计算机符号计算在非线性模型解析研究中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着计算机科学与技术的发展,计算机符号计算作为计算机、数学与人工智能的交叉学科逐渐成熟和完善。符号计算研究的主要对象是可代数化、数学化的实际问题,对现实问题进行创造性的数学建模,而对模型的处理需要算法化的数学计算与逻辑推理。通过对实际问题的分析与探讨,设计可以在符号计算软件与系统中实现的代数算法,并分析算法的逻辑性与可执行性,最后应用算法处理模型并得到有效结果。符号计算是非线性模型解析研究的工具,在促进孤子理论的发展方面起了重要的作用。
     本文借助符号计算对出现在光纤通信、玻色-爱因斯坦凝聚以及流体力学等领域,具有变系数、耦合性、高维数(2+1或3+1维)以及高阶效应(包括高阶色散作用和高阶非线性作用)的非线性模型做解析研究,并详细探讨相关的可积性质。本文处理非线性模型的主要技术路线有两种:(一)线性化路线:基于可积条件(对变系数模型而言可利用Painleve检测获得系数函数间约束关系),将原非线性模型转化为与之对应的线性系统(或Lax对)的相容性条件,对线性系统构造达布阵(或达布算子),设计纯代数的迭代算法,最后利用符号计算实现想要的结果;(二)双线性化路线:利用Painleve分析或者贝尔多项式处理将非线性模型转化为双线性方程,对双线性方程应用形式参数展开法求解,最后利用符号计算实现想要的结果。在两种技术路线中,对非线性模型相关的可积性质也会做详细探讨。例如,从两种路线出发构造解析多孤子解,基于Lax对构造无穷多个守恒律,通过双线性方程构造双线性形式的Backlund变换以及利用贝尔多项式表达构造贝尔多项式形式的Backlund变换等。
     本文的核心内容包括以下七个方面:
     (I)借助符号计算,给出了研究非线性模型的双线性方法算法模块。基于双线性方法算法模块双线性化处理了二阶色散变系数非线性Schrodinger (NLS)模型,该模型考虑到光纤中由光纤空间变化引起的非均匀性,可以描述带有分布式参数色散与非线性效应的的单模光纤中脉冲传播的放大与衰减。文中研究了二阶色散变系数NLS模型的解析孤子解以及相关的可积性质,包括双线性Backlund变换,双Wronskian表示,N-1到N孤子之间的迭代等;对光孤子在非均匀光纤中的传播特性、演化行为以及相互作用等动力学特征给出了解析分析和图形模拟。
     (Ⅱ)借助符号计算,给出了三个处理非线性模型的算法模块:(a)非线性模型Painleve检测算法模块;(b)构造非线性模型线性系统算法模块;(c)非线性模型Darboux变换算法模块。利用算法模块(a)对广义N耦合高阶效应变系数NLS模型进行Painleve检测得到了变系数函数间两种约束条件:在第一种约束条件下,基于双线性方法算法模块双线性化处理该模型并得到了解析暗孤子解;在第二种约束条件下,首先应用算法模块(b)构造了该模型的线性系统,然后应用算法模块(c)构造了Darboux变换并获得解析亮孤子。通过选取不同的变系数函数,对所得暗/亮孤子作图分析,从理论与图形上揭示非均匀光纤中光孤子的传播演化特点。
     (Ⅲ)借助符号计算,对描述单模光纤中非线性脉冲传播的含高阶非线性效应广义NLS模型的各种可积性质(包括调制不稳定性、无穷守恒律、双线性方程以及解析孤子解与分析等)做解析研究。主要研究工作包括:(a)通过给平面波解一个小扰动进行调制不稳定分析;(b)基于其线性系统推导无穷多守恒律;(c)应用符号计算体系下双线性方法算法模块求得解析孤子解;(d)孤子解的渐近分析与图形演化。通过选取双孤子不同的波数,讨论了高阶非线性效应下孤子动力学特征。在相应的参数条件下,运动双孤子的结构从切片图上看类似蚯蚓,基于这一特征将这种双孤子从视觉上形象地命名为蚯蚓子。
     (Ⅳ)借助符号计算,基于双线性方法算法模块(并在双线性化过程中引入辅助函数)解析研究两个具有相干耦合效应的NLS类模型,即“负”相干耦合向量孤子模型与新的相干耦合向量孤子模型。对于前者,从向量孤子解的表达式出发进行渐近行为分析,并发现了退化与非退化孤子;在自相位调制、交叉相位调制以及“负”相干耦合等效应的综合作用下,探求向量孤子的形成与传播机制;通过选取不同的相位参数,讨论“负”相干耦合模型退化与非退化孤子间相应于三种碰撞模式下的向量孤子相互作用特点。对于后者,在相应的约束条件下解可以分为两类,即奇异型和非奇异型;非奇异型解具有孤子轮廓。对孤子解的渐近分析与图形模拟刻画了亮向量孤子解的轮廓(单峰或双峰)并揭示其相互作用机制(即在新的相干耦合效应NLS模型中向量孤子仅发生弹性相互作用)。
     (V)借助符号计算,解析研究线性的与时相关外部势阱囚禁的准一维玻色-爱因斯坦凝聚体孤子激发态动力学行为。在平均场近似理论下,描述该现象的模型为NLS类方程。利用无量纲变换将该模型无量纲化,并应用Painleve检测算法模块对其进行Painleve检测。基于模型的可积性直接构造精确解析解(包括暗孤子和亮孤子解),并且通过选取系数函数的不同形式对玻色-爱因斯坦凝聚中暗孤子和亮孤子动力学行为进行分情况讨论。
     (Ⅵ)借助符号计算,基于Painleve检测算法模块与双线性算法模块解析研究高维孤子问题。涉及的高维(或高维变系数)非线性模型有(2+1)-维Sawada-Kotera模型、带外力项广义二维变系数Korteweg-de Vries (KdV)模型和广义(2+1)-维变系数Gardner模型。对于(2+1)-Sawada-Kotera模型进行Painleve检测并求得解析孤子解,探讨多孤子的传播与相互作用机制。对于带外力项广义二维变系数KdV模型进行双线性研究,获得变系数双线性形式以及双线性Backlund变换;进一步基于双线性Backlund变换的相容性推导了Lax对,得到带外力项广义二维变系数KdV模型在具有Lax对的意义下可积的一些特例。对于广义(2+1)-维变系数Gardner模型,从可积角度出发找到变系数函数间的约束关系,进而对广义Gardner模型进行可积约化;基于可积性对相关的可积性质做了进一步研究,如双线性形式、双线性Backlund变换以及几种不同的Lax对;对应于求解双线性形式、求解双线性Backlund变换以及非线性化Lax对获得了模型的冲击波解。特别地,以二和三冲击波解为例,详尽地分析了冲击波解的传播与相互作用动力学特征,其中着重分析了变系数对冲击波解各个物理量的影响与作用、二冲击波解非弹性作用的机理以及三冲击波解各种非弹性作用(非弹性增益碰撞与非弹性压缩碰撞)的可能情形。
     (Ⅶ)借助符号计算,采用经典的贝尔多项式理论处理了如下非线性模型:(1+1)-维浅水波Ⅰ模型、Boiti-Leon-Manna-Pempinelli模型以及(2+1)-维高阶色散Sawada-Kotera模型,并相应地获得了贝尔多项式表达式、贝尔多项式形式的Backlund变换以及Lax对;采用带辅助变量的贝尔多项式方式处理了如下非线性模型:(1+1)-维浅水波Ⅱ模型、Lax五阶KdV模型以及(2+1)-维和(3+1)-维破裂孤子模型,并相应地获得了贝尔多项式形式的Backlund变换。
With the development of computer science and technology, computerized symbolic computation, as an interdisciplinary subject of computer science, mathematics and artificial intelligence, has gradually become ripe and perfect. The main research objects of symbolic computation are the algebraization and mathematization of practical questions, which involves the creative construction of mathematical modeling, and the manipulation on the models with algorithmization of mathematical calculation and logical reasoning. Through the analysis and exploration of practical problems, algebra algorithm can be designed and implemented on symbolic computation softwares and systems; moreover, the logicality and performability of the algebra algorithm should be analyzed, and finally valid results on the models will be obtained with the use of the algebra algorithm. Symbolic computation is the tool of the analytic study on the nonlinear models, and plays an important role in the development of soliton theory.
     With symbolic computation, this dissertation is to analytically investigate certain variable-coefficient, coupled, higher-dimensional [(2+1)-and (3+1)-dimensional] and/or higher-order effect (higher-order dispersion and higher-order nonlinearity) involved nonlinear models, which appear in the optical communication, Bose-Einstein condensates and fluid dynamics. Furthermore, relevant integrable properties are also studied in detail. The main technical routes of this dissertation dealing with the nonlinear models are of two types:(A) Linearization route:Cast the original nonlinear models as the compatibility conditions of their corresponding linear systems (or Lax pair) based on the integrable constraints (which can be derived with Painleve test for the variable-coefficient models), construct Darboux matrix (or Darboux operator), design the purely algebraic iterative algorithm, and finally achieve the expected results with symbolic computation;(B) Bilinearization route:Transform the nonlinear models into bilinear equations with Painleve analysis and/or Bell-polynomial manipulation, solve the bilinear equations with the formal parameter expansion method, and finally achieve the expected results with symbolic computation. In these two types of technical routes, the relevant integrable properties of the nonlinear models are also discussed detailedly, such as solving the analytic multisoliton solutions with these two types of technical routes, deriving the infinite conservation laws based on the Lax pair, constructing the bilinear Backlund transformation via bilinear equations, and obtaining the Bell-polynomial-typed Backlund transformations from Bell-polynomial manipulation.
     The research work of this dissertation includes the following seven aspects:
     (I) In virtue of symbolic computation, the bilinear method algorithm module is given to investigate the nonlinear models. Based on this algorithm module, a generalized variable-coefficient nonlinear Schrodinger (NLS) model is bilinearized, which considers the heterogeneity originated from the spacial changes in optical fibers and can describe the amplification or attenuation of pulse propagation in a single-mode optical fiber with distributed dispersion and nonlinearity. This dissertation investigates the analytic soliton solutions and associated integrable properties including bilinear Backlund transformation, double Wronskian expression, and transformation from the (N-1)-to N-soliton solutions. Additionally, the dynamical properties of the optical soliton propagation, evolution and interaction behavior in inhomogeneous fiber are analytically discussed and graphically simulated.
     (II) In virtue of symbolic computation, three algorithm modules for dealing with nonlinear models are given:(a) Painleve test algorithm module for nonlinear models;(b) linear system construction algorithm module for nonlinear models;(c) Darboux transformation algorithm module for nonlinear models. Painleve test is carried out for the generalized variable-coefficient N-coupled higher order NLS system via the algorithm module (a) with the achievement of two types of constraints among the variable-coefficient functions:Under the first type of constraints, the generalized variable-coefficient N-coupled higher order NLS system is bilinearized via the bilinear method algorithm module with the achievement of analytic dark-soliton solutions; under the second type of constraints, the associated linear system is firstly constructed via the algorithm module (b), and then the bright-soliton solutions are derived by means of Darboux transformation via the algorithm module (c). With the different choices among the variable-coefficient functions, the dark-and bright-soliton solutions are graphically analyzed, and the propagation and evolution of the optical solitons in the inhomogeneous optical fibers are theoretically and graphically revealed.
     (III) In virtue of symbolic computation, this dissertation analytically investigates the associated integrable properties (modulation instability analysis, infinite conservation laws, bilinear equation and analytic soliton solution, etc.) of a generalized higher-order nonlinear effect involved NLS model, which can be used to describe the propagation of nonlinear pulse in a monomode optical fiber. The main research work focuses on (a) modulation instability analysis of solutions in the presence of a small perturbation;(b) derivation of the infinite conservation laws based on the Lax pair;(c) soliton solutions obtained in virtue of the bilinear method with symbolic computation;(d) asymptotic analysis and graphical illustration of the solitons. Solitonic characteristics are discussed with different choices of the wave numbers in the two-soliton solutions. Finally a new type of soliton, namely the "earthwormon" is proposed in that the moving two-soliton structure looks like an earthworm in slice graphics.
     (IV) In virtue of symbolic computation, this dissertation analytically investigates two coherently-coupled NLS-typed models, i.e., a NLS-typed model with negative coherent coupling and a new coherently-coupled NLS-typed model. By means of the bilinear method algorithm module with the introduction of an auxiliary function, analytic vector bright solitons are derived. For the former model, asymptotic behavior analysis are carried out based on the expressions of the vector two-soliton solutions, and the degenerate/non-degenerate vector solitons are found; with the combined effects of self-phase modulation, cross-phase modulation and negative coherent coupling, the formation and transmission mechanisms of the vector solitons are studied; with different choices of the phase parameters, the interaction features of coherently-coupled degenerate and non-degenerate vector solitons, associated with three types of interaction models, are discussed. For the second model, its solutions are classified under corresponding constraints as two types:singular and non-singular ones, and the later ones appear as soliton-typed; asymptotic behavior analysis and graphical simulation for the solitons indicate the profiles of the bright vector solitons (single-or double-hump ones) and reveal their interaction mechanisms (that is, only elastic interactions take on in vector solitons of the new coherently-coupled NLS-typed model).
     (V) In virtue of symbolic computation, this dissertation analytically investigates the dynamics of soliton excitations in quasi-one-dimensional Bose-Einstein condensates trapped with an arbitrary linear time-dependent potential. In the mean field approximation theory, this phenomenon is described with NLS-typed equation. With a dimensionless transformation the model is cast into a dimensionless one, and is analyzed via Painleve test algorithm module. Within its integrability, exact analytic solutions including dark-and bright-soliton ones are directly constructed, and their dynamic behaviors in Bose-Einstein condensates are discussed with different choices of the arbitrary linear time-dependent potential.
     (VI) In virtue of symbolic computation, this dissertation analytically investigates higher-dimensional soliton problems via Painlev e test and bilinear method algorithm modules. The concerned higher-dimensional and variable-coefficient nonlinear models are:the (2+1)-dimensional Sawada-Kotera model, generalized variable-coefficient two-dimensional Korteweg-de Vries (KdV) model with various external-force terms, and generalized (2+1)-dimensional variable-coefficient Gardner model. For the (2+1)-dimensional Sawada-Kotera model, Painlev e test is carried out, analytic soliton solutions are solved, and the soliton propagation and interaction are revealed as well. The bilinear research is conducted for the generalized variable-coefficient two-dimensional KdV model with various external-force terms, and as a result, the bilinear form and bilinear Backlund transformation are derived. Furthermore, Lax pairs are constructed with the compatibility of the bilinear Backlund transformation, and some Lax-integrable cases of the generalized variable-coefficient two-dimensional KdV model with various external-force terms are obtained. For the generalized (2+1)-dimensional variable-coefficient Gardner model, the constraints among the variable-coefficient functions are found in the viewpoint of integrability, under which the generalized model is reduced. Other related integrable properties such as bilinear form, bilinear Backlund transformation and several different Lax representations are further studied. Through solving bilinear equations, bilinear Backlund transformation and nonlinearization of the Lax pair, shock-wave-like solutions are given. Specially, dynamics of the propagation and interaction for two-and three-shock-wave-like solutions are detailedly analyzed as an example, among which, the key points are the analysis of the influence of variable-coefficient functions on the physical quantities, the inelastic interaction mechanisms of the two-shock-wave-like solutions, and all the possible interaction cases (inelastic amplification and/or inelastic compression interactions) for the three-shock-wave-like solutions.
     (VII) In virtue of symbolic computation, this dissertation on one hand applies the classic Bell-polynomial theory to three nonlinear models:(1+1)-dimensional shallow water wave model, Boiti-Leon-Manna-Pempinelli model and the (2+1)-dimensional Sawada-Kotera model with the achievement of their corresponding Bell-polynomial expressions, Bell-polynomial-typed Backlund transformations and Lax pairs. On the other hand, by means of the Bell-polynomial manipulation with an auxiliary independent variable, the Bell-polynomial-typed Backlund transformations for another (1+1)-dimensional shallow water wave model, Lax fifth-order KdV model,(2+1)-and (3+1)-dimensional breaking soliton models are constructed as well.
引文
[1]Donald B, Kapur D, Mundy J. Symbolic and Numerical Computation for Artificial Intelligence. Academic Press,1992.
    [2]范恩贵.可积系统与计算机代数,科学出版社,2004.
    [3]赵东方.数学模型与计算,科学出版社,2007.
    [4]陶庆生.计算机代数及其应用,浙江大学出版社,1991.
    [5]吴文俊.数学机械化,科学出版社,2003.
    [6]张树功,刘停战,冯果忱.计算机代数基础,吉林大学出版社,1997.
    [7]衷仁保,马建.计算机代数学,科学出版社,1996.
    [8]田播.计算机符号计算在非线性研究中的若干应用[学位论文],北京航空航天大学,2003.
    [9]李娟.基于计算机符号计算的若干变系数非线性模型可积性质的研究[学位论文],北京邮电大学,2008.
    [10]《现代数学手册》编纂委员会,现代数学手册·计算机数学卷,华中科技大学出版社,2001.
    [11]Enns R H, McGuire G C. Nonlinear Physics with Maple for Scientists and Engineers. Birkhauser,2000.
    [12]吴文俊.吴文俊论数学机械化,山东教育出版社,1996.
    [13]王爱银.符号计算对计算有理矩阵指数的实用方法[学位论文],新疆大学,2005.
    [14]王东明.符号计算选讲,清华大学出版社,2003.
    [15]王东明.计算机代数,清华大学出版社,2004.
    [16]Veltman M. Schoonship. CERN preprint,1967.
    [17]Gao X S, Zhang J Z, Chou S C. Geometry Expert. Taipei,1998.
    [18]Barnett M P, Capitani J F, von zur Gathen J, Gerhard J. Symbolic calculation in chemistry:selected examples. Int. J. Quant. Chem.,100,2004,80-104.
    [19]Hunt B R, Lipsman R L, Rosenberg J M. A Guide to Matlab:For Beginners and Experienced Users. Cambridge Univ. Press,2006.
    [20]Wolfram S. The Mathematica Book. Cambridge Univ. Press,1999.
    [21]吴剑,胡波.掌握和精通Mathematica 4.0,机械工业出版社,2001.
    [22]徐安农.Mathematica数学实验,电子工业出版社,2004.
    [23]沃尔夫雷姆.Mathematica全书(赫孝良,周义仓译),西安交通大学出版社,2002.
    [24]阳明盛,林建华.Mathematica基础及数学软件,大连理工大学出版社,2006.
    [25]朱宏武.符号计算在非线性数学模型中的应用研究[学位论文],北京邮电大学,2008.
    [26]杨伯君,赵玉芳.高等数学物理方法,北京邮电大学出版社,2003.
    [27]Scott A. Encyclopedia of Nonlinear Science. Routledge,2005.
    [28]陆同兴.非线性物理概论,中国科学技术大学出版社,2002.
    [29]Infeld E, Rowlands G. Nonlinear Waves, Solitons and Chaos. Cambridge Univ. Press,2000.
    [30]Diacu F, Holmes P. Celestial Encounter:The Origins of Chaos and Stability. Prince-ton Univ. Press,1996.
    [31]黄景宁,徐济仲,熊吟涛.孤子概念、原理和应用,高等教育出版社,2004.
    [32]Korteweg D J, de Vriss G. On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves. Philos. Mag. Ser.,39, 1895,422-443.
    [33]Zabusky N J, Kruskal M D. Interaction of "solitons" in a collisionless plasma and the recurrence of initial states. Phys. Rev. Lett.,15,1965,240-243.
    [34]李丽莉.基于计算机符号计算的非线性模型孤子解研究[学位论文],北京邮电大学,2009.
    [35]Boiti M, Leon J J P, Mantina L, Pempinelli F. Scattering of localized solitons in the plane. Phys. Lett. A,132,1988,432-439.
    [36]Ruan H Y, Chen Y X. Dromion interactions of (2+1)-dimensional nonlinear evolu-tion equations. Phys. Rev. E,62,2000,5738-5744.
    [37]Tang X Y, Li J M, Lou S Y. Reflectionand reconnection interactions of resonant dromions. Phys. Scr.,75,2007,201-205.
    [38]Ruan H Y, Lou S Y. Dromion structure of (2+1)-dimensional sine-Gordon system. Commun. Theor. Phys.,32,1999,109-114.
    [39]Alagesan T, Uthayakumar A, Porsezian K. The generalisation of integrable (2+1)-dimensional dispersive long-wave equations. J. Phys. Soc. Japan,66,1997,1288-1290.
    [40]Isojima S, Willox R, Satsuma J. On various solution of the coupled KP equation. J. Phys. A,35,2002,6893-6909.
    [41]Lou S Y. Dromions, dromioms lattice, breamers and instantons of the Davey-Stewartson equation. Phys. Scr.,65,2002,7-12.
    [42]Ying J P, Lou S Y. Abundant coherent structures of the (2+1)-dimellsional Broer-Kaup-Hupershmidt equation. Zeitschrift fur Naturforschung Section A,56,2001, 619-625.
    [43]Rosenau P, Hyman J M. Compactons:solitons with finite wavelength. Phys. Rev. Lett.,70,1993,564-567.
    [44]Camassa R, Holm D D. An integrable shallow water equation with peaked solitons. Phys. Rev. Lett.,71,1993,1661-1664.
    [45]Loginov E K. Multi-instantons in higher dimensions and superstring solitons. SIGMA,1,2005,002:1-4.
    [46]Rajaraman R. Solitons and Intantons:An Introduction to Solitons and Instantons in Quantum Field Theory. North-Holland,1982.
    [47]Zhang J F, Meng J P, Zheng C L, Huang W H. Folded solitary waves and foldons in the (2+1)-dimensional breaking soliton equation. Chaos, Solitons and Fractals,20, 2004,523-527.
    [48]Dai C Q, Ni Y Z. Novel interactions between semi-foldons of the (2+1)-dimensional Boiti-Leon-Pempinelli equation. Phys. Scr.,74,2006,584-590.
    [49]Lu Z M, Tian E M, Grimshaw R. Interaction of two lump solitons described by the Kadomtsev-Petviashvili I equation. Wave Motion,40,2004,123-135.
    [50]Fokas A S, Pelinovsky D E, Sulem C. Interaction of lumps with a line soliton for the DSII equation. Physica D,152,2001,189-198.
    [51]楼森岳,唐晓艳.非线性数学物理方法,科学出版社,2006.
    [52]Lou S Y. Symmetry analysis and exact solutions of the 2+1 dimensional sine-Gordon system. J. Math. Phys.,41,2000,6509-6524.
    [53]Tang X Y, Lou S Y, Zhang Y. Localized exicitations in (2+1)-dimensional systems. Phys. Rev. E,66,2002,046601:1-17.
    [54]Matveev V B, Salle M A. Darboux Transformation and Solitons. Springer,1991.
    [55]Kako F, Yajima N. Interaction of ion-acoustic solitons in two-dimensional space. J. Phys. Soc. Japan,49,1980,2063-2071.
    [56]Xu T, Tian B, Zhang H Q, Li J. Integrable decompositions for the (2+1)-dimensional Gardner equation. Z. Angew. Math. Phys.,61,2010,293-308.
    [57]Lii X, Tian B, Zhang H Q, Xu T, Li H. Generalized (2+1)-dimensional Gardner model:bilinear equations, Baklund transformation, Lax representation and interac-tion mechanisms. Nonlinear Dyn.,67,2012,2279-2290.
    [58]Manakov S V. On the theory of two-dimensional stationary self-focusing of electro-magnetic waves. Sov. Phys. JETP,38,1974,248-253.
    [59]Manakov S V. On the theory of two-dimensional stationary self-focusing of electro-magnetic waves. J Theor. Math. Phys.,65,1976,172-179.
    [60]Radhakrishnan R, Lakshmanan M. Bright and dark soliton solutions to coupled nonlinear Schrodinger equations. J. Phys. A,28,1995,2683-2692.
    [61]Kanna T, Lakshmanan M. Exact soliton solutions, shape changing collisions, and partially coherent solitons in coupled nonlinear Schrodinger equations. Phys. Rev. Lett.,86,2001,5043-5046.
    [62]Mahalingam A, Porsezian K. Propagation of dark solitons in a system of coupled higher-order nonlinear Schrodinger equations. J. Phys. A,35,2002,3099-3110.
    [63]Kanna T, Lakshmanan M. Exact soliton solutions of coupled nonlinear Schrodinger equations:Shape-changing collisions, logic gates, and partially coherent solitons. Phys. Rev. E,67,2003,046617:1-25.
    [64]Kanna T, Lakshmanan M, Dinda P T, Akhmediev N. Soliton collisions with shape change by intensity redistribution in mixed coupled nonlinear Schrodinger equations. Phys. Rev. E,73,2006,026604:1-15.
    [65]Kanna T, Vijayajayanthi M, Lakshmanan M. Coherently coupled bright optical solitons and their collisions. J. Phys. A,43,2010,434018:1-14.
    [66]Kanna T, Sakkaravarthi K. Multicomponent coherently coupled and incoherently coupled solitons and their collisions. J. Phys. A,44,2011,285211:1-30.
    [67]Lii X, Tian B. Vector bright soliton behaviors associated with negative coherent coupling. Phys. Rev. E,85,2012,026117:1-14.
    [68]Lii X, Tian B. Vector bright solitons for a coherently-coupled nonlinear Schrodinger system. SIAM J. Appl. Math., submitted,2012.
    [69]Hasegawa A, Tappert F. Transmission of stationary nonlinear optical pulses in dispersion dielectric fibers I:Anomalous dispersion. App. Phys. Lett.,23,1973,142-144.
    [70]Agrawal G P. Applications of Nonlinear Fiber Optics. Academic Press,2001.
    [71]庞小峰.孤子物理学,四川科学技术出版社,2003.
    [72]Fann W, Rothberg L, Roberson M, Benson S, Madey J, Etemad S, Austin R. Dy-namical test of Davydov-type solitons in acetanilide using a picosecond free-electron laser. Phys. Rev. Lett.,64,1990,607-610.
    [73]Xu J Z. Soliton dynamics in the helix polypeptide chains. Chaos, Soltions and Fractals,11,2000,779-790.
    [74]Kevrekidis P G, Frantzeskakis D J, Carretero-Gonzalez R. Emergent Nonlinear Phenomena in Bose-Einstein Condensates:Theory and Experiment. Springer,2008.
    [75]Fermi E, Pasta J, Ulam S. Studies of nonlinear problems. I. Los Alamos Report LA-1940,1955.
    [76]Perring J K, Skyrme T H R. A model unified field equation. Nucl. Phys.,31,1962, 550-555.
    [77]Parks E J, Duffy B R. An automated tanh-function method for finding solitary wave solutions to non-linear evolution equations. Comput. Phys. Commun.,98,1996,288-300.
    [78]Li Z B, Wang M L. Travelling wave solutions to the two-dimensional KdV-Burgers equation. J. Phys. A,26,1993,6027-6031.
    [79]Yang X D, Ruan H Y, Lou S Y. A Maple package on symbolic computation of conserved densities for (1+1)-dimensional nonlinear evolution systems. Commun. Theor. Phys.,47,2007,961-968.
    [80]郭玉翠.非线性偏微分方程引论,清华大学出版社,2008.
    [81]潘祖梁.非线性问题的数学方法及其应用,浙江大学出版社,2002.
    [82]张海强.基于计算机符号计算研究非线性模型的可积性质及其物理应用[学位论文],北京邮电大学,2010.
    [83]Hereman W, Goktas U, Colagrosso M D, Miller A J. Algorithmic integrability tests for nonlinear differential and lattice equations. Comput. Phys. Commun.,115,1998, 428-446.
    [84]Xu G Q, Li Z B. Symbolic computation of the Painleve test for nonlinear partial differential equations using Maple. Comput. Phys. Commun.,161,2004,65-75.
    [85]Xu G Q, Li Z B. PDEPtest:a package for the Painleve test of nonlinear partial differential equations. Appl. Math. Comput.,169,2005,1364-1379.
    [86]Park Q H, Shin H J. Painleve analysis of the coupled nonlinear Schrodinger equation for polarized optical waves in an isotropic medium. Phys. Rev. E,59,1999,2373-2379.
    [87]Ito M. SYMCD-a REDUCE package for finding symmetries and conserved densities of systems of nonlinear evolution equations. Comput. Phys. Commun.,79,1994,547-554.
    [88]Goktas U, Hereman W. Symbolic computation of conserved densities for systems of nonlinear evolution equations. J. Symb. Comput.,24,1997,591-622.
    [89]Carminati J, Devitt J S, Fee G J. Isogroups of differential equations using algebraic computing. J. Symb. Comput.,14,1992,103-120.
    [90]Mansfield E L, Reid G J, Clarkson P A. Nonclassical reductions of a 3+1-cubic nonlinear Schrodinger system. Comput. Phys. Commun.,115,1998,460-488.
    [91]Li Z B, Liu Y P. RATH:A Maple package for finding travelling solitary wave solutions to nonlinear evolution equations. Comput. Phys. Commun.,148,2002, 256-266.
    [92]Duffy B R, Parkes E J. Travelling solitary wave solutions to a seventh-order gener-alized KdV equation. Phys. Lett. A,214,1996,271-272.
    [93]Gao Y T, Tian B. Generalized hyperbolic-function method with computerized sym-bolic computation to construct the solitonic solutions to nonlinear equations of math-ematical physics. Comput. Phys. Commun.,133,2001,158-164.
    [94]Clarkson P A. Painleve analysis and the complete integrability of a generalized variable-coefficient Kadomtsev-Petviashvili equation. IMA J. Appl. Math.,44,1990, 27-53.
    [95]王灯山.非线性波方程的对称与延拓结构理论[学位论文],中国科学院,2008.
    [96]Gardner C S, Greene J M, Kruskal M D, Miura R M. Method for solving the Korteweg-de Vries equation. Phys. Rev. Lett.,19,1967,1095-1097.
    [97]Zakharov V E, Shabat A B. Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in nonlinear media. Sov. Phys. JETP,34,1972, 62-69.
    [98]Wadati M. The exact solution of the modified Korteweg-de Vries equation. J. Phys. Soc. Japan,32,1972,1681-1681.
    [99]Ablowitz M J, Clarkson P A. Solitons, Nonlinear Evolution Equations and Inverse Scattering. Cambridge Univ. Press,1991.
    [100]Zakharov V E. What is Integrability?. Springer,1991.
    [101]Weiss J, Tabor M, Carnevale G. The Painleve property for partial differential equations. J Math. Phys.,24,1983,522-526.
    [102]Ablowitz M J, Remani A, Segur H. A connection between nonlinear evolution equations and odinary differential equations of P-type. I. J. Math. Phys.,21,1980, 715-721.
    [103]Ablowitz M J, Remani A, Segur H. A connection between nonlinear evolution equations and odinary differential equations of P-type. II. J. Math. Phys.,21,1980, 1006-1015.
    [104]Weiss J. The sine-Gordon equations:Complete and partial integrability. J. Math. Phys.,25,1984,2226-2235.
    [105]陈登远.孤子引论,科学出版社,2006.
    [106]谷超豪,胡和生,周子翔.孤立子理论中的达布变换及其几何应用,上海科技出版社,1999.
    [107]Wahlquist H D, Estabrook F B. Prolongation structures of nonlinear evolution equations. J. Math. Phys.,16,1975,1-7.
    [108]Calogero F, Eckhaus W. Nolinear evolution equations, recalings, model PDEs and their integrability:I. Inverse Problems,3,1987,229-262.
    [109]Calogero F, Eckhaus W. Nolinear evolution equations, recalings, model PDEs and their integrability:II. Inverse Problems,4,1988,11-33.
    [110]Calogero F, Eckhaus W. Necessary conditions for integrability of nonlinear PDEs. Inverse Problems,3,1987, L27-L32.
    [111]Bluman G W, Kumei S. Symmetries and Differential Equations. Springer,1989.
    [112]Bluman G W, Anco S C. Symmetry and Integration Methods for Differential Equations. Springer,2002.
    [113]Bluman G W, Cole J D. The general similarity solution of the heat equation. J Math. Phys.,18,1969,1025-1042.
    [114]Olver P J. Applications of Lie Groups to Differential Equations. Springer,1993.
    [115]Stephani H. in:M. MacCallum (Ed.), Differential Equations:Their Solutions Using Symmetries. Cambridge Univ. Press,1989.
    [116]Serkin V N, Hasegawa A. Novel soliton solutions of the nonlinear Schrodinger equation model. Phys. Rev. Lett.,85,2000,4502-4505.
    [117]Mollenauer L F, Stolen R H, Gordon J P, Tomlinson W J. Extreme picosecond pulse narrowing by means of soliton effect in single-mode optical fibers. Opt. Lett., 8,1983,289-291.
    [118]Lu X, Zhu H W, Meng X H, Yang Z C, Tian B. Soliton solutions and a Backlund transformation for a generalized nonlinear Schrodinger equation with variable coef-ficients from optical fiber communications. J. Math. Anal. Appl.,336,2007,1305-1315.
    [119]Lu X, Zhu H W, Yao Z Z, Meng X H, Zhang C, Zhang C Y, Tian B. Multisoli-ton solutions in terms of double Wronskian determinant for a generalized variable-coefficient nonlinear Schrodinger equation from plasma physics, arterial mechanics, fluid dynamics and optical communications. Ann. Phys. (New York),323,2008,1947-1955.
    [120]Lii X, Li J, Zhang H Q, Xu T, Li L L, Tian B. Integrability aspects with op-tical solitons of a generalized variable-coefficient N-coupled higher order nonlinear Schrodinger system from inhomogeneous optical fibers. J. Math. Phys.,51,2010, 043511:1-24.
    [121]Lii X, Li L L, Yao Z Z, Geng T, Cai K J, Zhang C, Tian B. Symbolic computation study of a generalized variable-coefficient two-dimensional Korteweg-de Vries model with various external-force terms from shallow water waves, plasma physics, and fluid dynamics. Zeitschrift fur Naturforschung Section A,64,2009,222-228.
    [122]Tian B, Wei G M, Zhang C Y, Shan W R, Gao Y T. Transformations for a generalized variable-coefficient Korteweg-de Vries model from blood vessels, Bose-Einstein condensates, rods and positons with symbolic computation. Phys. Lett. A, 356,2006,8-16.
    [123]Gao Y T, Tian B. On the solitonic structures of the cylindrical dust-acoustic and dust-ion-acoustic waves with symbolic computation. Phys. Lett. A,340,2005,449-455.
    [124]陈伟成.光纤矢量孤子的研究[学位论文],华南师范大学,2008.
    [125]Park Q H, Shin H J. Painleve analysis of the coupled nonlinear Schrodinger equa-tion for polarized optical waves in an isotropic medium. Phys. Rev. E,59,1999, 2373-2379.
    [126]Zhang H Q, Xu T, Li J, Tian B. Integrability of an N-coupled nonlinear Schroinger system for polarized optical waves in an isotropic medium via symbolic computation. Phys. Rev. E,77,2008,026605:1-10.
    [127]Zhang H Q, Li J, Xu T, Zhang Y X, Hu W, Tian B. Optical soliton solutions for two coupled nonlinear Schrodinger systems via Darboux transformation. Phys. Scr. 76,2007,452-460.
    [128]倪皖荪,魏荣爵.水槽中的孤波,上海科技教育出版社,1997.
    [129]Karpman V I. Evolution of radiating solitons described by the fifth-order Korteweg-de Vries type equations. Phys. Lett. A,244,1998,394-396.
    [130]Lenells J. Exactly solvable model for nonlinear pulse propagation in optical fibers. Stud. Appl. Math.,123,2009,215-232; Lenells J, Fokas A S. On a novel integrable generalization of the nonlinear Schrodinger equation. Nonlinearity,22,2009,11-27.
    [131]Fokas A S. On a class of physically important integrable equations. Physica D,87, 1995,145-150.
    [132]Lii X, Tian B. Novel behavior and properties for the nonlinear pulse propagation in optical fibers. Europhysics Letters,97,2012,10005:1-6.
    [133]Yang Q, Zhang J F. Bose-Einstein solitons in time-dependent linear potential. Opt. Commun.,258,2006,35-42.
    [134]Lii X, Tian B, Xu T, Cai K J, Liu W J. Analytical study of the nonlinear Schrodinger equation with an arbitrary linear time-dependent potential in quasi-one-dimensional Bose-Einstein condensates. Ann. Phys. (New York),323,2008,2554-2565.
    [135]Jimbo M, Miva T. Solitons and Infinite Dimensional Lie Algebras. Publ. RIMS (Kyoto University),19,1983,943-1001.
    [136]Konopelchenko B G, Dubrovsky V G. Some new integrable nonlinear evolution equations in 2+1 dimensions. Phys. Lett. A,102,1984,15-17; Nucci M C. Painleve property and pseudopotentials for nonlinear evolution equa-tions. J. Phys. A,22,1989,2897-2914.
    [137]Dubrovsky V G, Lisitsyn Y V. The construction of exact solutions of two-dimensional integrable generalizations of Kaup-Kuperschmidt and Sawada-Kotera equations via (?)-dressing method. Phys. Lett. A,295,2002,198-207; Rogers C, Schief W K, Stallybrass M P. Initial/boundary value problems and Darboux-Levi-type transformations associated with a 2+1-dimensional eigenfunc-tion equation. Int. J. Non-Linear Mechanics,30,1995,223-233.
    [138]Lu X, Geng T, Zhang C, Zhu H W, Meng X H, Tian B. Multi-soliton solutions and their interactions for the (2+1)-dimensional Sawada-Kotera model with truncated Painleve expansion, Hirota bilinear method and symbolic computation. Int. J. Mod. Phys. B,23,2009,5003-5015.
    [139]Clarkson P A, Painleve analysis and the complete integrability of a generalized variable-coefficient Kadomtsev-Petviashvili equation. IMA J. Appl. Math.,44,1990, 27-53; Brugarino T, Greco A M. Painleve analysis and reducibility to the canonical form for the generalized Kadomtsev-Petviashvili equation. J. Math. Phys.,32,1991,69-71; Tian B, Gao Y T. Truncated Painleve expansion and a wide-ranging type of general-ized variable-coefficient Kadomtsev-Petviashvili equations. Phys. Lett. A,209,1995, 297-304.
    [140]Lii X, Tian B, Zhu H W, Zhang H Q, Xu T, Li H. Integrability study on the gen-eralized (2+1)-dimensional variable-coefficient Gardner model with symbolic com-putation. Chaos,20,2010,043125:1-4.
    [141]Hirota R. The Direct Method in Soliton Theory. Cambridge Univ. Press,2004.
    [142]Hirota R, J. Satsuma. N-soliton solutions of model equations for shallow water waves. J. Phys. Soc. Japan,40,1976,611-612.
    [143]Lii X, Tian B, Sun K, Wang P. Bell-polynomial manipulations on Backlund trans-formations and Lax pairs for soliton equations with one Tau-function. J. Math. Phys., 51,2010,113506:1-8.
    [144]Ablowitz M J, Kaup D J, Newell A C, Segur H. The inverse scattering transform-Fourier analysis for nonlinear problems. Stud. Appl. Math.,53,1974,249-315.
    [145]Lu X, Tian B, Qi F H. Bell-polynomial construction of Backlund transformations with auxiliary independent variable for some soliton equations with one Tau-function. Nonlinear Analysis:Real World Appl.,13,2012,1130-1138.
    [146]Tian B, Gao Y T. Soliton-like solutions for a (2+1)-dimensional generalization of the shallow water wave equations. Chaos, Solitons and Fractals,7,1996,1497-1499.
    [147]Estevez P G, Leble S. A wave equation in 2+1:Painleve analysis and solutions. Inverse Problems,11,1995,925-938.
    [148]Satsuma J, Kaup D J. A Backlund transformation for a higher order Korteweg-de Vries equation. J Phys. Soc. Japan,43,1977,692-697.
    [149]Lax P D. Integrals of nonlinear equations of evolution and solitary waves. Comm. Pure Appl. Math.,21,1968,467-490.
    [150]Calogero F, Degasperis A. Nonlinear evolution equations solvable by the inverse spectral transform.-I. Nuovo Cimento B,32,1976,201-242; Calogero F, Degasperis A. Nonlinear evolution equations solvable by the inverse spectral transform.-II. Nuovo Cimento B,39,1977,1-54; Radha R, Lakshmanan M. Singularity analysis and localized coherent structures in (2+1)-dimensional generalized Korteweg-de Vries equations. J. Math. Phys.,35, 1994,4746-4756.
    [151]Gao Y T, Tian B. On a generalized breaking soliton equation. Chaos, Solitons and Fractals,8,1997,897-899; Ma S H, Peng J, Zhang C. New exact solutions of the (2+1)-dimensional breaking soliton system via an extended mapping method. Chaos, Solitons and Fractals,40, 2009,210-214.
    [152]Wazwaz A M. Integrable (2+1)-dimensional and (3+1)-dimensional breaking soli-ton equations. Phys. Scr.,81,2010,035005:1-5.
    [1]Mollenauer L F, Stolen R H, Gordon J P, Tomlinson W J. Extreme picosecond pulse narrowing by means of soliton effect in single-mode optical fibers. Opt. Lett.,8,1983, 289-291.
    [2]Gabitov I R, Turitsyn S K. Averaged pulse dynamics in a cascaded transmission system with passive dispersion compensation. Opt. Lett.,21,1996,327-329.
    [3]Hasegawa A, Kodama Y, Maruta A. Recent progress in dispersion-managed soliton transmission technologies. Opt. Fiber. Technol.3,1997,197-213.
    [4]Xu Z Y, Li L, Li Z H, Zhou G S, Nakkeeran K. Exact soliton solutions for the core of dispersion-managed solitons. Phys. Rev. E,68,2003,046605:1-8.
    [5]Bertilsson K, Aakjer T, Quiroga-Teixeiro M L, Andrekson P A, Hedekvist P O. Investigation of soliton compression by propagation through fiber junctions. Opt. Fiber. Technol.,1,1995,117-124.
    [6]Serkin V N, Hasegawa A. Novel soliton solutions of the nonlinear Schrodinger equa-tion model. Phys. Rev. Lett.,85,2000,4502-4505.
    [7]Li H, Huang D X. Submergence and control of dark soliton in a Dispersion-Managed system with random dispersion map. Chin. Phys. Lett.,20,2003,417-419.
    [8]Wingen A, Spatschek K H, Medvedev S B. Averaged dynamics of optical pulses described by a nonlinear Schrodinger equation with periodic coefficients. Phys. Rev. E,68,2003,046610:1-11.
    [9]Hirota R, Itoh M. Introduction to REDUCE. Tokyo,1989.
    [10]Hirota R. The Direct Method in Soliton Theory. Cambridge Univ. Press,2004.
    [11]Hasegawa A, Kodama Y. Solitons in Optical Communications. Oxford Univ. Press, 1995.
    [12]贾东方,余震虹,谈斌等译.非线性光纤光学原理及应用,电子工业出版社,2002.
    [13]Agrawal G P. Applications of Nonlinear Fiber Optics. Academic Press,2001.
    [14]Hasegawa A, Tappert F. Transmission of stationary nonlinear optical pulses in dispersive dielectric fibers Ⅰ:Anomalous dispersion. Appl. Phys. Lett.,23,1973,142-144.
    [15]Mollenauer L F, Stolen R H, Gordon J P. Experimental observation of picosecond pulse narrowing and solitons in optical fibers. Phys. Rev. Lett.,45,1980,1095-1098.
    [16]Hasegawa A, Tappert F. Transmission of stationary nonlinear optical pulses in dispersive dielectric fibers Ⅱ:Normal dispersion. Appl. Phys. Lett.,23,1973,171-173.
    [17]Hasegawa A, Kodama Y. Signal transmission by optical solitons in a monomode fiber. Proc. IEEE,69,1981,1145-1150.
    [18]黄景宁,徐济仲,熊吟涛.孤子概念、原理和应用,高等教育出版社,2004.
    [19]龚倩,徐荣,叶小华等.高速超长距离光传输技术,人民邮电出版社,2005.
    [20]Kivshar Y S, Agrawal G P. Optical Solitons:From Fibers to Photonic Crystals. Academic Press,2003.
    [21]Chen S H, Yi L. Chirped self-similar solutions of a generalized nonlinear Schrodinger equation model. Phys. Rev. E,71,2005,016606:1-4.
    [22]Tian J P, Zhou G S. Chirped soliton-like solutions for nonlinear Schrodinger equa-tion with variable coefficients. Opt. Commun.,262,2006,257-262.
    [23]Abdullaev F, Darmanyan S, Khabibullaev P. Optical Solitons. Springer,1991.
    [24]Nakkeeran K. Exact soliton solutions for a family of N coupled nonlinear Schrodinger equations in optical fiber media. Phys. Rev. E,62,2000,1313-1321.
    [25]Dumais P, Gonthier F, Lacroix S, Bures J, Villeneuve A, Wigley P G J, Stegeman G I. Enhanced self-phase modulation in tapered fibers. Opt. Lett.,18,1993,1996-1998.
    [26]Burtsev S, Kaup D J, Malomed B A. Interaction of solitons with a strong inhomo-geneity in a nonlinear optical fiber. Phys. Rev. E,52,1995,4474-4481.
    [27]Lii X, Zhu H W, Meng X H, Yang Z C, Tian B. Soliton solutions and a Backlund transformation for a generalized nonlinear Schrodinger equation with variable coeffi-cients from optical fiber communications. J. Math. Anal. Appl.,336,2007,1305-1315.
    [28]Lu X, Zhu H W, Yao Z Z, Meng X H, Zhang C, Zhang C Y, Tian B. Multisoli-ton solutions in terms of double Wronskian determinant for a generalized variable-coefficient nonlinear Schrodinger equation from plasma physics, arterial mechanics, fluid dynamics and optical communications. Ann. Phys. (New York),323,2008, 1947-1955.
    [29]Gabitov I, Shapiro E G, Turitsyn S K. Asymptotic breathing pulse in optical trans-mission systems with dispersion compensation. Phys. Rev. E,55,1997,3624-3633.
    [30]Lakoba T I, Kaup D J. Hermite-Gaussian expansion for pulse propagation in strongly dispersion managed fibers. Phys. Rev. E,58,1998,6728-6741.
    [31]Kruglov V I, Peacock A C, Harvey J D. Exact self-similar solutions of the generalized nonlinear Schrodinger equation with distributed coefficients. Phys. Rev. Lett.,90, 2003,113902:1-4.
    [32]Malomed B A. Soliton Management in Periodic Systems. Springer,2006.
    [33]Hirota R. Exact solution of the KdV equation for multiple collisions of solitons. Phys. Rev. Lett.,27,1971,1192-1994.
    [34]Hirota R, Satsuma J. A simple structure of superposition formula of the Backlund transformation. J. Phys. Soc. Japan,45,1978,1741-1750.
    [35]Iwao M, Hirota R. Soliton solution of a coupled modified KdV equations. J. Phys. Soc. Japan,66,1997,577-588.
    [36]Hirota R, Hu X B, Tang X Y. A vector potential KdV equation and vector Ito equwtion:soliton solutions, bilinear Backlund transformations and Lax pairs. J. Math. Anal. Appl.,288,2003,326-348.
    [37]広田良吾著,王红艳,李春霞,赵俊霄,虞国富译,胡星标校.孤子理论中的直接方法,清华大学出版社,2008.
    [38]斯蒂芬·沃尔夫雷姆.Mathematica全书(赫孝良,周义仓译),西安交通大学出版社,2002.
    [39]阳明盛,林建华.Mathematica基础及数学软件,大连理工大学出版社,2006.
    [40]Zakharov V E, Shabat A B. Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in nonlinear media. Sov. Phys. JETP,34,1972, 62-69.
    [41]Weiss J, Tabor M, Carnevale G. The Painleve property for partial differential equa-tions. J. Math. Phys.,24,1983,522-526.
    [42]Joshi N. Painleve property of general variable-coefficient versions of the Korteweg-de Vries and nonlinear Schrodinger equations. Phys. Lett. A,125,1987,456-460.
    [43]Remani A, Grammaticos B, Bountis T. The Painleve property and singularity anal-ysis of integrable and non-integrable systems. Phys. Rep.,180,1989,159-245.
    [44]Hirota R. Exact envelope soliton solutions of a nonlinear wave equation. J. Math. Phys.,14,1973,805-809.
    [45]Rogers C, Shadwick W F. Backlund Transformations and their Applications. Aca-demic Press,1982.
    [46]Nimmo J J C. A bilinear Backlund transformation for the nonlinear Schrodinger equation. Phys. Lett. A,99,1983,279-280.
    [47]Ablowitz M J, Clarkson P A. Solitons, Nonlinear Evolution Equations and Inverse Scattering, Cambridge Univ. Press,1991.
    [48]Nimmo J J C, Freeman N C. A method of obtainning the soliton solution of the Boussinesq equation in terms of a Wronskian. Phys. Lett. A,95,1983,4-6.
    [49]Freeman N C, Nimmo J J C. The use of Backlund transformations in obtaining N-soliton solutions in Wronskian form. J. Phys. A,17,1984,1415-1424.
    [50]Chen D Y. Backlund transformations and n soliton solutions. J. Math. Res. Expo-sition,25,2005,479-488 (in Chinese).
    [51]Freeman N C, Nimmo J J C. Soliton solitons of the KdV and KP equations:the Wronskian technique. Phys. Lett. A,95,1983,1-3.
    [52]Zhang D J, Chen D Y. Negatons, positons, rational-like solutions and conservation laws of the Korteweg-de Vries equation with loss and non-uniformity terms. J. Phys. A,37,2004,851-865.
    [53]Zhang D J, Bi J B, Hao H H. A modified KdV equation with self-consistent sources in non-uniform media and soliton dynamics. J. Phys. A,39,2006,14627-14648.
    [54]Deng S F, Zhang D J, Chen D Y. Exact solutions for the nonisospectral KP equa-tion. J. Phys. Soc. Japan,74,2005,2383-2385.
    [55]Deng S F. The multisoliton solutions for the nonisospectral mKP equation. Phys. Lett. A,362,2007,198-204.
    [1]Hasegawa A, Kodama Y. Solitons in Optical Communications. Oxford Univ. Press, 1995.
    [2]Agrawal G P. Applications of Nonlinear Fiber Optics. Academic Press,2001.
    [3]贾东方,余震虹,谈斌等译.非线性光纤光学原理及应用,电子工业出版社,2002.
    [4]黄景宁,徐济仲,熊吟涛.孤子概念、原理和应用,高等教育出版社,2004.
    [5]Kivshar Y S, Agrawal G P. Optical Solitons:From Fibers to Photonic Crystals. Academic Press,2003.
    [6]Chen S H, Yi L. Chirped self-similar solutions of a generalized nonlinear Schrodinger equation model. Phys. Rev. E,71,2005,016606:1-4.
    [7]Tian J P, Zhou G S. Chirped soliton-like solutions for nonlinear Schrodinger equation with variable coefficients. Opt. Commun.,262,2006,257-262.
    [8]Abdullaev F, Darmanyan S, Khabibullaev P. Optical Solitons. Springer,1991.
    [9]Nakkeeran K. Exact soliton solutions for a family of N coupled nonlinear Schrodinger equations in optical fiber media. Phys. Rev. E,62,2000,1313-1321.
    [10]Mollenauer L F, Stolen R H, Gordon J P, Tomlinson W J. Extreme picosecond pulse narrowing by means of soliton effect in single-mode optical fibers. Opt. Lett., 8,1983,289-291.
    [11]Serkin V N, Hasegawa A. Novel soliton solutions of the nonlinear Schrodinger equa-tion model. Phys. Rev. Lett.,85,2000,4502-4505.
    [12]Gedalin M, Scott T C, Band Y B. Optical solitary waves in the higher order non-linear Schrodinger equation. Phys. Rev. Lett.,78,1997,448-451.
    [13]Hirota R. Exact envelope soliton solutions of a nonlinear wave equation. J. Math. Phys.,14,1973,805-809.
    [14]Sakovich S Y. Painleve analysis of a higher-order nonlinear Schrodinger equation. J. Phys. Soc. Japan,66,1997,2527-2529.
    [15]Kohl R, Milovic D, Zerrad E, Biswas A. Optical soliton perturbation in a non-Kerr law media. Opt. Laser Technol.,40,2008,647-662.
    [16]Biswas A. Integro-differential perturbations of optical solitons. J. Opt. A, Pure Appl. Opt.,2,2000,380-388.
    [17]Kodama Y, Hasegawa A. Nonlinear pulse-propagation in a monomode dielectric guide. IEEE J. Quantum Electron.,23,1987,510-524.
    [18]Mitschke F M, Mollenauer L F. Discovery of the soliton self-frequency shift. Opt. Lett.,11,1986,659-661.
    [19]龚倩,徐荣,叶小华等.高速超长距离光传输技术,人民邮电出版社,2005.
    [20]Kodama Y. Optical soliton in a monomode fiber. J. Stat. Phys.,39,1985,597-614.
    [21]Papaioannou E, Frantzeskakis D J, Hizanidis K. An analytical treatment of the effect of axial inhomogeneity on femtosecond solitary waves near the zero dispersion point. IEEE J. Quantum Electron.,32,1996,145-154.
    [22]Nakkeeran K. Exact dark soliton solutions for a family of N-coupled nonlinear Schrodinger equations in optical fiber media. Phys. Rev. E,64,2001,046611:1-7.
    [23]Tian J P, Li J H, Kang L S, Zhou G S. Soliton solutions and soliton interactions for the coupled nonlinear schrodinger equation with varying coefficients. Phys. Scr., 72,2005,394-398.
    [24]Bindu S G, Mahalingam A, Porsezian K. Dark soliton solutions of the coupled Hirota equation in nonlinear fiber. Phys. Lett. A,286,2001,321-331.
    [25]Vinoj M N, Kuriakose V C. Multisoliton solutions and integrability aspects of cou-pled higher-order nonlinear Schrodinger equations. Phys. Rev. E,62,2000,8719-8725.
    [26]Tasgal R S, Potasek M J. Soliton solutions to coupled higher-order nonlinear Schrodinger equations. J. Math. Phys.,33,1992,1208-1215.
    [27]Hisakado H, Lizuka T, Wadati M. Coupled hybrid nonlinear Schrodinger equation and optical solitons. J. Phys. Soc. Japan,63,1994,2887-2894.
    [28]Nakkeeran K, Porsezian K, Sundaram P S, Mahalingam A. Optical solitons in N-coupled higher order nonlinear Schrodinger equations. Phys. Rev. Lett.,80,1998, 1425-1428.
    [29]Park Q H, Shin H J. Systematic construction of multicomponent optical solitons. Phys. Rev. E,61,2000,3093-3106.
    [30]Seenuvasakumaran P, Mahalingam A, Porsezian K. Dark solitons in N-coupled higher order nonlinear Schrodinger equations. Commun. Nonlinear Sci. Numer. Simul.,13,2008,1318-1328.
    [31]Radhakrishnan R, Lakshmanan M, Hietarinta J. Inelastic collision and switching of coupled bright solitons in optical fibers. Phys. Rev. E,56,1997,2213-2216.
    [32]Kanna T, Lakshmanan M. Exact soliton solutions of coupled nonlinear Schrodinger equations:Shape-changing collisions, logic gates, and partially coherent solitons. Phys. Rev. E,67,2003,046617:1-25.
    [33]Lu X, Li J, Zhang H Q, Xu T, Li L L, Tian B. Integrability aspects with op-tical solitons of a generalized variable-coefficient N-coupled higher order nonlinear Schrodinger system from inhomogeneous optical fibers. J. Math, Phys.,51,2010, 043511:1-24.
    [34]Ablowitz M J, Clarkson P A. Solitons, Nonlinear Evolution Equations and Inverse Scattering, Cambridge Univ. Press,1991.
    [35]Ablowitz M J, Segur H. Asymptotic solutions of the Korteweg-de Vries equations, Stud. Appl. Math.,57,1977,13-44.
    [36]Ablowitz M J, Segur H. Exact linearization of a Painleve transcendent, Phys. Rev. Lett.,38,1977,1103-1106.
    [37]Ablowitz M J, Remani A, Segur H. Nonlinear evolution equations and ordinary differential equations of Painleve type. Lett. Nuovo. Cim.,23,1978,333-338.
    [38]Ablowitz M J, Remani A, Segur H. A connection between nonlinear evolution equa-tions and ordinary differential equations of P-type. I. J. Math. Phys.,21,1980,715-721.
    [39]Hastings S P, McLeod J B. A boundary value problem associated with the second Painleve transcendent and the Korteweg-de Vries equation, Arch. Rat. Mech. Anal., 73,1980,31-51.
    [40]Ablowitz M J, Remani A, Segur H. A connection between nonlinear evolution equa-tions and ordinary differential equations of P-type. Ⅱ. J. Math. Phys.,21,1980, 1006-1015.
    [41]Weiss J, Tabor M, Carnevale G. The Painleve property for partial differential equa-tions. J. Math. Phys.,24,1983,522-526.
    [42]Weiss J. The sine-Gordon equations:Complete and partial integrability. J. Math. Phys.,25,1984,2226-2235.
    [43]Weiss J. Modified equations, rational solutions and the Painleve property for the Kadorntsev-Petviashvili and Hirota-Satsuma equations. J. Math. Phys.,26,1985, 2174-2180.
    [44]Clarkson P A, Ablowitz M J. New similarity reductions of the Boussinesq equation. J. Math. Phys.,30,1989,2201-2213.
    [45]Jimbo M, Kruskal M D, Miwa T. Painleve test for the self-dual Yang-Mills equation. Phys. Lett. A,92,1982,59-60.
    [46]Estevez P G. The direct method and the singular manifold method for the Fitzhugh-Nagumo equation. Phys. Lett. A,171,1992,259-261.
    [47]Estevez P G, Gordoa P R, Martinez-Alonso L, Reus E M. Modified singular manifold expansion:application to the Boussinesq and Mikhailov-Shabat systems. J. Phys. A,26,1993,1915-1925.
    [48]Estevez P G, Gordoa P R. Double singular manifold method for the MKdV equa-tion. Teor. Matem. Fizika,99,1994,370-376.
    [49]Musette M, Conte R. The two-singular-manifold method:I. Modified Korteweg-de Vries and sine-Gordon equations. J. Phys. A,27,1994,3895-3913.
    [50]Conte R, Musette M, Picketing A. The two-singular-manifold method:Ⅱ. classical Boussinesq system. J. Phys. A,28,1995,179-187.
    [51]Clarkson P A. Painleve analysis and the complete integrability of a generalized variable-coefficient Kadomtsev-Petviashvili equation. IMA J. Appl. Math.,44,1990, 27-53.
    [52]Gao Y T, Tian B. On the non-planar dust-ion-acoustic waves in cosmic dusty plas-mas with transverse perturbations. Europhys. Lett.,77,2007,15001:1-5.
    [53]Tian B, Gao Y T. (2+1) dimensional Haragus-Courcelle-Ilichev model for the liquid surface waves in the presence of sea ice or surface tension, Backlund transformation, exact solutions and possibly observable effects. Eur. Phys. J. B,42,2004,441-450.
    [54]Yan Z Y. Painleve analysis, auto-Backlund transformations and exact solutions for a simplified model for reacting mixtures. Physica A,326,2003,344-359.
    [55]Hereman W, Goktas U, Colagrosso M D, Miller A J. Algorithmic integrability tests for nonlinear differential and lattice equations. Comput. Phys. Commun.,115,1998, 428-446.
    [56]Xu G Q, Li Z B. Symbolic computation of the Painleve test for nonlinear partial differential equations using Maple. Comput. Phys. Commun.,161,2004,65-75.
    [57]Xu G Q, Li Z B. PDEPtest:a package for the Painleve test of nonlinear partial differential equations. Appl. Math. Comput.,169,2005,1364-1379.
    [58]Hirota R. The Direct Method in Soliton Theory. Cambridge Univ. Press,2004.
    [59]Gedalin M, Scott T C, Band Y B. Optical solitons in the higher order nonlinear Schrodinger equation. Phys. Rev. Lett.,78,1997,448-451.
    [60]Radhakrishnan R, Lakshmannan M, Daniel M. Bright and dark optical solitons in coupled higher-order nonlinear Schrodinger equations through singularity structure analysis. J. Phys. A,28,1995,7299-7314.
    [61]李翊神.孤子与可积系统,上海科技教育出版社,1999.
    [62]Ablowitz M J, Kaup D J, Newell A C, Segur H. Nonlinear-evolution equations of physical significance. Phys. Rev. Lett.,31,1973,125-127.
    [63]Kaup D J, Newell A C. An exact solution for a derivative nonlinear Schrodinger equation. J. Math. Phys.,19,1978,798-801.
    [64]Wadati M, Konno K, Ichikawa Y H. New integrable nonlinear evolution equations. J. Phys. Soc. Japan,47,1979,1698-1700.
    [65]Konno K, Oono H. New coupled integrable dispersionless equations. J. Phys. Soc. Japan,63,1994,377-378.
    [66]Kakuhata H, Konno K. A generalization of coupled integrable, dispersionless sys-tem. J. Phys. Soc. Japan,65,1996,340-341.
    [67]Darboux G. Sure line proposition relative aux equations lineaires. Compt. Rend. Acad. Sci. Paris,94,1882,1456-1459.
    [68]Matveev V B, Salle M A. Darboux Transformations and Solitons. Springer,1991.
    [69]谷超豪,胡和生,周子翔.孤立子理论中的Darboux变换及其几何应用,上海科技出版社,2005.
    [70]Gardner C S, Greene J M, Kruskal M D, Miura R M. Method for solving the Korteweg-de Vries equation. Phys. Rev. Lett.,19,1967,1095-1097.
    [71]Manas M. Darboux transformations for the nonlinear Schrodinger equations. J. Phys. A,29,1996,7721-7737.
    [72]Fan E G. Integrable evolution systems based on Gerdjikov-Ivanov equations, bi-Hamiltonian structure, finite-dimensional integrable systems and N-fold Darboux transformation. J. Math. Phys.,41,2000,7769-7782.
    [73]Fan E G. A family of completely integrable multi-Hamiltonian systems explicitly related to some celebrated equations. J. Math. Phys.,42,2001,4327-4344.
    [74]Steudel H. The hierarchy of multi-soliton solutions of the derivative nonlinear Schrodinger equation. J. Phys. A,36,2003,1931-1946.
    [75]Ling L M, Liu Q P. Darboux transformation for a two-component derivative non-linear Schrodinger equation. J. Phys. A,43,2010,434023:1-11.
    [76]Xu S W, He J S, Wang L H. The Darboux transformation of the derivative nonlinear Schrodinger equation. J. Phys. A,44,2011,305203:1-22.
    [77]Estevez P G, Gordoa P R. Darboux transformations via Painleve analysis. Inverse Problems,13,1997,939-957.
    [78]Estevez P G. Darboux transformation and solutions for an equation in 2+1 dimen-sions. J. Math. Phys.,40,1999,1406-1419.
    [79]Estevez P G, Hernaez G A. Non-isospectral problem in (2+1) dimensions. J. Phys. A,33,2000,2131-2143.
    [80]Estevez P G. A nonisospectral problem in (2+1) dimensions derived from KP. Inverse Problems,17,2001,1043-1052.
    [81]Yu D L, Liu Q P, Wang S K. Darboux transformation for the modified Veselov-Novikov equation. J. Phys. A,35,2002,3779-3785.
    [82]Vekslerchik V E. Functional representation of the Ablowitz-Ladik hierarchy. J. Phys. A,31,1998,1087-1099.
    [83]Vekslerchik V E. Implementation of the Backlund transformations for the Ablowitz-Ladik hierarchy. J. Phys. A,39,2006,6933-6953.
    [84]Chowdhurry A R, Mahato G. A Darboux-Backlund transformation associated with a discrete nonlinear Schrodinger equation. Lett. Math. Phys.,7,1983,313-317.
    [85]Gu C H, Zhou Z X. On Darboux transformations for soliton equations in highdi-mensional spacetime. Lett. Math. Phys.,32,1994,1-10.
    [86]Zhou Z X. Nonlinear constraints and soliton solutions of 1+2 dimensional 3-wave equation. J. Math. Phys.,39,1998,986-997.
    [87]Wang J. Darboux transformation and soliton solutions for the Boiti-Pempinelli-Tu (BPT) hierarchy. J. Phys. A,38,2005,8367-8377.
    [88]Li J, Zhang H Q, Xu T, Zhang Y X, Tian B. Soliton-like solutions of a generalized variable-coefficient higher-order nonlinear Schrodinger equation from inhomogeneous optical fibers with symbolic computation. J. Phys. A,40,2007,13299-13309.
    [89]Wright O C, Forest M G. On the Baklund-gauge transformation and homoclinic orbits of a coupled nonlinear Schrodinger system. Physica D,141,2000,104-116.
    [90]Li J, Zhang H Q, Xu T, Zhang Y X, Hu W, Tian B. Symbolic computation on the multi-soliton-like solutions of the cylindrical Kadomtsev-Petviashvili equation from dusty plasmas. J. Phys. A,40,2007,7643-7657.
    [91]Xu T, Li J, Zhang H Q, Zhang Y X, Hu W, Gao Y T, Tian B. Integrable aspects and applications of a generalized inhomogeneous N-coupled nonlinear Schrodinger system in plasmas and optical fibers via symbolic computation. Phys. Lett. A,372, 2008,1990-2001.
    [92]Tian J P, Zhou G S. Exact bright soliton solution for a family of coupled higher-order nonlinear Schrodinger equation in inhomogeneous optical fiber media. Eur. Phys. J. D,41,2007,171-177.
    [93]Porsezian K, Nakkeeran K. Optical solitons in presence of kerr dispersion and self frequency shift. Phys. Rev. Lett.,76,1996,3955-3959.
    [94]Kivshar Y S, Luther-Davie B. Dark optical solitons:physics and applications. Phys. Rep.,298,1998,81-197.
    [1]Agrawal G P. Applications of Nonlinear Fiber Optics. Academic Press,2001.
    [2]贾东方,余震虹,谈斌等译.非线性光纤光学原理及应用,电子工业出版社,2002.
    [3]Hasegawa A, Tappert F. Transmission of stationary nonlinear optical pulses in dis-persive dielectric fibers I:Anomalous dispersion. Appl. Phys. Lett.,23,1973,142-144.
    [4]Hasegawa A, Tappert F. Transmission of stationary nonlinear optical pulses in dis-persive dielectric fibers II:Normal dispersion. Appl. Phys. Lett.,23,1973,171-173.
    [5]Mollenauer L F, Stolen R H, Gordon J P. Experimental observation of picosecond pulse narrowing and solitons in optical fibers. Phys. Rev. Lett.,45,1980,1095-1098.
    [6]Hasegawa A, Kodama Y. Signal transmission by optical solitons in monomode fiber. IEEE, Proc.,69,1981,1145-1150.
    [7]Hasegawa A, Kodama Y. Solitons in Optical Communications. Oxford Univ. Press, 1995.
    [8]Lenells J. Exactly solvable model for nonlinear pulse propagation in optical fibers. Stud. Appl. Math.,123,2009,215-232.
    [9]Fokas A S. On a class of physically important integrable equations. Physica D,87, 1995,145-150.
    [10]Lenells J, Fokas A S. On a novel integrable generalization of the nonlinear Schrodinger equation. Nonlinearity,22,2009,11-27.
    [11]Kundu A. Two-fold integrable hierarchy of nonholonomic deformation of the deriva-tive nonlinear Schrodinger and the Lenells-Fokas equation. J. Math. Phys.,51,2010, 022901:1-17.
    [12]Wright O C. Some homoclinic connections of a novel integrable generalized nonlin-ear Schrodinger equation. Nonlinearity,22,2009,2633-2643.
    [13]Lii X, Tian B. Novel behavior and properties for the nonlinear pulse propagation in optical fibers. Europhysics Letters,97,2012,10005:1-6.
    [14]Kamchatnov A M. Nonlinear Periodic Waves and their Modulations. World Scien-tific,2000.
    [15]Wright O C. Near homoclinic orbits of the focusing nonlinear Schrodinger equation. Nonlinearity,12,1999,1277-1287.
    [16]Kaup D J, Newell A C. An exact solution for a derivative nonlinear Schrodinger equation. J. Math. Phys.,19,1978,798-801.
    [17]Ma W X, Zhou R G. A coupled AKNS-Kaup-Newell soliton hierarchy. J. Math. Phys.,40,1999,4419-4428.
    [18]Ma W X, Zhou R G. On inverse recursion operator and tri-Hamiltonian formulation for a Kaup-Newell system of DNLS equations. J. Phys. A,32,1999, L239-L242.
    [19]Wadati M, Konno K, Ichikawa Y H. A generalization of inverse scattering method. J. Phys. Soc. Japan,46,1979,1965-1966.
    [20]Wadati M, Sanuki H, Konno K. Relationships among inverse method, Backlund transformation and an infinite number of conservation laws. Prog. Theor. Phys.,53, 1975,419-436.
    [21]Hirota R. Exact envelope soliton solutions of a nonlinear wave equation. J. Math. Phys.,14,1973,805-809.
    [22]Hirota R. Exact solution of the KdV equation for multiple collisions of solitons. Phys. Rev. Lett.,27,1971,1192-1994.
    [23]Hirota R, J. Satsuma. N-soliton solutions of model equations for shallow water waves. J. Phys. Soc. Japan,40,1976,611-612.
    [24]Lu X, Zhu H W, Meng X H, Yang Z C, Tian B. Soliton solutions and a Backlund transformation for a generalized nonlinear Schrodinger equation with variable coeffi-cients from optical fiber communications. J. Math. Anal. Appl,336,2007,1305-1315.
    [25]Lii X, Zhu H W, Yao Z Z, Meng X H, Zhang C, Zhang C Y, Tian B. Multisoli-ton solutions in terms of double Wronskian determinant for a generalized variable-coefficient nonlinear Schrodinger equation from plasma physics, arterial mechanics, fluid dynamics and optical communications. Ann. Phys. (New York),323,2008, 1947-1955.
    [26]Lii X, Li J, Zhang H Q, Xu T, Li L L, Tian B. Integrability aspects with op-tical solitons of a generalized variable-coefficient N-coupled higher order nonlinear Schrodinger system from inhomogeneous optical fibers. J. Math. Phys.,51,2010, 043511:1-24.
    [27]Hirota R. The Direct Method in Soliton Theory. Cambridge Univ. Press,2004.
    [28]Ma W X, Abdeljabbar A, Asaad M G. Wronskian and Grammian solutions to a (3+1)-dimensional generalized KP equation. Appl. Math. Com.,217,2011,10016-10023.
    [29]Hereman W, Takaoka M. Solitary wave solutions of nonlinear evolution and wave equations using a direct method and MACSYMA. J. Phys. A,23,1990,4805-4822.
    [30]Hereman W, Zhuang W. Symbolic software for soliton theory. Act. Appl. Math., 39,1995,361-378.
    [31]Chow K W, Grimshaw R H J, Ding E. Interactions of breathers and solitons in the extended Korteweg-de Vries equation. Wave Motion,43,2005,158-166.
    [1]Kivshar Y S, Agrawal G P. Optical Solitons:From Fibers to Photonic Crystals. Academic Press,2003.
    [2]Hasegawa A, Kodama Y. Solitons in Optical Communications. Oxford Univ. Press, 1995; Agrawal G P. Nonlinear Fiber Optics. Academic Press,1995.
    [3]Hasegawa A, Tappert F. Transmission of stationary nonlinear optical pulses in dis-persion dielectric fibers I:Anomalous dispersion. App. Phys. Lett.,23,1973,142-144; Mollenauer L F, Stolen R H, Gordon J P. Experimental observation of picosecond pulse narrowing and solitons in optical fibers. Phys. Rev. Lett.,45,1980,1095-1098.
    [4]Manakov S V. On the theory of two-dimensional stationary self-focusing of electro-magnetic waves. Sov. Phys. JETP,38,1974,248-253.
    [5]Radhakrishnan R, Lakshmanan M, Hietarinta J. Inelastic collision and switching of coupled bright solitons in optical fibers. Phys. Rev. E,56,1997,2213-2216.
    [6]Kanna T, Vijayajayanthi M, Lakshmanan M. Coherently coupled bright optical soli-tons and their collisions. J. Phys. A,43,2010,434018:1-14.
    [7]Lii X, Li J, Zhang H Q, Xu T, Li L L, Tian B. Integrability aspects with opti-cal solitons of a generalized variable-coefficient N-coupled higher order nonlinear Schrodinger system from inhomogeneous optical fibers. J. Math. Phys.,51,2010, 043511:1-24.
    [8]Kivshar Y S and Quiroga-Teixeiro M L. Influence of cross-phase modulation on soli ton switching in nonlinear optical fibers. Opt. Lett.,18,1993,980-982; Chakravarty S, Ablowitz M J, Sauer J R, Jenkins R B. Multisoliton interactions and wavelength-division multiplexing. Opt. Lett.,20,1995,136-138; Yeh C, Bergman L. Enhanced pulse compression in a nonlinear fiber by a wavelength division multiplexed optical pulse. Phys. Rev. E,54,1998,2398-2404.
    [9]Afanasyev V V, Kivshar Y S, Konotop V V, Serkin V N. Dynamics of coupled dark and bright optical solitons. Opt. Lett.,14,1989,805-807; Buryak A V, Kivshar Y S, Parker D F. Coupling between dark and bright solitons. Phys. Lett., A 215,1996,57-62; Sheppard A P, Kivshar Y S. Polarized dark solitons in isotropic Kerr media. Phys. Rev. E,55,1997,4773-4782; Seve E, Millot G, Wabnitz S. Buildup of terahertz vector dark-soliton trains from induced modulation instability in highly birefringent optical fiber. Opt. Lett.,23, 1998,1829-1831.
    [10]Mahalingam A, Porsezian K. Propagation of dark solitons in a system of coupled higher-order nonlinear Schrodinger equations. J. Phys. A,35,2002,3099-3110.
    [11]Radhakrishnan R, Lakshmanan M. Bright and dark soliton solutions to coupled nonlinear Schrodinger equations. J. Phys. A,28,1995,2683-2692.
    [12]Kanna T, Lakshmanan M. Exact soliton solutions, shape changing collisions, and partially coherent solitons in coupled nonlinear Schrodinger equations. Phys. Rev. Lett.,86,2001,5043-5046.
    [13]Kanna T, Lakshmanan M, Dinda P T, Akhmediev N. Soliton collisions with shape change by intensity redistribution in mixed coupled nonlinear Schrodinger equations. Phys. Rev. E,73,2006,026604:1-15; Kanna T, Lakshmanan M. Exact soliton solutions of coupled nonlinear Schrodinger equations:Shape-changing collisions, logic gates, and partially coherent solitons. Phys. Rev. E,67,2003,046617:1-25.
    [14]Jakubowski M H, Steiglitz K, Squier R. State transformations of colliding optical solitons and possible application to computation in bulk media. Phys. Rev. E,58, 1998,6752-6758.
    [15]Ablowitz M J, Prinari B, Trubatch A D. Discrete and Continuous Nonlinear Schrodinger Systems. Cambridge Univ. Press,2004.
    [16]Villeneuve A, Kang J U, Aitchison J S, Stegeman G I. Unity ratio of cross-to self-phase modulation in bulk AlGaAs and AlGaAs/GaAs multiple quantum well waveguides at half the band gap. Appl. Phys. Lett.,67,1995,760:1-3.
    [17]Hutchings D C, Aitchison J S, Arnold J M. Nonlinear refractive coupling and vector solitons in anisotropic cubic media. J. Opt. Soc. Am. B,14,1997,869-879; Hutchings D C, Wherrett B S. Theory of the anisotropy of ultrafast nonlinear re-fraction in zinc-blende semiconductors. Phys. Rev. B,52,1995,8150-8159.
    [18]Akhmediev N N, Buryak A V, Soto-Crespo J M, Andersen D R. Phase-locked stationary soliton states in birefringent nonlinear optical fibers. J. Opt. Soc. Am. B, 12,1995,434-439.
    [19]Akhmediev N, Ankiewicz A. Solitons, Nonlinear Pulses and Beams. Chapman and Hall,1997.
    [20]Gao Y T, Tian B. On the non-planar dust-ion-acoustic waves in cosmic dusty plas-mas with transverse perturbations. Europhys. Lett.,77,2007,15001:1-5; Tian B, Gao Y T. Spherical Kadomtsev-Petviashvili equation and nebulons for dust ion-acoustic waves with symbolic computation. Phys. Lett. A,340,2005,243-250; Symbolic computation on cylindrical-modified dust-ion-acoustic nebulons in dusty plasmas.362,2007,283-288.
    [21]Gao Y T, Tian B. On the solitonic structures of the cylindrical dust-acoustic and dust-ion-acoustic waves with symbolic computation. Phys. Lett. A,340,2005,449-455; Gao Y T, Tian B. Generalized hyperbolic-function method with computerized sym-bolic computation to construct the solitonic solutions to nonlinear equations of math-ematical physics. Comput. Phys. Commun.,133,2001,158-164.
    [22]Lii X, Tian B. Vector bright soliton behaviors associated with negative coherent coupling. Phys. Rev. E,85,2012,026117:1-14.
    [23]Park Q H, Shin H J. Painleve analysis of the coupled nonlinear Schrodinger equation for polarized optical waves in an isotropic medium. Phys. Rev. E,59,1999,2373-2379.
    [24]Zhang H Q, Xu T, Li J, Tian B. Integrability of an N-coupled nonlinear Schroinger system for polarized optical waves in an isotropic medium via symbolic computation. Phys. Rev. E,77,2008,026605:1-10.
    [25]Zhang H Q, Li J, Xu T, Zhang Y X, Hu W, Tian B. Optical soliton solutions for two coupled nonlinear Schrodinger systems via Darboux transformation. Phys. Scr., 76,2007,452-460.
    [26]Gilson C, Hietarinta J, Nimmo J J C, Ohta Y. Sasa-Satsuma higher-order nonlinear Schrodinger equation and its bilinearization and multisoliton solutions. Phys. Rev. E,68,2003,016614:1-10.
    [27]Lu X, Tian B. Vector bright solitons for a coherently-coupled nonlinear Schrodinger system. SIAM J. Appl. Math., submitted,2012.
    [28]Hirota R. The Direct Method in Soliton Theory. Cambridge Univ. Press,2004.
    [29]Hirota R. A new form of Backlund transformations and its relation to the inverse scattering problem. Progr. Theor. Phys.,52,1974,1498-1512; Wadati M, Sanuki H, Konno K. Relationships among inverse method, Backlund transformation and an infinite number of conservation laws. Progr. Theor. Phys.53, 1975,419-436; Hirota R, Satsuma J. N-soliton solutions of model equations for shallow water waves. J. Phys. Soc. Japan,40,1976,611-612; Satsuma J, Kaup D J. A Backlund transformation for a higher order Korteweg-De Vries equation. J. Phys. Soc. Japan,43,1977,692-697.
    [1]Einstein A. Quantentheorie des einatomigen idealen Gases. Sitzungsber. Kgl. Preuss. Akad. Wiss, Vol. Physikalisch-mathematische Klasse,1924,261-267.
    [2]Bose S N. Planck's Law and light quantum hypothesis. Z. Phys.,26,1924,178-181.
    [3]Anderson M H, Ensher J R, Matthews M R, Wieman C E, Cornell E A. Observation of Bose-Einstein condensation in a dilute atomic vapor. Science,269,1995,198-201.
    [4]Andrews M, Townsend C, Miesner H J, Durfee D S, Kurn D M, Ketterle W. Obser-vation of interference between two Bose condensates. Science,275,1997,637-641.
    [5]Cataliotti F, Burger S, Fort C, Maddaloni P, Minardi F, Trombettoni A, Smerzi A, Inguscio M. Josephson junction arrays with Bose-Einstein condensates. Science,293, 2001,843-846.
    [6]Burger S, Bongs K, Dettmer S, Ertmer W, Sengstock K. Dark solitons in Bose-Einstein condensates. Phys. Rev. Lett.,83,1999,5198-5201.
    [7]Regal C A, Greiner M, Jin D S. Observation of resonance condensation of fermionic atom pairs. Phys. Rev. Lett.,92,2004,040403:1-4.
    [8]Kivshar Y S, Luther-Davie B. Dark optical solitons:physics and applications. Phys. Rep.,298,1998,81-197.
    [9]Ruprecht P A, Holland M J, Burnett K, Edwards M. Time-dependent solution of the nonlinear Schrodinger equation for Bose-condensed trapped neutral atoms. Phys. Rev. A,51,1995,4704-4711.
    [10]Bronski J C, Carr L D, Deconinck B, Kutz J N. Bose-Einstein condensates in standing waves:The cubic nonlinear Schrodinger equation with a periodic potential. Phys. Rev. Lett.,86,2001,1402-1405.
    [11]Carr L D, Clark C W, Reinhardt W P. Stationary solutions of the one-dimensional nonlinear Schrodinger equation. I. Case of repulsive nonlinearity. Phys. Rev. A,62, 2000,063610:1-10.
    [12]Carr L D, Clark C W, Reinhardt W P. Stationary solutions of the one-dimensional nonlinear Schrodinger equation. Ⅱ. Case of attractive nonlinearity. Phys. Rev. A,62, 2000,063611:1-10.
    [13]Donnely R J. Quantized Vortices in Helium Ⅱ, Cambridge Univ. Press,1991.
    [14]Matthews M R, Anderson B P, Haljan P C, Hall D S, Wiema C E, Cornell E A. Vortices in a Bose-Einstein condensate. Phys. Rev. Lett.,83,1999,2498-2501.
    [15]Denschlag J, Simsarian J E, Feder D L, Clark C W, Collins L A, Cubizolles J, Deng L, Hagley E W, Helmerson K, Reinhart W P, Rolston S L, Schneider B I, Phillips W D. Generating solitons by phase engineering of a Bose-Einstein condensate. Science, 287,2000,97-101.
    [16]Deng L, Hagley E W, En J W, Trippenbach M, Band Y, Julienne P S, Simsarian J E, Helmerson K, Rolston S L, Phillips W D. Four-wave mixing with matter waves. Nature,398,1999,218-220.
    [17]Wu Y, Yang X X. Bose-Hubbard model on a ring:analytical results in a strong interaction limit and incommensurate filling. J. Opt. Soc. Am. B,23,2006,1888-1893.
    [18]Wu Y, Yang X X. Analytical results for energy spectrum and eigenstates of a Bose-Einstein condensate in a Mott insulator state. Phys. Rev. A,68,2003,013608:1-7.
    [19]Pethick C, Smith H. Bose-Einstein condensation in dilute gases. Cambridge Univ. Press,2002.
    [20]Dalfovo F, Giorgini S, Pitaevskii L P, Stringari S. Theory of Bose-Einstein conden-sation in trapped gases. Rev. Mod. Phys.,71,1999,463-512.
    [21]Leggett A J. Bose-Einstein condensation in the alkali gases:Some fundamental concepts. Rev. Mod. Phys.,73,2001,307-356.
    [22]Yang Q, Zhang J F. Bose-Einstein solitons in time-dependent linear potential. Opt. Commun.,258,2006,35-42.
    [23]Davis K B, Mewes M O, Andrews M R, van Druten N J, Durfee D S, Kurn D M, Ketterle W. Bose-Einstein condensation in a gas of sodium atoms. Phys. Rev. Lett., 75,1995,3969-3973.
    [24]Bradley C C, Sackett C A, Tollett J J, Hulet R G. Evidence of Bose-Einstein condensation in an atomic gas with attractive interactions. Phys. Rev. Lett.,75, 1995,1687-1690.
    [25]Bradley C C, Sackett C A, Tollett J J, Hulet R G. Bose-Einstein condensation of lithium:Observation of limited condensate number. Phys. Rev. Lett.,78,1997, 985-989.
    [26]Fried D G, Killian T C, Willmann L, Landhuis D, Moss S C, Kleppner D, Greytak T J. Bose-Einstein condensation of atomic hydrogen. Phys. Rev. Lett.,81,1998, 3811-3814.
    [27]Parkins A S, Walls D F. The physics of trapped dilute-gas Bose-Einstein conden-sates. Phys. Rep.,303,1998,1-80.
    [28]Morgan S A, Ballagh R J, Burnett K. Solitary-wave solutions to nonlinear Schrodinger equations. Phys. Rev. A,55,1997,4338-4345.
    [29]Jackson A D, Kavoulakis G M, Pethick C J. Solitary waves in clouds of Bose-Einstein condensed atoms. Phys. Rev. A,58,1998,2417-2422.
    [30]Anderson B P, Kasevich M A. Macroscopic quantum interference from atomic tunnel arrays. Science,282,1998,1686-1689.
    [31]Deconinck B, Frigyik B A, Kutz J N. Stability of exact solutions of the defocusing nonlinear Schrodinger equation with periodic potential in two dimensions. Phys. Lett. A,283,2001,177-184.
    [32]Milburn G J, Corney J, Wright E M, Walls D F. Quantum dynamics of an atomic Bose-Einstein condensate in a double-well potential. Phys. Rev. A,55,1997,4318-4324.
    [33]Wang S J, Jia C L, Zhao D, Luo H G, An J H. Dark and bright solitons in a quasi-one-dimensional Bose-Einstein condensate. Phys. Rev. A,68,2003,015601: 1-3.
    [34]Khaykovich L, Schreck F, Ferrari G, Bourdel T, Cubizolles J, Carr L D, Castin Y, Salomon C. Formation of a matter-wave bright soliton. Science,296,2002,1290-1293.
    [35]Khawaja U A, Stoof H T, Hulet R G, Strecker K E, Partridge G B. Bright soliton trains of trapped Bose-Einstein condensates. Phys. Rev. Lett.,89,2002,200404:1-4.
    [36]Dum R, Cirac J I, Lewenstein M, Zoller P. Creation of dark solitons and vortices in Bose-Einstein condensates. Phys. Rev. Lett.,80,1998,2972-2975.
    [37]Bronski J C, Carr L D, Deconinck B, Kutz J N. Bose-Einstein condensates in standing waves:The cubic nonlinear Schrodinger equation with a periodic potential. Phys. Rev. Lett.,86,2001,1402-1405.
    [38]Carr L D, Leung M A, Reinhardt W P. Dynamics of the Bose-Einstein condensate: quasi-one-dimension and beyond. J. Phys. B,33,2000,3983-4001.
    [39]Lii X, Tian B, Xu T, Cai K J, Liu W J. Analytical study of the nonlinear Schrodinger equation with an arbitrary linear time-dependent potential in quasi-one-dimensional Bose-Einstein condensates. Ann. Phys. (New York),323,2008,2554-2565.
    [40]Chen H H, Liu C S. Solitons in nonuniform media. Phys. Rev. Lett.,37,1976, 693-697.
    [41]Konotop V V, Chubykalo O A, Vzquez L. Dynamics and interaction of solitons on an integrable inhomogeneous lattice. Phys. Rev. E,48,1993,563-570.
    [42]Nagami Y, Toyama F M. Nonlinear Schrodinger soliton in a time-dependent quadratic potential. Phys. Rev. E,49,1994,4497-4501.
    [43]Moura M A. Nonlinear Schrodinger solitons in the presence of an external potential. J. Phys. A,27,1994,7157-7164.
    [44]Husimi K. Miscellanea in elementary quantum mechanics, Ⅱ. Prog. Theor. Phys., 9,1953,381-402.
    [45]Kerner E H. Note on the forced and damped oscillator in quantum mechanics. Can. J. Phys.,36,1958,371-377.
    [46]Li Z D, Li Q Y, Hu X H, Zheng Z X, Sun Y B. Hirota method for the nonlinear Schrodinger equation with an arbitrary linear time-dependent potential. Ann. Phys. (New York),322,2007,2545-2553.
    [47]Ablowitz M J, Clarkson P A. Solitons, Nonlinear Evolution Equations and Inverse Scattering, Cambridge Univ. Press,1991.
    [48]Hirota R. The Direct Method in Soliton Theory. Cambridge Univ. Press,2004.
    [49]Gorlitz A, Vogels J M, Leanhardt A E, Raman C, Gustavson T L, Shaeer J R, Chikkatur A P, Gupta S, Inouye S, Rosenband T, Ketterle W. Realization of Bose-Einstein condensates in lower dimensions. Phys. Rev. Lett.,87,2001,130402:1-4.
    [1]Meseguer A, Mellibovsky F. On a solenoidal Fourier-Chebyshev spectral method for stability analysis of the Hagen-Poiseuille flow. Appl. Numer. Math.,57,2007,920-938; Panizzi S. Low regularity global solutions for nonlinear evolution equations of Kirch-hoff type. J. Math. Anal. Appl.,332,2007,1195-1215; Tyagi M, Sujith R I. The propagation of finite amplitude gasdynamic disturbances in a stratified atmosphere around a celestial body:An analytical study. Physica D, 211,2005,139-150.
    [2]Huang W H, Shen Z H. Two minimax theorems and the solutions of semilinear equa-tions under the asymptotic non-uniformity conditions. Nonlinear Anal.,63,2005, 1199-1214; Tromeur-Dervout D, Vassilevski Y. Choice of initial guess in iterative solution of series of systems arising in fluid flow simulations. J. Comput. Phys.,219,2006,210-227; Tang L S, Paldoussis M P. On the instability and the post-critical behaviour of two-dimensional cantilevered flexible plates in axial flow. J. Sound Vib.,305,2007, 97-115.
    [3]Fisher L S, Golovin A A. Nonlinear stability analysis of a two-layer thin liquid film: Dewetting and autophobic behavior. J. Colloid Interface Sci.,291,2005,515-528; Tsoy E N, Akhmediev N. Dynamics and interaction of pulses in the modified Man-akov model. Opt. Commun.,266,2006,660-668.
    [4]Parau E I, Decent S P, King A C, Simmons M J H, Wong D C. Nonlinear travelling waves on a spiralling liquid jet. Wave Motion,43,2006,599-618; Helfrich K R. Nonlinear adjustment of a localized layer of buoyant, uniform potential vorticity fluid against a vertical wall. Dynam. Atmos. Oceans,41,2006,149-171.
    [5]Ma W X, Bullough R K, Caudrey P J. Graded symmetry algebras of time-dependent evolution equations and application to the modified KP equations. Nonlinear Math. Phys.,4,1997,293-309; Matzenmiller A, Koster B. Consistently linearized constitutive equations of microme- chanical models for fibre composites with evolving damage. Int. J. Solids Struct.,44, 2007,2244-2268.
    [6]Yan Z Y, Zhang H Q. Constructing families of soliton-like solutions to a (2+1)-dimensional breaking soliton equation using symbolic computation. Comput. Math. Applic.,44,2002,1439-1444.
    [7]Tian B, Zhao K Y, Gao Y T. Symbolic computation in engineering:Application to a breaking soliton equation. Int. J. Engng. Sci.,35,1997,1081-1083.
    [8]Chow K W, Lai W C, Shek C K, Tso K. Positon-like solutions of nonlinear evolution equations in (2+1) dimensions. Chaos, Soltions and Fractals,9,1998,1901-1912; Zhu Y J, Zhang J F. Dromion solutions for dispersive long-wave equations in two space dimensions. Commun. Nonlinear Sci. Numer. Simul.,2,1997,225-229.
    [9]Khatera A H, Malfliet W, Callebautc D K, Kamel E S. Travelling wave solutions of some classes of nonlinear evolution equations in (1+1) and (2+1) dimensions. J. Comput. Appl. Math.,140,2002,469-477.
    [10]Date E, Jimbo M, Kashiwara M, Miwa T. KP hierarchies of orthogonal and sym-plectic type-transformation groups for soliton equations Ⅵ_. J. Phys. Soc. Japan, 50,1981,3813-3818.
    [11]Leble S B, Ustinov N V. Third order spectral problems:reductions and Darboux transformations. Inverse Problems,10,1994,617-634.
    [12]Ablowitz M J, Clarkson P A. Solitons, Nonlinear Evolution Equations and Inverse Scattering, Cambridge Univ. Press,1991.
    [13]Hu X B, Wang D L, Qian X M. Soliton solutions and symmetries of the 2+1 dimensional Kaup-Kupershmidt equation. Phys. Lett. A,262,1999,409-415.
    [14]Radha R, Lakshmanan M. Dromion like structures in the (2+1)-dimensional break-ing soliton equation. Phys. Lett. A,197,1995,7-12.
    [15]Faucher M, Winternitz P. Symmetry analysis of the Infeld-Rowlands equation. Phys. Rev. E,48,1995,3066-3071; Infeld E, Rowlands G. Theory of soliton transition from lower to higher dimension. Phys. Rev. A,43,1991,4537-4539.
    [16]Kaya D, El-Sayed S M. Numerical soliton-like solutions of the potential Kadomtsev-Petviashvili equation by the decomposition method. Phys. Lett. A,320,2003,192-199; Senthilvelan M. On the extended applications of Homogenous Balance Method. Appl. Math. Comput.,123,2001,381-388; Li D S, Zhang H Q. New soliton-like solutions to the potential Kadomstev-Petviashvili (PKP) equation. Appl. Math. Comput.,146,2003,381-384.
    [17]Alagesan T, Chung Y, Nakkeeran K. Painleve test for the certain (2+1)-dimensional nonlinear evolution equations. Chaos, Solitons and Fractals,26,2005,1203-1209.
    [18]Geng X G, Dai H. H. Quasi-periodic solutions for some 2+1-dimensional discrete models. Physica A,319,2003,270-294; Geng X G, Cao C W. Quasi-periodic solutions of the 2+1 dimensional modified Korteweg-de Vries equation. Phys. Lett. A,261,1999,289-296.
    [19]Cao C W, Geng X G, Wu Y T. From the special 2+1 Toda lattice to the Kadomtsev-Petviashvili equation. J. Phys. A,32,1999,8059-8078.
    [20]Cao C W, Geng X G. C Neumann and Bargmann systems associated with the coupled KdV soliton hierarchy. J. Phys. A,23,1990,4117-4126; Bonopelchenko B, Sidorenko J, Strampp W. (1+1)-dimensional integrable systems as symmetry constraints of (2+1)-dimensional systems. Phys. Lett. A,157,1991, 17-21.
    [21]Lii Z S, Zhang H Q. Soliton-like and period form solutions for high dimensional nonlinear evolution equations. Chaos, Solitons and Fractals,17,2003,669-673.
    [22]Chen Y, Wang Q. A new general algebraic method with symbolic computation to construct new doubly-periodic solutions of the (2+1)-dimensional dispersive long wave equation. Appl. Math. Comput.,167,2005,919-929; Chow K W, Lou S Y. Propagating wave patterns and "peakons" of the Davey-Stewartson system. Chaos, Solitons and Fractals,27,2006,561-567.
    [23]Musette M, Conte R. Backlund transformation of partial differential equations from the Painleve-Gambier classification. I. Kaup-Kupershmidt equation. J. Math. Phys., 39,1998,5617-5630.
    [24]Dubrovsky V G, Lisitsyn Y V. The construction of exact solutions of two-dimensional integrable generalizations of Kaup-Kuperschmidt and Sawada-Kotera equations via (?)-dressing method. Phys. Lett. A,295,2002,198-207; Rogers C, Schief W K, Stallybrass M P. Initial/boundary value problems and Darboux-Levi-type transformations associated with a 2+1-dimensional eigenfunc-tion equation. Int. J. Non-Linear Mechanics,30,1995,223-233.
    [25]Cao C W, Wu Y T, Geng X G. Relation between the Kadometsev-Petviashvili equation and the confocal involutive system. J. Math. Phys.,40,1999,3948-3970.
    [26]Jimbo M, Miva T. Solitons and Infinite Dimensional Lie Algebras. Publ. RIMS (Kyoto University),19,1983,943-1001.
    [27]Konopelchenko B G, Dubrovsky V G. Some new integrable nonlinear evolution equations in 2+1 dimensions. Phys. Lett. A,102,1984,15-17; Nucci M C. Painleve property and pseudopotentials for nonlinear evolution equa-tions. J. Phys. A,22,1989,2897-2914.
    [28]Lu X, Geng T, Zhang C, Zhu H W, Meng X H, Tian B. Multi-soliton solutions and their interactions for the (2+1)-dimensional Sawada-Kotera model withtruncated painlev expansion, Hirota bilinear method and symbolic computation. Int. J. Mod. Phys. B,23,2009,5003-5015.
    [29]Al-Mdallal Q M, Syam M I. Sine-Cosine method for finding the soliton solutions of the generalized fifth-order nonlinear equation. Chaos, Solitons and Fractals,33, 2007,1610-1617; Wazwaz A M, The extended tanh method for new solitons solutions for many forms of the fifth-order KdV equations. Appl. Math. Comput.,184,2007,1002-1014; Khater A H, Callebaut D K, Sayed S M. Exact solutions for some nonlinear evolution equations which describe pseudo-spherical surfaces. J. Comput. Appl. Math.,189, 2006,387-411.
    [30]Inc M. On numerical soliton solution of the Kaup-Kupershmidt equation and con-vergence analysis of the decomposition method. Appl. Math. Comput.,172,2006, 72-85; Sayed S M, Kaya D. An application of the ADM to seven-order Sawada-Kotara equa-tions. Appl. Math. Comput.,157,2004,93-101; Zait R A. Backlund transformations, cnoidal wave and travelling wave solutions of the SK and KK equations. Chaos, Solitons and Fractals,15,2003,673-678; Qu C Z, Si Y Q, Liu R C. On affine Sawada-Kotera equation. Chaos, Solitons and Fractals,15,2003,131-139.
    [31]Chen B, Xie Y C. An auto-Backlund transformation and exact solutions of stochas-tic Wick-type Sawada-Kotera equations. Chaos, Solitons and Fractals,23,2005,243-248.
    [32]Hirota R. The Direct Method in Soliton Theory. Cambridge Univ. Press,2004.
    [33]Hirota R. Exact envelope soliton solutions of a nonlinear wave equation. J. Math. Phys.,14,1973,805-809.
    [34]Korteweg D J, de Vries G. On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves. Philos. Mag. Ser.,39, 1895,422-443; Osborne L. The inverse scattering transform:Tools for the nonlinear fourier analysis and filtering of ocean surface waves. Chaos, Solitons and Fractals,5,1995,2623-2637; Reatto L, Galli D. What is a roton? Int. J. Mod. Phys. B,13,1999,607-616.
    [35]Hirota R. The Backlund and inverse scattering transform of the K-dV equation with nonuniformities. J. Phys. Soc. Japan,46,1979,1681-1681.
    [36]Dai H H, Jeffrey A. The inverse scattering transforms for certain types of variable coefficient KdV equations. Phys. Lett. A,139,1989,369-372; Demiray H. The effect of a bump on wave propagation in a fluid-filled elastic tube. Int. J. Engng. Sci.,42,2004,203-215; Dai H H, Huo Y. Solitary waves in an inhomogeneous rod composed of a general hyperelastic material. Wave Motion,35,2002,55-69.
    [37]Turitsyn S, Aceves A, Jones C, Zharnitsky V. Average dynamics of the optical soli-ton in communication lines with dispersion management:Analytical results. Phys. Rev. E,58,1998, R48-R51.
    [38]Barnett M P, Capitani J F, Von Zur Gathen J, Gerhard J. Symbolic calculation in chemistry:selected examples. Int. J. Quantum Chem.,100,2004,80-104.
    [39]Hong W P. Comment on:"Spherical Kadomtsev-Petviashvili equation and nebulons for dust ion-acoustic waves with symbolic computation" [Phys. Lett. A 340 (2005) 243]. Phys. Lett. A,361,2007,520-522.
    [40]Tian B, Wei G M, Zhang C Y, Shan W R, Gao Y T. Transformations for a general-ized variable-coefficient Korteweg-de Vries model from blood vessels, Bose-Einstein condensates, rods and positons with symbolic computation. Phys. Lett. A,356,2006, 8-16.
    [41]Nakamura A. Backlund transformation of the cylindrical KdV equation. J. Phys. Soc. Japan,49,1980,2380-2386; Tian B, Gao Y T. On the solitonic structures of the cylindrical dust-acoustic and dust-ion-acoustic waves with symbolic computation. Phys. Lett. A,340,2005,449-455.
    [42]Ohta Y, Satsuma J, Takahashi D, Tokihiro T. An elementary introduction to Sato theory. Progr. Theor. Phys. Suppl,94,1988,210-241.
    [43]Clarkson P A, Painleve analysis and the complete integrability of a generalized variable-coefficient Kadomtsev-Petviashvili equation. IMA J. Appl. Math.,44,1990, 27-53; Brugarino T, Greco A M. Painleve analysis and reducibility to the canonical form for the generalized Kadomtsev-Petviashvili equation. J. Math. Phys.,32,1991,69-71; Tian B, Gao Y T. Truncated Painleve expansion and a wide-ranging type of general-ized variable-coefficient Kadomtsev-Petviashvili equations. Phys. Lett. A,209,1995, 297-304.
    [44]Chan W, Li K, Li Y. Line soliton interactions of a nonisospectral and variable-coefficient Kadomtsev-Petviashvili equation. J. Math. Phys.,33,1992,3759-3773; Tian B, Gao Y T. Solutions of a variable-coefficient Kadomtsev-Petviashvili equation via computer algebra. Appl. Math. Comput.,84,1997,125-130; Zhu Z N, Painleve property, Backlund transformation, Lax pair and soliton-like solution for a variable coefficient KP equation. Phys. Lett. A,182,1993,277-281; Zhu Z N, Lax pair for the general KP equation with explicit x, y and t dependence. Phys. Lett. A,185,1994,287-292; David D, Levi D, Winternitz P. Integrable nonlinear equations for water waves in straits of varying width and depth. Stud. Appl. Math.,76,1987,133-168.
    [45]Elwakil S A, El-labany S K, Zahran M A, Sabry R. New exact solutions for a gener-alized variable coefficients 2D KdV equation. Chaos, Solitons and Fractals,19,2004, 1083-1086; Shen S F, Zhang J, Ye C E, Pan Z L. New exact solutions of the (2+1)-dimensional KdV equation with variable coefficients. Phys. Lett. A,337,2005,101-106; Xuan H N, Zhang D F, Wang C J. Families of non-travelling wave solutions to a generalized variable coefficient two-dimensional KdV equation using symbolic com-putation. Chaos, Solitons and Fractals,23,2005,171-174; Li Y Z, Liu J G. Auto-Backlund transformation and new exact solutions of the gener-alized variable-coefficients two-dimensional Korteweg-de Vries model. Phys. Plasmas, 14,2007,023502:1-6.
    [46]Johnson R S. Water waves and Korteweg-de Vries equations. J. Fluid Mech.,97, 1980,701-719; Oevel W, Steeb W H. Painleve analysis for a time-dependent Kadomtsev-Petviashvili equation. Phys. Lett. A,103,1984,239-242; Brugarino T, Pantano P. Generalized two-dimensional Burgers and Kadomtsev-Petviashvili equations and colliding solitons. Lett. Nuovo Cimento,41,1984,187-190; Anders I, Boutet de Monvel A. Asymptotic solitons of the Johnson equation. J. Nonlinear Math. Phys.,7,200,284-302.
    [47]Tian B, Shan W R, Zhang C Y, Wei G M, Gao Y T. Transformations for a gener-alized variable-coefficient nonlinear Schrodinger model from plasma physics, arterial mechanics and optical fibers with symbolic computation. Eur. Phys. J. B (Rapid Not.),47,2005,329-332.
    [48]Xu T, Zhang C Y, Wei G M, Li J, Meng X H, Tian B. Symbolic-computation construction of transformations for a more generalized nonlinear Schrodinger equa-tion with applications in inhomogeneous plasmas, optical fibers, viscous fluids and Bose-Einstein condensates. Eur. Phys. J. B,47,2005,323-332.
    [49]Yomba E, Abundant families of Jacobi elliptic function-like solutions for a general-ized variable coefficients 2D KdV equation via the extended mapping method. Phys. Lett. A,349,2006,212-219; Yomba E. Construction of new soliton-like solutions for the (2+1) dimensional KdV equation with variable coefficients. Chaos, Solitons and Fractals,21,2004,75-79; Shen S F, Pan Z L, Zhang J, Ye C E. New exact solutions of a new (2+1)-dimensional integrable system. Phys. Lett. A,325,2004,226-232; Parkes E J, Duffy B R, Abbott P C. The Jacobi elliptic-function method for finding periodic-wave solutions to nonlinear evolution equations. Phys. Lett. A,295,2002, 280-286.
    [50]Baldwin D, Hereman W. Symbolic software for the Painleve test of nonlinear ordi-nary and partial differential equations. J. Nonlinear Math. Phys.,13,2006,90-110; Hereman W. Computer Algebra Systems:A Practical Guide, New York,1999; Hereman W. Program appeared in Finite Dimensional Integrable Nonlinear Dynam-ical Systems, World Scientific,1988.
    [51]Hereman W, Takaoka M. Solitary wave solutions of nonlinear evolution and wave equations using a direct method and MACSYMA. J. Phys. A,23,1990,4805-4822; Hereman W, Zhuang W.13th World Congress on Computation and Applied Math-ematics, IMACS'91, Criterion Press,1991; Hietarinta J. Proc.1991 International Symposium on Symbolic and Algebraic Com-putation, ACM Press,1991.
    [52]Steeb W H. Quantum Mechanics Using Computer Algebra:Includes Sample Pro-grams for Reduce, Maple, Mathematica and C++, World Scientific,1994.
    [53]Hirota R, Satsuma J. A variety of nonlinear network equations generated from the Backlund transformation for the Toda lattice. Progr. Theor. Phys. Suppl.,59,1976, 64-100; Hirota R, J. Satsuma. N-soliton solutions of model equations for shallow water waves. J. Phys. Soc. Japan,40,1976,611-612.
    [54]Hirota R, Satsuma J. Nonlinear evolution equations generated from the Backlund transformation for the Boussinesq equation. Progr. Theor. Phys.,57,1977,797-807; Hirota R. A new form of Backlund transformations and its relation to the inverse scattering problem. Progr. Theor. Phys.,52,1974,1498-1512; Hirota R, Satsuma J. A simple structure of superposition formula of the Backlund transformation. J. Phys. Soc. Japan,45,1978,1741-1750; Rogers C, Shadwick W F. Backlund Transformations and their Applications. Aca-demic Press,1982; Nimmo J J C. A bilinear Backlund transformation for the nonlinear Schrodinger equation. Phys. Lett. A,99,1983,279-280.
    [55]Wadati M. Wave propagation in nonlinear lattice. I. J. Phys. Soc. Japan,38,1975, 673-680; Wadati M. Wave propagation in nonlinear lattice. II. J. Phys. Soc. Japan,38,1975, 681-686.
    [56]Grimshaw R, Pelinovsky D, Pelinovsky E, Talipova T. Wave group dynamics in weakly nonlinear long-wave models. Physica D,159,2001,35-37; Chow K W, Grimshaw R H J, Ding E. Interactions of breathers and solitons in the extended Korteweg-de Vries equation. Wave Motion,43,2005,158-166; Helfrich K R, Melville W K, Miles J W. On interfacial solitary waves over slowly varying topography. J. Fluid Mech.,149,1984,305-317; Helfrich K R, Melville W K. On long nonlinear internal waves over slope-shelf to-pography. J. Fluid Mech.,167,1986,285-308.
    [57]Konopelchenko B G, Dubrovsky V G. Some new integrable nonlinear evolution equations in 2+1 dimensions. Phys. Lett. A,102,1984,15-17; Konopelchenko B G. Inverse spectral transform for the (2+1)-dimensional Gardner equation. Inverse Problems,7,1991,739-754; Geng X G, Cao C W. Decomposition of the (2+1)-dimensional Gardner equation and its quasi-periodic solutions. Nonlinearity,14,2001,1433-1452; Anders I. Long-time asymptotics of non-decaying solutions of the (2+1)-dimensional Gardner equation. Asympt. Anal.,19,1999,185-207.
    [58]Chen Y, Yan Z Y. New exact solutions of (2+1)-dimensional Gardner equation via the new sine-Gordon equation expansion method. Chaos, Solitons and Fractals,26, 2005,399-406; Yu G F, Tam H W. On the (2+1)-dimensional Gardner equation:determinant solu-tions and pfaffianization. J. Math. Anal. Appl.,330,2007,989-1001.
    [59]Zhang H Q, Tian B, Li J, Xu T, Zhang Y X. Symbolic-computation study of inte-grable properties for the (2+1)-dimensional Gardner equation with the two-singular manifold method. IMA J. Appl. Math.74,2009,46-61; Xu T, Tian B, Zhang H Q, Li J. Z. Angew. Math. Phys.,61,2010,293-308.
    [60]Gear J A, Grimshaw R. A second-order theory for solitary waves in shallow fluids. Phys. Fluids,26,1983,14-29; Lamb K G, Yan L. The evolution of internal wave undular bores:Comparisons of a fully nonlinear numerical model with weakly nonlinear theory. J. Phys. Oceanogr., 26,1996,2712-2734; Malomed B A, Shrira V I. Soliton caustics. Physica D,53,1991,1-12.
    [61]Djordjevic V D, Redekopp L G. The fission and disintegration of internal solitary waves moving over two-dimensional topography. J. Phys. Oceanogr.,8,1978,1016-1024; Kakutani T, Yamasaki N. Solitary waves on a two-layer fluid. J. Phys. Soc. Japan, 45,1978,674-679.
    [62]Holloway P E, Pelinovsky E, Talipova T, Barnes B. A nonlinear model of internal tide transformation on the Australian north west shelf. J. Phys. Oceanogr.,27,1997, 871-896; Talipova T, Pelinovsky E, Kouts T. Kinematic characteristics of an internal wave field in the Gotland Deep in the Baltic Sea. Oceanology,38,1998,33-42; Li J, Xu T, Meng X H, Zhang Y X, Zhang H Q, Tian B. Lax pair, Baklund transfor-mation and N-soliton-like solution for a variable-coefficient Gardner equation from nonlinear lattice, plasma physics and ocean dynamics with symbolic computation. J. Math. Anal. Appl.,336,2007,1443-1455.
    [63]Lii X, Tian B, Zhang H Q, Xu T, Li H. Generalized (2+1)-dimensional Gardner model:bilinear equations, Baklund transformation, Lax representation and interac-tion mechanisms. Nonlinear Dyn.,67,2012,2279-2290.
    [64]Biswas A.1-soliton solution of the generalized Zakharov-Kuznetsov equation with nonlinear dispersion and time-dependent coefficients. Phys. Lett. A,373,2009,2931-2934; Biswas A. Quasi-stationary optical solitons with parabolic law nonlinearity. Opt. Comm.,216,2003,427-437.
    [65]Lu X, Li L L, Yao Z Z, Geng T, Cai K J, Zhang C, Tian B. Symbolic computation study of a generalized variable-coefficient two-dimensional Korteweg-de Vries model with various external-force terms from shallow water waves, plasma physics, and fluid dynamics. Zeitschrift fur Naturforschung Section A,64,2009,222-228.
    [66]Lii X, Tian B, Zhu H W, Zhang H Q, Xu T, Li H. Integrability study on the gener-alized (2+1)-dimensional variable-coefficient Gardner model with symbolic compu-tation. Chaos,20,2010,043125:1-4.
    [1]Ablowitz M J, Remani A, Segur H. A connection between nonlinear evolution equa-tions and ordinary differential equations of P-type. I. J. Math. Phys.,21,1980, 715-721; Ablowitz M J, Remani A, Segur H. A connection between nonlinear evolution equa-tions and ordinary differential equations of P-type. II. J. Math. Phys.,21,1980, 1006-1015; Ablowitz M J, Clarkson P A. Solitons, Nonlinear Evolution Equations and Inverse Scattering, Cambridge Univ. Press,1991.
    [2]Weiss J, Tabor M, Carnevale G. The Painleve property for partial differential equa-tions. J. Math. Phys.,24,1983,522-526; Weiss J. The sine-Gordon equations:Complete and partial integrability. J. Math. Phys.,25,1984,2226-2235; Clarkson P A, Ablowitz M J. New similarity reductions of the Boussinesq equation. J. Math. Phys.,30,1989,2201-2213.
    [3]Hirota R. The Direct Method in Soliton Theory. Cambridge Univ. Press,2004.
    [4]Hirota R, J. Satsuma. N-soliton solutions of model equations for shallow water waves. J. Phys. Soc. Japan,40,1976,611-612.
    [5]Lii X, Geng T, Zhang C, Zhu H W, Meng X H, Tian B. Multi-soliton solutions and their interactions for the (2+1)-dimensional Sawada-Kotera model withtruncated painlev expansion, Hirota bilinear method and symbolic computation. Int. J. Mod. Phys. B,23,2009,5003-5015.
    [6]Hu X B, Li Y. Nonlinear superposition formula of 1+2 dimensional Caudrey-Dodd-Gibbon-Kotera-Sawada equation. Appl. Math. J. Chinese Univ. Ser. A,8,1993,17-27 (in chinese).
    [7]Bell E T. Exponential polynomials. Ann. Math.,35,1934,258-277.
    [8]Lambert F, Loris I, Springael J, Willox R. On a direct bilinearization method:Kaup's higher-order water wave equation as a modified nonlocal Boussinesq equation. J. Phys. A,27,1994,5325-5334; Gilson C, Lambert F, Nimmo J J C, Willox R. On the combinatorics of the Hirota D-operators. Proc. R. Soc. Lond. A,452,1996,223-234; Lambert F, Springael J. Soliton equations and simple combinatorics. Acta Appl. Math.,102,2008,147-178.
    [9]Lambert F, Springael J. Construction of Backlund transformations with binary Bell polynomials. J. Phys. Soc. Japan,66,1997,2211-2213; Lambert F, Springael J. On a direct procedure for the disclosure of Lax pairs and Backlund transformations. Chaos, Solitons and Fractals,12,2001,2821-2832.
    [10]Rogers C, Shadwick W F. Backlund Transformations and their Applications. Aca-demic Press,1982.
    [11]Hereman W. Computer Algebra Systems:A Practical Guide, New York,1999.
    [12]Lu X, Tian B, Sun K, Wang P. Bell-polynomial manipulations on Backlund trans-formations and Lax pairs for soliton equations with one Tau-function. J. Math. Phys., 51,2010,113506:1-8.
    [13]Tian B, Gao Y T. Soliton-like solutions for a (2+1)-dimensional generalization of the shallow water wave equations. Chaos, Solitons and Fractals,7,1996,1497-1499.
    [14]Estevez P G, Leble S. A wave equation in 2+1:Painleve analysis and solutions. Inverse Problems,11,1995,925-938.
    [15]Rogers C, Schief W K, Stallybrass M P. Initial/boundary value problems and Darboux-Levi-type transformations associated with a 2+1-dimensional eigenfunc-tion equation. Int. J. Non-Linear Mech.,30,1995,223-233; Dubrovsky V G, Lisitsyn Y V. The construction of exact solutions of two-dimensional integrable generalizations of Kaup-Kuperschmidt and Sawada-Kotera equations via (9-dressing method. Phys. Lett. A,295,2002,198-207.
    [16]Konopelchenko B G, Dubrovsky V G. Some new integrable nonlinear evolution equations in 2+1 dimensions. Phys. Lett. A,102,1984,15-17; Nucci M C. Painleve property and pseudopotentials for nonlinear evolution equa-tions. J. Phys. A,22,1989,2897-2914.
    [17]Boiti M, Leon J J P, Manna M, Pempinelli F. On the spectral transform of a Korteweg-de Vries equation in two spatial dimensions. Inverse Problems,2,1986, 271-280.
    [18]Qu C Z, Wang A Q. The complete integrability of variable-coefficient Burgers equa-tions. Commun. Theor. Phys.,25,1996,369-372.
    [19]Zait R A. Backlund transformations, cnoidal wave and travelling wave solutions of the SK and KK equations. Chaos, Solitons and Fractals,15,2003,673-678; Wazwaz A M. The extended tanh method for new solitons solutions for many forms of the fifth-order KdV equations. Appl. Math. Comput.,184,2007,1002-1014; Khater A H, Callebaut D K, Sayed S M. Exact solutions for some nonlinear evolution equations which describe pseudo-spherical surfaces. J. Comput. Appl. Math.,189, 2006,387-411.
    [20]Lu X, Tian B, Qi F H. Bell-polynomial construction of Backlund transformations with auxiliary independent variable for some soliton equations with one Tau-function, Nonlinear Analysis:Real World Appl.,13,2012,1130-1138.
    [21]Ablowitz M J, Kaup D J, Newell A C, Segur H. The inverse scattering transform-Fourier analysis for nonlinear problems. Stud. Appl. Math.,53,1974,249-315.
    [22]Satsuma J, Kaup D J. A Backlund transformation for a higher order Korteweg-de Vries equation. J Phys. Soc. Japan,43,1977,692-697.
    [23]Lax P D. Integrals of nonlinear equations of evolution and solitary waves. Comm. Pure Appl. Math.,21,1968,467-490.
    [24]Calogero F, Degasperis A. Nonlinear evolution equations solvable by the inverse spectral transform.-I. Nuovo Cimento B,32,1976,201-242; Calogero F, Degasperis A. Nonlinear evolution equations solvable by the inverse spectral transform.-II. Nuovo Cimento B,39,1977,1-54; Radha R, Lakshmanan M. Singularity analysis and localized coherent structures in (2+1)-dimensional generalized Korteweg-de Vries equations. J. Math. Phys.,35, 1994,4746-4756.
    [25]Gao Y T, Tian B. On a generalized breaking soliton equation. Chaos, Solitons and Fractals,8,1997,897-899; Ma S H, Peng J, Zhang C. New exact solutions of the (2+1)-dimensional breaking soliton system via an extended mapping method. Chaos, Solitons and Fractals,40, 2009,210-214.
    [26]Wazwaz A M. Integrable (2+1)-dimensional and (3+1)-dimensional breaking soliton equations. Phys. Scr.,81,2010,035005:1-5.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700