孤子传输中高阶非线性影响的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着通信技术的发展,人们对信息的需求量越来越大,传统的光纤传输系统容量已逐渐不能满足商业应用的要求,建设经济、可靠、大容量的全光通信网络,已成为未来通信网建设的必然趋势。光孤子通信是一种非线性全光长距离通信,它的原理是利用光脉冲在光纤中产生的非线性压缩来补偿脉冲的色散展宽,在此基础之上对光纤损耗进行合理增益,就可把光信号无畸变的传输极远的距离,最终实现高速孤子脉冲的稳定传输。
     本文利用分布傅里叶法求解了在各种高阶效应影响下的高阶修正非线性薛定谔方程,并以此为模型,利用Matlab仿真的方法,模拟了光脉冲在各种高阶效应影响下的传输演化特性,其中包括自抖效应、内拉曼散射效应及三阶色散共同作用下,单飞秒孤子及双飞秒孤子在光纤内的传输特性;四阶及五阶光孤子在普通光纤和包含五阶非线性光纤这两种不同的环境中传输演化特性的分析和比较;单孤子及多孤子在三阶色散、五阶非线性、啁啾等因素共同作用情况下传输演化特性等等。可以看出非线性效应在一定程度上平衡了负的三阶色散在光孤子传输过程中造成的超前效应的影响。五阶非线性的存在,抑制了高阶孤子脉冲在群速度色散作用下发生的分裂,使得高阶孤子不再呈现周期性的变化,而是被压缩成一个主峰及一对对称的弱旁瓣,此时在传输线路中加入高通滤波器,即可使光脉冲沿着传输方向稳定不变地传输。对于多种高阶微扰影响下的孤子对,五阶非线性则会引发孤子脉冲波形作周期性变化、孤子间能量发生转移、孤子间相互作用增强等后果。利用色散管理可以改善以上情况,它是通过色散的合理搭配,来减小光脉冲宽度的变化,抑制高阶非线性的作用,使得光脉冲稳定传输,不发生偏转,与传统孤子相比,色散管理孤子具有很大的优越性。
With the development of communication technology, the demand of information is increasing. The store capacity of traditional optical fiber transmission system gradually can not meet the requirements of business applications. It has become an inevitable trend to build all-optical communications network more economical, more reliable and higher capacity. The technology of optical soliton communication is the nonlinear and long distance all-optical communication. It accomplishes stable transmission by what strong pulse products nonlinear suppression compensating broadening of pulse dispersion in optical fiber. Based on that, if the lost fiber energy get reasonable plus, the light signal can transmit a long distance without distortion. And it will ultimately accomplish the stability of high speed optical pulse transmission.
     In the thesis, symmetric slit-step Fourier transform method is used in solving high order nonlinear Schr?dinger equation under a variety of high order effect. And the high order nonlinear Schr?dinger equation is also treated as the model to simulate optical pulse propagation under the influence of a variety of high order effect, including single fs optical pulse and double fs optical pulses propagation under the influence of self steeping, self frequency shift and third order dispersion, comparing and analyzing fourth order and fifth order optical pulse propagation in the environment with or without fifth order nonlinear. After considering the influence of third order dispersion, fifth order nonlinear and chirp such cases, the paper also simulates the single soliton and multi-soliton transmission propagation. Nonlinear effects can balance the influence of the lead effect caused by the negative third-order dispersion to some extent .The existence of fifth order nonlinear restrains the split of high order optical pulse under the influence of GVD. It makes high order optical pulse does not split cyclically, but compressed into a main peak and a pair of weak side lobes. Adding a high-pass filter in the transmission line will make the optical pulses along the transmission direction transmit steadily. For the optical soliton pairs which under the influence of a variety of higher order perturbation, fifth-order nonlinear will trig optical soliton pulse change cyclically, the energy is transferred between solitons, soliton interaction will be enhanced, too. However, dispersion management can improve above conditions. If dispersion is allocated reasonably, little changes will happened in the width of the optical pulse and the role of higher order nonlinear can also be suppressed. Based on that, the optical soliton pulse will not deflect in the transmission process. Compared with the traditional soliton, dispersion management has great advantages.
引文
[1]刘飞.色散管理中的孤子传输研究.华中科技大学.2006
    [2]徐铭.色散控制孤子理论及其应用研究.电子科技大学.2002
    [3]乔海庚.色散管理孤子系统性能的研究.天津大学.2004
    [4]王宇光.光纤通信中光脉冲传输性能的数值仿真分析研究.科技创新导报.2008
    [5] L.A.Dunbar, V.Moreau, R.Ferrini,et al. Optical communication roadmap laid by OIDA&DARPA[J]. LEOS newsletter, 1999,13(3):6
    [6] Saruwatari M.All-optical signal processing for Terabit/second optical transmission[J]. IEEE J.Select.topics Quantum Electron 2000, 6(6):1363-1374
    [8]郭栋.色散管理时分复用系统扰动的影响及抑制.华中科技大学.2004
    [9]浮怀铎.高功率啁啾脉冲在光纤中的非线性传输.中国科学技术大学.2010
    [10]熊飞.光纤传输中色散与非线性特性的数值计算研究.华中师范大学.2008
    [11]任继峰.超高速通信中光孤子传输特性的研究.武汉理工大学.2006
    [12]钟先琼,向安平.五阶非线性光纤中高阶孤子的压缩特性研究.光电子激光.2009
    [13]汪仲清,万鹏.飞秒孤子的传输与色散管理研究.重庆邮电大学大学学报(自然科学版).2007
    [14]岳进,杨荣草.五阶非线性效应下飞秒光孤子间相互作用的数值研究.光电子激光. 2007.12
    [15]岳进,杨荣草.五阶非线性效应下源啁啾飞秒孤子间的相互作用.量子电子学报. 2008.7
    [16]万鹏,汪仲清,安广雷.色散管理对初始啁啾孤子传输的影响.重庆邮电大学学报. 2008.2
    [17]杨祥林,温扬敬.光纤孤子通行理论基础[M],北京:国防工业出版社,2000.1-5
    [18] Pieper W.,Weich K.,Ludwing R. Patzak E. and Weter H. G. All-optical polarizationand wavelength independent 3R signal regenerator[J]. Electron. Lett., 1996,32(14):1316-1318
    [19] Takada A.,Sugie T. Saruwatari M.High speed picosecond optical pulse conpression from gain-switched 1.3μm distributed feedback laser diode(DFB-LD) through highly dispersive single mode fiber [J]. Lightwave Technol., 1987,LT-5(10): 1525-1533
    [20] Sato K., Kotaka I. Hirano A. et al. High repetition frequency pusle generation at 102GHz using modellocked lasers integrated with eletroabsorption modulators[J]. Electron. Lett, 1998,34(8): 790-792
    [21] L.A.Dunbar, V.Moreau, R.Ferrini,et al. Optical communicaion roadmap laid by OIDA&DARPA[J]. LEOS newsletter, 1999,13(3):6
    [22] Saruwatari M.All-optical signal processing for Terabit/second optical transimission[J].IEEE J.Select.topics Quantum Electron 2000, 6(6):1363-1374
    [23] Nakazawa M, Suzuki K, Yamada E, et al. Straight-line soliton da-ta transmissionsver 2000km at 20Gbit/s and 1000km at 40 Gbit/s using erbium doped fibre ampli-fiers[J]. Electron Lett, 1993,29(16):1474-1476
    [24]李仲豪,田慧平,王涛等.飞秒光孤立波解传输的稳定性分析[J].光学学报, 2003, 23(3):289-292
    [25]谢小平,赵尚弘,王贤华等.光纤中飞秒光孤子脉冲传输的高阶因素分析[J].光子学报, 2002,31(4): 429-431
    [26] Marcuse D. Simulation of single-channel optical sustems at 100CB/s [J]. Journal of Lightwave Technoloty, 1999,17(4):564-569
    [27]张山彪,王文军,毕军等.超短激光脉冲技术及其研究进展[J].激光杂志,2003, 24(4):11-13
    [28]王涛,黄天禄.光纤中飞秒光孤子间相互作用得数值研究[J].西安通信学院学报. 2005,4(2):16-18
    [29] Takara H., Kawanishi S., and Saruwatari M. 20GHz transfrom-limited optical pulse generation and bit-error-free operation using a tunable,actively modelocked Er-doped fibre ring laser [J], Electron. Lett., 1993, 29(13): 1149-1150
    [30]林洪榕,杨爱霞,钱胜,等.应用相敏光光放大克服光孤子传输系统Gordon-Haus限制的研究[J].量子电子学报2004,21(4):520-526
    [31]吴涛.高阶非线性光孤子脉冲在光纤中传输的数值模拟及仿真研究[D].武汉:湖北大学Jun.2005.23-24
    [32]王润轩.非线性光孤子通信技术研究[J].激光与光电子学进展2003,40(6):21-23
    [33]时延梅.光子晶体光纤中超连续谱形成机制的理论研究.中国海洋大学.2007
    [34]乔海庚.色散管理孤子系统性能的研究.天津大学.2004
    [35]郭栋.色散管理时分复用系统扰动的影响及抑制.华中科技大学.2004
    [36]吴赟怡,邵钟浩.色散管理孤子系统的技术分析.技术前沿.2009年4月第11卷第4期
    [37]王志斌.光孤子在光纤中传输的特性的研究.燕山大学.2007
    [38]李跃辉.相敏光纤参量放大器在光纤通信系统中的应用研究.南京航空航天大学.2004
    [38]王志斌,李志全,刘洋.飞秒孤子传输演化的数值研究.光学技术2006年8月第32卷增刊
    [39]李莉,杨荣草.高阶飞秒孤子演化特性的数值研究.激光与红外2007年10月第37卷
    [40]李志全,王志斌,刘洋.高阶色散对光孤子传输的影响.光学仪器2008年4月第30卷
    [41]卢洵,赵朝锋,徐振启,罗少鹏.高阶色散和高阶非线性效应对准光孤子传输的影响.量子电子学报2007年3月第24卷

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700