何大韧,杨卫东,陈江丽.一个光学系统展示的V型阵发现象[J].光子学报,1999,28(a):109-111.
    [100]Wu S.G., He D.R. Intermittency between Type Ⅰ and Type Ⅴ in Some Quasi-Discontinuous Systems. J. Phys. Soc. Jpn.,2001,70:69-74.
    [101]Adrian E.D., Zotteman Y. The impulse produced by sensory nerve-ending. Part 2:The response of a single end-organ [J]. J phys Lond,1926,61:151-171.
    [102]Dean P.M., Matthews E.K. Electrical activity ini pancreatic islet cells:effects of ions [J]. J Phys,1970,210:265-275.
    [103]Guttman R., Barnhill R. Oscillation and repetitive firing in squid axons [J]. J Gen Physiol,1970,55:104-118.
    [104]Hayashi H., Ishzuka S.,Ohta M., Hirakawa K. Chaotic behavior in the onchidium giant neuron [J]. Physics Letters A,1982,88:435-438.
    [105]Hayashi H., Ishzuka S., Hirakawa K. Transition to chaos via intermittency in the onchidium pacemaker neuron [J]. Physics Letters A,1983.98:474-476.
    [106]Aihara K., Matsumoto G., Ikegaya Y. Periodic and non-periodic response of a periodically forced Hodgkin-Huxley oscillator [J]. Journal of Theoretical Biology,1984.109:249-269.
    [107]Aihara K., Matsumoto G., Ichikawa M. An alternating periodic-chaotic sequence observed in neural oscillators [J]. Physics Letters A,1985,111: 435-438.
    [108]Aihara K., Matsumoto G. Forced oscillations and routines to chaos in the Hodgkin-Huxley axons and squid giant axons [M]. In "chaos in biological system",Edit by Degn H., Holden A.V. and Olsen L.F.,1987,121-131.
    [109]Chay T.R. Chaos in a three-variable modle of an excitable cell [J]. Physica D, 1985,16:233-242.
    [110]Chay T.R., Rinzel J. Bursting, beating, and chaos in an excitable membrane model [J]. Biophysical Journal,1985,47:357-366.
    [111]Hindmarsh J. L., Rose R.M. A Model of Neuronal Bursting Using Three Coupled First Order Differential Equations [J]. Proc. R. Soc. Lond. B,1984, 221(1222):87-102.
    [112]Ren W., Hu S.J., Zhang B.J., Wang F.Z., Gong Y.F., Xu J.X. Period-adding bifurcation with chaos in the inter-spike intervals generated by an experimental neural pacemaker [J]. International Journal of Bifurcation and Chaos,1997,7: 1867-1872.
    [113]Xu J.X., Gong Y.F., Ren W., Hu S.J., Wang F.Z. Propagation of periodic and chaos action potential trains along nerve fibers [J]. Physica D,1997,100: 212-225.
    [114]Gong Y.F., Xu J.X., Ren W., Hu S.J., Wang F.Z. Determining the degree of chaos from analysis of ISI time series in the nervous system:a comparison between correlation dimension and nonlinear forecasting methods [J]. Biological Cybernetics,1998,78:159-165.
    [115]Ren W., Gu H.G., Jian Z., Lu Q.S., Yang M.H. Different classification of UPOs in the parametrically different chaotic ISI series [J]. NeuroReport,2001,12: 2121-2124.
    [116]Li L., Gu H.G., Yang M.H., Liu Z.Q., Ren W. A series of bifurcation scenarios in the firing transitions in an experimental neural pacemaker [J]. International Journal of Bifurcation and Chaos,2004,14:1813-1817.
    [117]Gu H.G., Yang M.H., Li L., Liu Z.Q., Ren W. Chaotic and ASR induced firing pattern in experimental neural pacemaker [J]. Dynamics of Continuous, Discrete and Impulsive System (Series B:Applications & Algorithms),2004, 11a:19-24.
    [118]Wu X.B.. Mo J., Yang M.H.. Zheng Q.H., Gu H.G., Ren W. Two different bifurcation scenarios in neural firing rhythms discovered in biological experiments by adjusting two parameters [J]. Chinese Physics Letters, 2008,25(8):2799-2802.
    [119]Thomas E., William J.R.. Zbigniew J.K., James E.S., Karl E.G., Niels B. Chaos and physiology:deterministic chaos in excitable cell assemblies [J]. Physiological Reviews,1994,74:1-47.
    [120]Selverston A.I., Rabinovich M.I., Abarbanel H.DI., Elson R.C., Szucs A., Pinto R.D., Huerta R., Varona P. Reliable circuits from irregular neurons:A dynamical approach to understanding central pattern generators [J]. Journal of Physiology (Paris),2000,94:357-374.
    [121]Mascio M.D., Giovanni G.D, Matteo V.D., Esposito E. Reduced chaos of interspike interval of midbrain dopaminergic neurons in aged rats [J]. Neuroscience,1999,89:1003-1008.
    [122]Lebrun P., Atwater I. Chaotic and irregular bursting electrical activity in mouse pancreatic β-cells [J]. Biophysical Journal,1985,48:529-531.
    [123]Elson R.C., Selverston A.I., Huerta R., Rulkov N.F., Rabinovich M.I., Abarbanel H.D.I. Synchronous behavior of two coupled biological neurons [J]. Physical Review Letters,1998,81(4):5692-5695.
    [124]Varona P., Torres J.J., Abarbanel H.D.I., Rabinovich M.I., Elson R.C, Dynamics of two electrically coupled chaotic neurons:Experimental observations and model analysis [J]. Biological Cybernetics,2001,84(2): 91-101.
    [125]Attila S.Z.. Elson R.C., Rabinovich M.I.,Abarbanel H.D.I., Selverston A.I. Nonlinear behavior of sinusoidally forced pyloric pacemaker neurons [J]. The Journal of Neurophysiology.2001,85(4):1623-1638.
    [126]Hoffman R.E., Shi W.X.,Bunney B.S. Nonlinear sequence-dependent structure of nigral dopamine neuron interspike interval firing patterns [J]. Biophysical Journal,1995,69:128-137.
    [127]Lovejoy L.P., Shepard P.D, Canavier C.C. Apamin-induced irregular firing in vitro and irregular single-spike firing observed in vivo in dopamine neurons is chaotic [J]. Neuroscience,2001,104(3):829-840.
    [128]Mascio M.D.I., Giovanni G.D.I., Matteo V.D.I., Espostto E. Decreased chaos of midbrain dopaminergic neurons after serotonin denervation [J]. Neuroscience, 1999,92(1):237-243.
    [129]Quyen M.L.V., Martinerie M.J., Adam C., Varela F.J. Unstable periodic orbits in human epileptic activity [J]. Physical Review E,1997,56:3401-3411.
    [130]Braun H.A., Schafer K., Voigt K., Peters R., Bretschneider F., Pei X., Wilkens L., Moss F. Low-dimensional dynamics in sensory biology 1:Thermally sensitive electroreceptors of the catfish [J]. Journal of Computational Neuroscience,1997,4:335-347.
    [131]Braun H.A., Dewald M., Schafer K., Voigt K., Pei X., Dolan K., Moss F. Low-dimensional dynamics in sensory biology 2:facial cold receptors of the rat [J]. Journal of Computational Neuroscience,1999,7:17-32.
    [132]Braun H.A., Dewald M., Voigt K., Huber M., Pei X., Moss F. Finding unstable periodic orbits in electroreceptors, cold receptors and hypothalamic neurons [J]. Neurocomputing,1999.26-27:79-86.
    [133]Pei X., Moss F. Characterization of low-dimensional dynamics in the crayfish caudal photoreceptor [J]. Nature,1996,379:618-621.
    [134]Kanno T., Miyano T., Tokudac I., Galvanovskisd J.,Wakui M. Chaotic electrical activity of living β-cells in the mouse pancreatic islet [J]. Physica D, 2007,226:107-116.
    [135]Chay T.R., Fan Y.S., Lee Y.S. Bursting, spiking, chaos, fractals, and universality in biological rhythms [J]. International Journal of Bifurcation and Chaos,1995.5:595-635.
    [136]Fan Y.S., Holden A.V. Bifurcations, burstings, chaos and crises in the Rose-Hindmarsh model for neuronal activity [J]. Chaos, Solitons & Fractals. 1993,3:439-449.
    [137]Fan Y.S., Chay T.R. Generation of periodic and chaotic bursting in an excitable cell model [J]. Biological Cybernetics,1994,71:417-431.
    [138]谢勇,徐建学,康艳梅,胡三觉,段玉斌.可兴奋性细胞混沌放电区间的识别机理[J].物理学报,2003,52(5):1112-1120.
    [139]盛昭翰,马军海.非线性动力系统分析引论[M].北京:科学出版社,2001.
    [140]高普云.非线性动力学-分叉、混沌与孤立子[M].长沙:国防科技大学出版社,2005,5.
    [141]Kuznetsov Y.A. Elements of Applied Bifurcation Theory [M]. New York: Springer-Verlag,1995.
    [142]陆启韶.分岔与奇异性[M].上海:上海科技教育出版社,1995.
    [143]Glass L., Mackey M.C. From clocks to chaos, the rhythm of life [M]. Princeton: Princeton University Press,1988.
    [144]Bennett G.J., Xie Y.K. A peripheral mononeuropahty in rat that produces disorders of pain sensation like those seen in man [J]. Pain,1988,33:87-10.
    [145]Pincus S.M. Approximate entropy as a measure of system complexity [J]. Proc. Nati. Acad. Sci.1991,88:2297-2301.
    [146]Lemple A., Ziv J. On the complexity of finite sequence [J]. IEEE Transactions on Neural Networks,1976,222:75-81.
    [147]Kasper F., Schuster H.G. Easily calculable measure for the complexity of spatio-temporal patterns [J]. Physical Review A,1987,36:836-842.
    [148]Li L, Gu H G, Yang M H, Liu Z Q and Ren W. A series of bifurcation scenarios in the firing pattern transitions in an experimental neural pacemaker [J]. Int J Bifurcat Chaos,2004; 14(5):1813-1817..
    [149]Zheng Q.H., Liu Z.Q., Yang M.H., Wu X.B., Gu H.G., Ren W. Qualitatively different bifurcation scenarios observed in the firing of identical nerve fibers [J]. Physics Letters A,2009,373:540-545.
    [150]Lindner B., Garcia-Ojalvo J., Neiman A., Schimansky-Geier L. Effects of noise in excitable systems [J]. Physics Reports,2004,392(6):321-424.
    [151]Yang M.H., An S.C., Gu H.G., Liu Z.Q., Ren W. Understanding of physiological neural firing patterns through dynamical bifurcation machineries [J]. NeuroReport,2006,17(10):995-999.
    [152]段玉斌,菅忠,胡三觉,龙开平.损伤神经自发放电节律分岔与频率变化的非线性特征[J].生物物理学报,2002,18(1):53-56.
    [153]King C.C. Fractal and chaotic dynamics in nervous systems [J]. Prog. Neurobiol. 1991,36:279-308.
    [154]Faure P., Korn H. Is there chaos in the brain? Ⅰ. Concepts of nonlinear dynamics and methods of in vestigation [J]. C.R. Acad. Sci. Paris, Sciences de la vie/Life Sciences.2001,324:773-793.
    [155]Korn H., Faure P. Is there chaos in the brain? Ⅱ. Experimental evidence and related models [J]. C. R. Biologies,2003,326:787-840.
    [156]Stam C.J. Nonlinear dynamical analysis of EEG and MEG:Review of an emerging field [J]. Clinical Neurophysiology.2005,116:2266-2301.
    [157]郜志英,陆启韶.电压与钙耦合神经元模型的符号动力学[J].北京航空航天大学学报,2007,33(8):925-929.
    [158]Wu S.G., He D. R. Characteristics of Period-Doubling Bifurcation Cascades in Quasi-discontinuous Systems [J]. Comm. Theo, Phys.,2001,35:275-282.
    [159]J. Rinzel, in:B. D. Sleeman, R. J. Jarvis (Eds.), Ordinary and Partial Differential Equations [M]. Springer-Verlag Press, Berlin,1985, p.304-316.
    [160]Yang Z.Q., Lu Q.S., Li L. The genesis of period-adding bursting without bursting-chaos in the Chay model [J]. Chaos, Solitons & Fractals,2006,27(3): 689-697.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700