GIS内多绝缘缺陷产生混合局部放电信号的分离研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
气体绝缘组合电器(Gas Isolated Switchgear,简称GIS)以低故障率和长检修周期保障现代电网的安全稳定运行。局部放电(Partial Discharge,简称PD)是GIS内潜在绝缘缺陷故障的早期表现形式,外置超高频(Ultra-high Frequency,简称UHF)PD信号辨识已经发展成为GIS内绝缘缺陷故障辨识最直接最有效的手段。GIS内的特殊空间结构和复杂的电气元器件布局以及多态PD随机性的产生机理可能导致GIS内多绝缘缺陷状态。本文摈弃GIS内只有单一绝缘缺陷诱发PD信号的认知,首次从多绝缘缺陷研究GIS内的绝缘缺陷故障。
     多绝缘缺陷必然诱发UHF混合PD信号,直接通过混合PD信号获取GIS内绝缘缺陷信息(绝缘缺陷个数和类型)是极具挑战的前沿性课题。盲源分离(Blind Source Separation,简称BSS)理论以不直接关心源信号的信息特征及混合过程,仅通过对检测混合信号分离就能获取源信号信息。这个间接获取源信号信息的“黑匣子”特点与通过外置UHF混合PD信号直接获取GIS内绝缘缺陷信息具有相同目的,因此,本文首次提出采用BSS理论对GIS内多绝缘缺陷诱发的外置UHF混合PD信号进行分离研究。
     对受干扰PD信号直接降噪,会因过度降噪或降噪不够以及降噪方法的选择不当,达不到理想的降噪效果,以造成PD信号波形不应有的畸变乃至特征信息丢失。针对PD信号直接降噪的这种盲目性,本文首次提出对PD信号的受干扰程度先进行定量评估后再决定降噪以及降噪深度选择的思想,并提出采用基于二阶统计量的信噪比估计理论以及构建适合PD信号的信噪比估计规则,对实测UHF PD信号的受干扰程度进行定量评价。
     在GIS内多绝缘缺陷状态下,各类绝缘缺陷对应的物理源位置以及PD信号传播通道具有不确定性,难以用确定的数学模型描述GIS内PD信号的混合过程。作为混合PD信号分离的理论分析基础,提出采用简化的线性瞬时混合模型和线性卷积混合模型分别定性描述GIS内PD信号的混合过程,并针对不同混合模型提出对应的混合信号分离算法。在实验室GIS模型内构造四类典型绝缘缺陷对应的物理模型,实测四类UHF单一PD信号,两两组合,构造四组模拟混合PD信号;同样,在试验GIS模型内构造四组对应的多绝缘缺陷,获取实测UHF混合PD信号。分别对模拟和实测混合PD信号进行分离和对比分析研究。
     对线性瞬时混合模型,提出采用基于二阶统计量的盲辨识分离算法(SOBI)及其改进的权值调整分离算法(WASOBI),对模拟和实测混合PD信号进行分离;利用评价参数分别对混合PD信号的分离效果进行定量评价,比较算法改进前后分离性能优劣;同时,定量比较分离评价参数,以确定影响混合PD信号分离的关键因素:构成GIS内多绝缘缺陷的绝缘缺陷类型、绝缘缺陷间相对距离及混合过程。
     对线性卷积混合模型,针对实测混合PD信号的长时非平稳特征,借助加窗傅里叶变换将混合PD信号转换为在短时条件下平稳的频域混合PD信号,并采用解相关算法进行分离;利用频域分离信号包络线间的相关性对分离信号进行准确重构,再通过傅里叶反变换获得分离的时域单一PD信号;采用模拟和实测混合PD信号分别进行分离和对比分析,研究实测混合信号的卷积混合模型构成特征以及验证GIS内单一PD信号的卷积混合模型假设,为GIS内多绝缘缺陷的深入研究奠定理论基础。
Gas isolated switchgear (GIS) with low failure rate and long inspection span serves the safe and stable operation of modern power grid. Partial discharge (PD) is a common precursor to the potential insulation defects in GIS cylinder and the identification of external ultra-high frequency (UHF) PD signal has developed to be an most immediate and effective approach to insulation defects inside GIS. It is possible that the special space architecture in GIS and PD mechanism together results in the multiple insulation defects in GIS cylinder. This paper gets rid of the unsound knowledge that the only single insulation defect excites single PD signal and considers the status on multiple insulation defects in GIS.
     It is sure that multiple insulation defects ignite mixing PD signals. Directly through these mixing signals to acquire the information on insulation defects in GIS is extremely of challenging and front. Blind source separation (BSS) theory disconsiders the information from source signals and mixing process to acquire the knowledge of source signals with the help of separating several mixing signals. The characteristic of“black box”indirectly for PD knowledge is extremely similar to that of obtaining the information (number and type) on multiple insulation defects in GIS from external UHF mixing PD signals. Therefore, this paper introduces the BSS theory into research on multiple insulation defects in GIS for the first time.
     Directly denoising PD signal probably makes the expected denoising effects unsatisfying due to over-denoising or under-denoising and inappropriate denoising method, and even causes the unexpected distortion of PD waveform and the loss of its characteristic information. Hence, this idea on firstly evaluating the interference degree of PD signal in the quantitative and then denoising it is proposed in this paper and the rule is built for the signal-to-noise ratio (SNR) estimation suitable for PD signal to quantitatitively evaluate the interference degree on actual PD signal on the basis of 2- order statistic SNR estimation theory.
     Due to uncertain positions of insulation defects under the status of multiple insulation defects in GIS, it is hard to build up an accurate mathematical model for mixing process of PD signals in GIS cylinder. For theoretical analysis to the separation of mixing PD signals, the simplified linear & instantaneous mixing model and linear & convolutive mixing model are employed, respectively. Furthermore, different BSS algorithms are described for different models. In experimental GIS model, four physical models for typical insulation defects are constructed for actual PD source signals. Two of them for a group, 4 groups of simulating mixing PD signals are designed. Similarly, 4 groups of models of multiple insulation defects are arranged in this GIS for actual mixing UHF PD signals. Both of them are for the separation and comparative analysis of mixing PD signals.
     2-oder statistic blind identification separation algorithm SOBI and its weights-adjusted algorithm WASOBI for linear & instantaneous mixing model are employed to separate these mixing PD signals including simulating and real ones. Their separation effects are quantitatively evaluated by several evaluation parameters so that the performances for SOBI and WASOBI are compared. On the other hand, critical influence factors on separation effect are discussed, including the types of insulation defects, the distance between two insulation defects and the mixing process in GIS.
     For linear & convolutive mixing model, actual mixing PD signals with long time and non- stationary character are partitioned into a series of short time and stationary mixing PD signals in frequency domain space by virtue of windowed Fourier transform. Correlation decomposition algorithm is used to separate these subsets of statinary PD signals. Taking advantage of the correlation of envelopes of these separated PD signals, they are accurately reconstructed and then are transformed into single PD signals in time domain space by inverse Fourier transform. Mixing PD signals from simulative mixing process and GIS model are employed to demosnstrate separation experiment and comparative analysises are done. The characteristic of linear & convolutive mixing model for actual PD signals are stuyed and then the hypothesis of convolutive mixing process on actual GIS inside is validted, which paves a way to the further research on multiple insulation defects in GIS.
引文
[1]冯昌远.GIS的运行经验和现场试验[J].高压电器,2000,0(01):49-53.
    [2]张宇娇,庄曰平,程炯.SF6气体绝缘全封闭组合电器故障分析[J].高电压技术,2005,31(01):89-90.
    [3]杨永明,孙才新,李新.用小波分析去除局部放电在线监测中的白噪干扰[J].高压电器,1999,0(03):8-11.
    [4]杨永明,孙才新,严欣平,李俭,杨霁.抑制局部放电在线监测中周期性干扰的级联式IIR陷波滤波器的研究[J].电工技术学报,2000,15(05):75-78.
    [5]陈庆国,王永红,高文胜,魏新劳,谈克雄.局部放电在线监测的数据分析及现场干扰抑制[J].高电压技术,2005,31(11):10-13.
    [6] T. Sakakibara, T. Nakajima, S. Maruyama, S. Wakabayashi, S. Nagaoka, "Development of GIS fault location system using pressure wave sensors," in IEEE Transactions on Power Delivery. vol. 14, 1999: 371-377.
    [7] T. Irwin, J. Lopez-Roldan, C. Charlson, "Partial discharge detection of free moving particles in GIS by the UHF method: Recognition pattern depending on the particle movement and location," in IEEE Power Engineering Society Winter Meeting - Vols 1-4, Conference Proceedings, 2000: 2135-2140.
    [8] U. Schichler,J. Gorablenkow, "Experience with UHFPD detection in GIS substations," in Proceedings of the 6th International Conference on Properties and Applications of Dielectric Materials, Vols 1 & 2, 2000: 286-289.
    [9] M. D. Judd. Using finite difference time domain techniques to model electrical discharge phenomena[J]. 2000 Annual Report Conference on Electrical Insulation and Dielectric Phenomena, Vols. I & Ii, 2000: 518-521.
    [10] A. J. Reid, M. Stewart, M. D. Judd. FDTD modeling of UHF partial discharge sensor response[J]. 2009 International Conference on Sustainable Power Generation and Supply. SUPERGEN 2009, 2009, 4.
    [11] KawadaM, Tungkanawanich A, Kawasaki Z, et al. Detection of wideband EM signals emitted from partial discharge occurring in GIS using wavelet transform [J]. IEEE Trans on PWRD, 2000, 15 (2): 467-471.
    [12] Hoshino T, Hoshino T, Kato K, et al. A novel technique for detecting electromagnetic wave caused by partial discharge in GIS[J]. IEEE Trans on Power Delivery, 2001.1.16 (4): 545-551.
    [13] KawadaM. Ultra wide band VHF /UHF radio interferometer system for detecting partial discharge source [C]. IEEE Power Engineering Society Winter Meeting, Jan 27-31, 2002.
    [14] Schei A, S Kyrkjeeide, V Larsen. Acoustic insulation analyzer for periodic condition assessment of gas insulated substations [C]. IEEE Transmission and Distribution Conference and Exhibition, Asia Pacific, 2002.
    [15]韩小莲.GIS局部放电检测系统的研究.西安交通大学博士学位论文,1995.7
    [16]刘云鹏,王会斌,王娟,律方成.高压开关柜局部放电UHF在线监测系统的研究[J].高压电器,2009,45(01):15-17.
    [17]张鸣超,王建生,邱毓昌.GIS中局部放电产生的超高频电磁波及其测量[J].高电压技术,1998,24(02):22-25.
    [18]张鸣超,王建生,邱毓昌.GIS中局部放电测量用超高频传感器[J].电网技术,1998,22(08):44-42.
    [19]王建生,邱毓昌,吴向华,孙晓滨.用于GIS局部放电检测的超高频传感器频率响应特性[J].中国电机工程学报,2000,20(08):42-45.
    [20]刘卫东,黄瑜珑,王剑锋,钱家骊.GIS局部放电特高频在线检测和定位[J].高压电器,1999,0(01):11-15.
    [21]唐炬,宋胜利,李剑,孙才新,许中荣.局部放电信号在变压器绕组中传播特性研究[J].中国电机工程学报,2002,22(10):91-96.
    [22]孙才新,许高峰,唐炬,侍海军,朱伟.检测GIS局部放电的内置传感器的模型及性能研究[J].中国电机工程学报,2004,24(08):89-94.
    [23]孙才新,许高峰,唐炬,陆宠惠,侍海军.以盒维数和信息维数为识别特征量的GIS局部放电模式识别方法[J].中国电机工程学报,2005,25(03):100-104.
    [24]金立军,刘卫东,钱家骊.GIS绝缘配合中的故障分析及诊断和检测技术[J].中国电力,2002,35(03):52-55.
    [25]吴桂生,陈劲松.浅谈GIS现场试验[J].四川电力技术,2004,0(01):61-62.
    [26]侍海军,王光前,张少炎.GIS现场绝缘试验技术[J].高压电器,2005,41(01):55-58.
    [27]章述汉,朱跃,吴良科,孙强,刘浩,吴经峰,李登云,岳长喜,汪泉.750kVGIS电流互感器现场检定试验方法[J].高电压技术,2009,35(05):1200-1205.
    [28]张文亮,张国兵.特高压GIS现场工频耐压试验与变频谐振装置限频方案原理[J].中国电机工程学报,2007,27(24):1-4.
    [29]徐贞华,田伟莉.220kV六氟化硫组合电器的运行与试验[J].有色冶金节能,2003,20(05):27-29.
    [30]唐炬,刘明军,彭文雄,魏钢,谢颜斌.GIS局部放电外置超高频检测系统[J].高压电器,2005,41(01):6-9.
    [31]陈庆国,张乔根,汪沨,邱毓昌,魏新劳.SF6气体中放电特征参数及机理[J].高电压技术,2000,26(06):7-10.
    [32]汪沨,邱毓昌,张乔根,陈庆国.冲击电压作用下影响表面电荷积聚过程的因素分析[J].电工技术学报,2001,16(05):51-55.
    [33]陈庆国,张乔根,邱毓昌,魏新劳.表面电荷对SF6中绝缘子沿面放电的影响[J].高电压技术,2000,26(02):24-26.
    [34]徐剑,黄成军,钱勇.多态性局部放电簇的小波提取算法[J].上海交通大学学报,2005,39(S1):62-66.
    [35]钱勇,黄成军,陈陈,江秀臣.多小波消噪算法在局部放电检测中的应用[J].中国电机工程学报,2007,27(06):89-94.
    [36]陈庆国,张乔根,汪沨,邱毓昌,魏新劳.SF6气体中的击穿概率与放电随机模型[J].高压电器,2000,0(06):15-19.
    [37] Hasegawa Y, Lzumi K, Kobayashi A, et al. Investigation on phenomena caused by insulation abnormalities in actual GIS [J]. IEEE Transactions on Power Delivery, 1994, 9 (2): 7962-804.
    [38]严璋,朱德恒.高电压绝缘技术.中国电力出版社,2002.3.
    [39]李德军,沈威,郭志强.GIS局部放电常规检测和超声波检测方法的应用比较[J].高压电器,2009,45(03):99-103.
    [40]黎大健,梁基重,步科伟,杨景刚,李彦明.GIS中典型缺陷局部放电的超声波检测[J].高压电器,2009,45(01):72-75.
    [41]张鸣超,邱毓昌.SF6及SF6混合气体火花放电生成物分析[J].高压电器,1992,0(06):17-21.
    [42]张晓星,任江波,肖鹏,唐炬,姚尧.检测SF6气体局部放电的多壁碳纳米管薄膜传感器[J].中国电机工程学报,2009,29(16):114-118.
    [43]黄兴泉,康书英,李泓志.GIS局部放电超高频检测法有关问题的仿真研究[J].电网技术,2006,30(07):37-41.
    [44]李忠,张晓枫,陈杰华,胡迪军,冯允平.外部传感器超高频GIS局部放电检测技术[J].西安交通大学学报,2003,37(12):1280-1283.
    [45]唐炬,许中荣,孙才新,谢颜斌,周倩.应用复小波变换抑制GIS局部放电信号中白噪声干扰的研究[J].中国电机工程学报,2005,25(16):30-34.
    [46]唐炬,谢颜斌,朱伟,许中荣.用于复小波变换的EWC阈值法抑制周期性窄带干扰[J].电力系统自动化,2005,29(07):43-47.
    [47]彭莉,唐炬,张晓星,谢颜斌.一种基于复小波变换提取PD信号的分块自适应复阈值算法[J].电工技术学报,2008,23(07):112-117.
    [48]钱勇,黄成军,江秀臣,肖燕,佐玉华.GIS中局部放电在线监测现状及发展[J].高压电器,2004,40(06):453-456.
    [49] Y. Hasegawa, K. Izumi, A. Kobayashi, S. Wakabayashi, H. Murase, M. Akazaki, S. Menju, "INVESTIGATION OF PHENOMENA CAUSED BY INSULATION ABNORMALITIES IN ACTUAL GIS," in IEEE Transactions on Power Delivery. vol. 9, 1994: 796-804.
    [50]贾嵘,徐其惠,田录林,李辉,刘伟.基于经验模态分解和固有模态函数重构的局部放电去噪方法[J].电工技术学报,2008,23(01):13-18.
    [51]李剑,孙才新,杨霁,杨洋,唐炬.局部放电在线监测中小波阈值去噪法的最优阈值自适应选择[J].电网技术,2006,30(08):25-29.
    [52]李新,孙才新,杨永明.从自相关函数中重构局部放电信号的一种新方法[J].高压电器,1999,0(02):8-10.
    [53]司文荣,李军浩,郭弘,罗勇芬,李彦明.局部放电宽带检测系统分类性能的改善方法[J].西南交通大学学报,2009,44(02):238-243.
    [54]唐炬,邓志勇,周倩,张晓星,谢颜斌.一种抑制PD白噪干扰的有效复合信息技术[J].重庆大学学报,2008,31(04):401-407.
    [55]唐炬,李玉兰,谢颜斌,胡忠,刘蕾,文春雷.一种用于评价PD信号去噪前后波形畸变的新参数[J].重庆大学学报,2009,32(03):252-256.
    [56]唐炬,万凌云,张晓星,谢颜斌.用于PD信号去噪的DbN序列有效复小波构造研究[J].电力自动化设备,2007,27(10):19-23.
    [57]唐炬,孙才新,,彭文雄,,侍海军,,朱伟.GIS局部放电检测中的小波包变换提取信号[J].电力系统自动化,2004,28(05):25-29.
    [58]许高峰,孙才新,唐炬,唐治德,张诚.基于小波变换抑制GIS局部放电监测中白噪干扰的新方法研究[J].电工技术学报,2003,18(02):87-91.
    [59]许中荣,唐炬,张晓星,孙才新.应用复小波变换对电力变压器局部放电超高频信号去噪研究[J].电力自动化设备,2008,28(01):27-32.
    [60]杨霁,李剑,王有元,唐炬,孙才新.变压器局部放电监测中的小波去噪方法[J].重庆大学学报(自然科学版),2004,27(10):67-70.
    [61]周倩,唐炬,唐铭,谢颜斌,刘明军.GIS内4种典型缺陷的局部放电超高频数学模型构建[J].中国电机工程学报,2006,26(08):99-104.
    [62]唐炬,周倩,许中荣,刘明军,孙才新.GIS超高频局放信号的数学建模[J].中国电机工程学报,2005,25(19):106-110.
    [63]步科伟,汤景鸿,米楚明,黎大健.Weibull分布在GIS局部放电识别中的应用[J].高压电器,2009,45(03):81-85.
    [64]何兰香,荆文忠,刘铁英.基于神经网络的局部放电模式识别方法研究[J].信息技术,2009,0(01):91-93.
    [65]李剑,孙才新,廖瑞金,杜林,陈伟根.用于局部放电图象识别的统计特征研究[J].中国电机工程学报,2002,22(09):104-107.
    [66]李立学,滕乐天,黄成军,曾奕,江秀臣.GIS局部放电超高频信号的包络分析与缺陷识别[J].高电压技术,2009,35(02):260-265.
    [67]刘秀兰,刘念.基于灰度图像分形特征的局部放电模式识别[J].变压器,2009,46(01):26-29.
    [68]孟延辉,唐炬,周倩,李剑,谢颜斌.基于Δu模式和RBF网络的局部放电模式识别[J].重庆大学学报(自然科学版),2006,29(11):41-45.
    [69]司文荣,李军浩,袁鹏,杨景刚,黎大健,李彦明.气体绝缘组合电器多局部放电源的检测与识别[J].中国电机工程学报,2009,29(16):119-125.
    [70]孙才新,李新,李俭,袁志坚,曹毅.小波与分形理论的互补性及其在局部放电模式识别中的应用研究[J].中国电机工程学报,2001,21(12):73-76.
    [71]唐炬,高丽,唐铭,张晓星,周倩.以复小波变换系数为特征量的局放模式识别[J].重庆大学学报(自然科学版),2007,30(04):21-24.
    [72]唐炬,谢颜斌,周倩.GIS局部放电超高频信号复小波的模式识别[J].重庆大学学报,2009,32(09):1659-1604.
    [73]张晓星,孙才新,唐炬,许中荣,周倩.基于统计不相关最优鉴别矢量集的GIS局部放电模式识别[J].电力系统自动化,2006,30(05):59-62.
    [74]张晓星,唐炬,孙才新,许中荣,周倩.一种基于线性鉴别分析的GIS局部放电模式识别[J].重庆大学学报(自然科学版),2006,29(10):1-4.
    [75]张晓星,唐炬,孙才新,姚尧.基于核统计不相关最优鉴别矢量集的GIS局部放电模式识别[J].电工技术学报,2008,23(09):111-117.
    [76]张晓星,唐炬,孙才新,周倩,许中荣.基于多重分形维数的GIS局部放电模式识别[J].仪器仪表学报,2007,28(04):597-601.
    [77] Jutten C, Herault J. Space or time adaptive signal processing by neural network models [C] In Intern. Conf. on Neural Networks for Computing, Snowbird (Utah, USA), 1986:206-211
    [78] Common P, Jutten C, Herault J. Blind separation of sources,Part II: Problems statement [J]. Signal Processing, 1991 ,24 (1) :11-20.
    [79] Sorouchyari E. Blind separation of sources, Part III: stability analysis [J]. Signal Processing. 1991, 24 (1): 21-30.
    [80] Common P., Independent component analysis, a new concept? [J]. Signal Processing, 1994, 36 (3):287-314.
    [81] Cardoso J F., Jacobi angles for simultaneous diagonalization [J] SIAM Journal of Mathematical Analysis and Applications, 1996, 17(1):161-164.
    [82] Cardoso J F., Higher order contrast for independent component analysis [J].NeuralComputation, 1999, 11(1):157-192.
    [83] Kendall M and Stuard A., The Advanced Theory of Statistics [M], Charles Griffin & Company, 1958.
    [84] L Tong, R Liu ,Soon VC ,et al., Indeterminacy and Identifiability of Blind Identification [J]. IEEE Trans. On Circuits and Systems, 1991 ,38 (5) :499-509.
    [85] L Tong , Y Inouye and R Liu . Waveform preserving blind estimation of multiple independent sources [J]. IEEE Transactions on Signal Processing, 1993,41(7): 2461-2470.
    [86] Kiyotoshi Matsuoka, Masahiro Ohya and Mitsuru Kawamoto. A Neural Net for Blind Separation of Non-stationary Signals [J]. Neural Networks , 1995 , 8 ( 3) :411-419.
    [87] Kawamoto M ,Barros AK, Mansour A ,et al. Real World Blind Separation of Convolved Non-stationary Signals[C]. Proc. International Workshop on Independent Component Analysis and Signal Separation ICA99, Aussois France, 1999:347-352.
    [88] Bell AJ and Sejnowski TJ. An information maximization approach to blind separation and blind deconvoluation [J], Neural computation, 1995, 7(6):1004-1034.
    [89] Becker, Hinton. A self-organizing neural network that discovers surfaces in randomdot stereograms [J], Nature , 1992 ,355 :161-163.
    [90] Lee T, Girolami M, Bell A ,et al. An Unifying Information Theoretic Framework for Independent Component Analysis [J]. Computers & Mathematics with Applications, 2000, 31(11):1-21.
    [91] Cardoso J F., Laheld B, Equivariant adaptive source separation [J]. IEEE Transactions on Signals Processing, 1996, 44(12):3017-3030.
    [92] Cardoso J F., The equivariant approach to source separation [J], In Processing of NOLTA, 1995:55-60.
    [93] Amari S. Natural gradient works efficiently in learning[J]. Neural Computation, 1998, 10:251-276.
    [94] Yang H, Amari S.and Cichocki. Adaptive on-line learnibg algorithms for blind separation-maximum entropy and minimum mutual information [J] Neural Computation, 1997, 7(9): 1457-1482.
    [95] Amari S. Superefficiency in blind source separation[J]. IEEE Transactions on Signals Processing, 1999, 47(4):936-994.
    [96] C. Xi-Ren,L. Ruey-Wen. General approach to blind source separation[J]. IEEE Transactions on Signal Processing| 1996, 44(3).
    [97] Lee T , Girolami M and Sejnowski T. Independent Component Analysis using an Extended Informax Algorithm for Mixed Sub - Gaussian and Super - Gaussian Sources [J]. NeuralComputation, 1999 ,11 (2) :409-433.
    [98] Douglas SC, Cichocki A and Amari S. Multichannel blind source separation and deconvolution of source with arbitrary distribution [C], In Nural Network for Signal Processing, Processing of 1997 IEEE Workshop (NNSP-97), 1997:436-445.
    [99] Choi S, Flexible Independent Component Analysis[J]. Journal of VLSI Signal Processing-System for Signal, Image and Video Technology, 2000.
    [100] Hyvarinen A, Oja E. A Fast Fixed - Point Algorithm for independent Component Analysis [J] . Neural Computation, 1997, 9 (7) :1483-1492.
    [101] Hyvarinen A. Fast and Robust Fixed2Point Algorithms for Independent Component Analysis [J] IEEE Trans on Neural Networks, 1999, 10(3):626 - 634.
    [102] Bingham E , Hyvarinen A. A Fast Fixed2point Algorithm for Independent Component Analysis of Complex Valued Signals [J] . Neural System, 2000, 10(1): 1 - 8.
    [103] Stone J V. Blind Source Separation Using Temporal Predictability [J], Neural Computation, 2001, 13(7): 1559- 1574.
    [104] Cheung Yiu-ming, Liu Hailin. A New Approach to Blind Source Separation with Global Optimal Property [C]/ /Proceedings of the IASTED International Conference of Neural Networks and Computational Intelligence, 2004:137 - 141.
    [105] Zhang L , Amari S , Cichocki A. Natural Gradient Approach to Blind Separation of Over2and Under2Complete Mixtures[C]//Proc.of the First International Workshop on Independent Component Analysis and Signal Separation2ICA’99, Aussois, France, 1999: 455 - 460.
    [106] Zhang L, Amari S, Cichocki A. Advances in Neural Information Processing Systems[M]. Cambrige, MA: MIT Press, 2000.
    [107] Zhang L, Amari S, Cichocki A. Semiparametric Model and Superefficie ncy in Blind Deconvolution [J], Signal Processing, 2001, 81: 2535 - 2553.
    [108] Zhang L, Cichocki A. Blind Deconvolution of Dynamical Systems: A State Space Approach [J]. Japanese Journal of Signal Processing, 2000, 4(2): 111 - 130.
    [109] Cichocki A, Zhang L, Amari S. Semi2Blind and State Space Approaches to Nonlinear Dynamic Independent Component Analysis [C]/ / Proceedings of 1998 International Symposium on Nonlinear Theory and its Applications (NOLTA298), Crans2Montana, Switzerland, 1998: 291-294.
    [110] Cichocki A, Zhang L. Two2Stage Blind Deconvolution Using State2Space Models [C]/ / Proceedings of the Fifth International Conference on Neural Information Processing ( ICONIP’98) , Kitakyushu, Japan, 1998: 729 - 732.
    [111]张贤达,保铮.盲信号分离[J].电子学报,2001,29(12):1766-1771.
    [112]胡光锐,徐雄,严永红.优化的竞争算法在语音识别中的应用[J].上海交通大学学报,1998,32(06):23-26.
    [113]胡光锐,虞晓.基于二阶前向结构和信息最大理论的语音增强算法[J].上海交通大学学报,2000,34(07):876-879.
    [114]汪军,,何振亚.瞬时混叠信号盲分离[J].电子学报,1997,25(04):1-5.
    [115]何振亚,刘琚,杨绿溪,蔚承建.盲均衡和信道参数估计的一种ICA和进化计算方法[J].中国科学E辑,2000,30(02):142-149.
    [116]凌燮亭.近场宽带信号源的盲分离[J].电子学报,1996,24(07):87-92.
    [117]刘琚,梅良模,王太君,何振亚.一种基于非平稳特性的前馈神经网络盲源分离方法[J].山东大学学报(自然科学版),1999,34(03):298-303.
    [118]谭丽丽,韦岗.基于高阶统计量的最小均方误差自适应回声消除算法(英文)[J].控制理论与应用,2000,17(06):911-914.
    [119]徐福安,马明,林宏亮.鸡尾酒会问题及其在军事侦察中应用的研究[J].中国电子科学研究院学报,2006,1(05):426-430.
    [120]黄兴泉,康书英,李泓志,张欲晓.GIS局部放电超高频电磁波的传播特性研究[J].高电压技术,2006,32(10):32-35.
    [121] M. D. Judd, O. Farish, B. F. Hampton. The excitation of UHF signals by partial discharges in GIS[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 1996, 3(2): 213-228.
    [122]张晓星,唐炬,彭文雄,孟延辉,孙才新.GIS局部放电检测的微带贴片天线研究[J].仪器仪表学报,2006,27(12):1595-1599.
    [123]唐炬,魏钢,孙才新,朱伟,彭文雄.GIS局部放电检测用超宽频带振子天线传感器研究[J].高电压技术,2004,30(03):29-42.
    [124]唐炬,廖华,张晓星,许中荣.GIS局放超高频在线监测系统研制[J].重庆大学学报,2008,31(01):29-33.
    [125]唐炬,彭莉,谢颜斌.一种用于抑制白噪声的分层复阈值算法[J].中国电机工程学报,2007,27(21):25-30.
    [126]程汪刘,郭跃霞,王静,李天云,邬欣,魏俊杰.快速傅里叶变换和广义形态滤波器在抑制局部放电窄带干扰中的应用[J].电网技术,2008,32(10):94-97.
    [127]姚林朋,黄成军,钱勇.基于EMD的局部放电窄带干扰抑制算法[J].电力系统及其自动化学报,2007,19(05):33-38.
    [128]段青,李凤祥,田兆垒.一种改进的小波阈值信号去噪方法[J].计算机仿真,2009,26(04):348-351.
    [129]柳刚,李术才,薛翊国,单治钢,张霄.基于小波变换的雷达低信噪比信号处理技术及应用研究[J].工程勘察,2009,0(09):85-90.
    [130]范海波,陈军,曹志刚.AWGN信道中非恒包络信号SNR估计算法[J].电子学报,2002,30(09):1369-1371.
    [131]史习智等编著盲信号处理--理论与实践[M],上海交通大学出版社,2008.3.
    [132] C. Xi-Ren,L. Ruey-Wen. General approach to blind source separation[J]. IEEE Transactions on Signal Processing, 1996, 44(3): 562-571.
    [133] D. Middleton. STATISTICAL-PHYSICAL MODELS OF ELECTROMAGNETIC INTERFERENCE[J]. IEEE Transactions on Electromagnetic Compatibility, 1977, 19:106-127.
    [134] A. J. Bell,T. J. Sejnowski. An Information-maximisation Approach to Blind Separation and Blind Deconvolution[J]. Neural Computation, 1995, 7(6): 1129-1159.
    [135] D. T. Pham,P. Garat. Blind Separation of Mixture of Independent Sources Through a Quasi-Maximum Likelihood Approach[J]. IEEE Transactions on Signal Processing, 1997, 45(7): 1712-1725.
    [136] S. Cruces-Alvarez, A. Cichocki, L. Castedo-Ribas. An iterative inversion approach to blind source separation[J]. IEEE Transactions on Neural Networks, 2000, 11(6): 1423-1437.
    [137] S. Cruces-Alvarez, A. Cichocki, L. Castedo-Ribas. An iterative inversion approach to blind source separation[J]. IEEE Transactions on Neural Networks, 2000, 11(6): 1423-1437.
    [138] M. Tiemin, A. Mertins, Y. Fuliang, X. Jiangtao, J. F. Chicharo, "Blind source separation for convolutive mixtures based on the joint diagonalization of power spectral density matrices," in Signal Processing, 2008: 1990-2007.
    [139] A. Cichocki, S. Amari, J. T. Cao, "Neural network models for blind separation of time delayed and convolved signals," in 1996 International Symposium on Nonlinear Theory and Its Applications (NOLTA 96) Katsurahama, Japan, 1996: 1595-1603.
    [140] F. H. Y. Chan, F. K. Lam, C. Q. Chang, "Neural network approach to blind source separation using second order statistics," in IEEE-EMBS Asia-Pacific Conference on Biomedical Engineering, X. X. Zheng, B. He,Y. T. Zhang, Eds. Hangzhou, Peoples R China, 2000: 63-63.
    [141] R. R. Gharieb,A. Cichocki, "Second-order statistics based blind source separation using a bank of subband filters," in Digital Signal Processing. vol. 13, 2003: 252-274.
    [142] E. Doron,A. Yeredor, "Asymptotically optimal blind separation of parametric Gaussian sources," in 5th International Conference on Independent Component Analysis and Blind Signal Separation (ICA). vol. 3195, C. G. Puntonet,A. Prieto, Eds. Granada, SPAIN, 2004: 390-397.
    [143]毕为民,唐炬,姚陈果,宋胜利.基于熵阈值的小波包变换抑制局部放电窄带干扰的研究[J].中国电机工程学报,2003,23(05):128-131.
    [144]黄成军,郁惟镛.基于小波分解的自适应滤波算法在抑制局部放电窄带周期干扰中的应用[J].中国电机工程学报,2003,23(01):107-111.
    [145]徐剑,黄成军.局部放电窄带干扰抑制中改进快速傅里叶变换频域阈值算法的研究[J].电网技术,2004,28(13):80-83.
    [146]沈宏,张蒲,徐其惠,曹贝贞.基于经验模态分解和自适应噪声对消算法的窄带干扰抑制[J].高压电器,2009,45(01):8-14.
    [147] A. Holobar, M. Ojstersek, D. Zazula. A new approach to parallel joint diagonalization of symmetric matrices[J]. Ieee Region 8 Eurocon 2003, Vol B, Proceedings, 2003, 16-20.
    [148] A. Belouchrani, K. AbedMeraim, J. F. Cardoso, E. Moulines, "A blind source separation technique using second-order statistics," in IEEE Transactions on Signal Processing. vol. 45, 1997: 434-444.
    [149] J.-F.Cardoso,A. Souloumiac. Jacobi Angles for Simultaneous Digitalization[J]. SIAM Journal Mat Anal Appl, 1996.01, 17(01): 161-164.
    [150] E. Doron.Asymptotically Optimal Blind Separation of Parametric Gaussian Sources[D]. 2003.
    [151] H. W. Sorenson. Parameter estimation[M]. New York: Dekker, 1980.
    [152]史习智,等著.盲信号处理-理论与实践[M].上海:上海交通大学出版社,2008.
    [153] A.Cichocki, S.Amari, K. Siwek, "ICALAB toolbox for signals processing-benchmarks," http://www.bsp.brain.riken.jp/ICALAB/ICALAB Signal Proc Download.php.
    [154]葛哲学,陈仲生.Matlab时频分析技术及其应用[M].人民邮电出版社,2006.
    [155] L. Molgedey, H.G. Schuster, Separation ofa mixture of independent signals using time delayed correlations, Phys. Rev. Lett. 72 (23) (1994) 3634}3637.
    [156] L.Fety,J. P. v. U!elen. New methods for signal separation[C]. Proceedings of IEE International Conference on HF Radio Systems and Techniques, London,April,1988, 226-230.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700