旋转对称频域和时域积分方程方法及其软件实现和应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
利用轴对称性可以将电大的旋转对称体电磁问题转化为求解一组具有小规模矩阵方程的问题(每个具有小规模矩阵方程的问题称为原问题的Fourier分量或模式),从而大大提高计算效率,减少内存需求。本论文从频域和时域积分方程方法两个角度研究了旋转对称体的散射和辐射特性。所做的工作概述如下:
     频域方面,采用多种基函数,深入研究了旋转对称导体、介质体和涂覆体以及较复杂的多区域问题和手征媒质等,并对影响旋转对称矩量法效率和稳定性的关键技术作了较大改进,主要包括
     ·提出了一种精度可控的模式数截断方法:斜入射激励的旋转对称体,需要多个Fourier分量的叠加。该方法通过一个称为部分迭代的过程截取达到所需电流精度的最少模式数。其迭代过程的收敛判据由模式电流(各Fourier模式对应的电流)沿母线的分布规律而得,几乎不付代价。
     ·基于积分核的谱估计和Filon算法,我们提出了一种准自适应积分方法用于高效、稳定计算模式格林函数(BoR问题专有的格林函数)的急速振荡积分:该方法可以根据场源点的几何位置参数,自适应地选择积分区间[0,π]内Gauss积分的采样点数,在保持很高计算精度的前提下,具有自适应、高效(比基于Filon算法的分段自适应方法提高1个数量级左右)和稳定的优点。
     ·提出了模式缩减技术:该技术根据模式格林函数的幅度随模式增加的分布规律,认为随着模式序号的增加,阻抗矩阵的部分元素小到可以直接置0。我们用一个截断公式来确定当前模式真正需要填充的矩阵元素,将高次模式的计算效率提高了1~3个数量级。
     ·提出了近轴-远距模式格林函数的解析表达式:该表达式将BoR问题的计算效率提高了1~6倍,特别适合细长旋转对称体,如导弹、线天线等的快速计算。
     ·基于高阶阻抗边界条件(HOIBC)的局部性和MIE级数解的实时性,提出了一种切实可行的HOIBC适用性验证办法:将特殊形体的MIE级数解和HOIBC结合,并将其代码嵌入软件以实时验证当前涂覆是否可以用HOIBC近似。该验证过程几乎不花费时间。
     在时域方面,提出并实现了基于阶数步进(MoD)的旋转对称时域积分方程方法。相比基于时间步进(MoT)的BoR算法,该方法真正利用了旋转对称体的轴对称特性并继承了普通MoD法精度高,后期无条件稳定的优点。与没有利用轴对称性的普通MoD法和普通MoT法相比,该方法在计算效率上提高了2个数量级以上。
     完成了基于频域旋转对称矩量法(BoRFDMoM)的软件BoRMoMModeler1.0;2.0版本的核心代码也已完成,包括时域积分方程方法和改进后更高效稳定,适用于更多计算对象的频域方法。
     在应用方面,BoRMoMModeler1.0已交用户用于雷达目标散射特性建模,反映良好;在本课题组,我们用BoRMoM设计旋转对称天线:对一个带天线罩和齿槽的空心波束天线进行一体化优化设计,其性能很好得满足了用户要求。
The usage of the axisymmetric property of the bodies of revolution (BoR) can convert an original electrically large BoR-problem into a series problems with small size of matrix equations, which can greatly reduce the computational cost and we call each small problem a Fourier component or mode of the original one. This dissertation is focused on both the frequency and time domain integral equation methods for computing the scattering and radiation property of the bodies of revolution. What we have done are listed below:
     In frequency domain, several basis functions are applied to investigate the scattering and radiation property of the bodies of revolution, including perfectly electric conducting objects, dielectric objects, coated objects, more complex muti-region objects and chiral media, etc.. Several key points which can greatly affect the efficiency and robustness of the moment method for bodies of revolution (BoRMoM) are investigated. The method are greatly improved by several new techniques, which include:
     An accuracy controllable method has been proposed to truncate the number of Fourier components when the plane wave incidents obliquely, which we call a partly iterative method. One can get the least number of Fourier components required for a given accuracy of the currents. A costless convergence criteria is proposed by investigating the distribution property of the mode currents (currents corresponding to each Fourier component) along the generating curve.
     The computation of the modal Green's function forms a bottleneck to further enhance the efficiency and robustness of the BoRMoM. Based on a spectrum estimation, a qusi-adaptive integral scheme is proposed to fast compute a group of extremely oscillating integrals of the modal Green's function (a special Green's function for the BoR-problems). It is based on the Filon algorithm and a formulation is derived to smartly determine the required number of sampling points for applying Gaussian quadrature in the whole range of [0,π] along the circumferential direction. Source and field points with different geometric parameters have different number of sampling points. This method is smart, fast, robust and still of high accuracy.
     A mode reduction technique is proposed to enhance the computational efficiency of high order Fourier components. We found that, as the index of the mode increases, some elements of the impedance matrix are neglegible. A formulation is proposed to determine whether an element of the impedance matrix can be set as zero directly.
     A closed form expressions for near-axis, far-distance modal Green's functions are proposed, which can be used to accelerate the computation of the BoR-problems especially when the BoR is slim.
     A good method is proposed to verify whether the higher order impedance boundary condition (HOIBC) can be applied to a coated BoR. Based on the local property of the HOIBC and the costless of the MIE series solution, the method applies HOIBC in the MIE series solution for several special objects, e.g. sphere, and embeds the program into the software, which can be run for verification before the application of HOIBC to the coated BoR. The procedure for verification is costless.
     In time domain, a marching-on-in-degree (MoD) procedure based time-domain integral equation method has been proposed for solving BoR-problems. Compared with the previous work based on a marching-on-in-time (MoT) procedure, this method can not only utilize the symmetric property of BoR indeed, but also retain the stable property of the common MoD method. Compared with the MoD method without using the symmetric property and the conventional MoT method, it can significantly enhance the computational efficiency.
     A software BoRMoMModeler1.0 has been developed based on the frequency domain method (BoRFDMoM). The kernel of version 2.0 has also been finished which includes time domain integral equation methods and a more efficient and robust frequency domain method with more wide range of utility.
     The software BoRMoMModeler1.0 has been applied to model the electromagnetic scattering from the radar targets by the users. In our own group, a horn antenna with ripples and airborne radome are optimized as a whole to obtain a special radiation pattern which we call hollow beam. All its performances can answer to the requirements.
引文
[1]Mogens G.Andreasen,"Scattering from bodies of revolution," IEEE Trans.Antennas Propagat.,vol.13,no.2,pp.303-310,Mar.1965.
    [2]J.R.Mautz,"Radiation and scattering from bodies of revolution," Ph.D.dissertation,University of Syracuse,1968.
    [3]J.R.Mautz,and R.F.Harrington,"H-Field,E-Field,and Combined-Field solutions for conducting bodies of revolution," AEU,1978.
    [4]Allen W.Glisson,D.R.Wilton,"Simple and efficient numerical methodsfor problems of electromagnetic radiation and scattering from surfaces," IEEE Trans.Antennas Propagat.,vol.28,no.5,pp.593-603,Sept.1980.
    [5]J.R.Mautz,and R.F.Harrington,"An improved E-Field solution for a conducting body of revolution," AEU,Band 36,pp.198-206,1982.
    [6]Roberto D.Graglia,P.L.E.Uslenghi,Roberto Vitiello,"Electromagnetic scattering for oblique incidence on impedance bodies of revolution," IEEE Trans.Antennas Propagat.,vol.43,no.1,pp.11-26,Jan.1995.
    [7]S.D.Gedney,R.Mittra,"The use of the FFT for the efficient solution of the problem of electromagnetic scattering by a body of revolution," IEEE Trans.Antennas Propagat.,vol.38,no.3,pp.313-322,Mar.1990.
    [8]Alaa K.Abdelmageed,"Efficient evaluation of modal Green's functions arising in EM scattering by bodies of revolution," Progress In Electromagnetics Research,PIER 27,pp.337-356,2000.
    [9]D.J.Hoppe,Y.Rahmat-Samii,"Higher order impedance boundary conditions applied to scattering by coated bodies of revolution," IEEE Trans.Antennas Propagat.,vol.42,no.12,pp.1600-1611,Dec.1994.
    [10]L.N.Medgyesi-Mitschang,C.Eftimiu,"Scattering from axisymmetric obstacles embedded in axisymmetric dielectrics:the method of moments solution," Appl.Phys.,vol.19,no.3,pp.275-285,July 1979.
    [11]Louis N.Medgyesi-Mitschang,and John M.Putnam,"Electromagnetic scattering from axially inhomogeneous bodies of revolution," IEEE Trans.Antennas Propagat.,vol.32,no.8,Aug.1984.
    [12]A.A.Kishk,and Lotfollah Shafm,"Different formulations for numerical solution of single or multibodies of revolution with mixed boundary conditions," IEEE Trans.Antennas Propagat.,vol.34,no.5,May 1986.
    [13]Norbert Geng,David R.Jackson,and Lawrence Carin,"On the resonances of a dielectric BoR buried in a dispersive layered medium," IEEE Trans.Antennas Propagat.,vol.47,no.8,pp.1305-1313,Aug.1999.
    [14]Mehmet Yuceer,"Electromagnetic scattering from an arbitrarily shaped chiral body of revolution," Ph.D.dissertation,Syracuse University,2003.
    [15]Qiwu Tan,"Radiation from bodies of revolution with anisotropic surface impedance," Ph.D.dissertation,University of Illinois,Chicago,2004.
    [16]L.N.Medgyesi-Mitschang,Dau-Sing Wang,"Hybrid solutions for large-impedance coated bodies of revolution," IEEE Trans.Antennas Propagat.,vol.34,no.11,pp.1319-129,Nov.1986.
    [17]R.Luebbers,D.Steich,K.Kunz,and F.Hunsberger,"RCS calculation for penetrable bodies of revolution using FDTD," IEEE Antennas and Propagation Society International Symposium,vol.3,pp.1754-1755,June 1991.
    [18]En-Yuan Sun,and W.V.T.Rusch,"EFIE time-domain scattering from bodied of revolution," Antennas and Propagation Society International Symposium,vol.2,pp.926-929,June 1991.
    [19]Baolin Yang and Jan S.Hesthaven,"A pseudospectral method for time-domain computation of electromagnetic scattering by bodies of revolution," IEEE Trans.Antennas Propagat.,vol.47,no.1,pp.132-141,Jan.1999.
    [20]Yan Shi,Tao Su,and Chang-Hong Liang,"Multidomain pseudospectral timedomain method for computation of electromagnetic scattering by bodies of revolution,"Microwave and Optical Technology Letters,vol.47,no.1,pp.92-96,Oct.2005.
    [21]Andrzej A.Kucharski,"Resonances in heterogeneous dielectric bodies with rotational symmetry-volume integral-equation formulation," IEEE Trans.Antennas Propagat.,vol.48,no.5,pp.766-770,May 2000.
    [22]Andrzej A.Kucharski,"A method of moments solution for electromagnetic scattering by inhomogeneous dielectric bodies of revolution," IEEE Trans.Antennas Propagat.,vol.48,no.8,pp.1202-1210,Aug.2000.
    [23]Eric Douglas Branch,"A higher-order finite element method for computing the radar cross section of bodies of revolution," Ph.D.dissertation,University of Illinois,2001.
    [24]C.Leonard Bennett JR.,and Walter L.Weeks,"Transient scattering from conducting cylinders," IEEE Trans.Antennas Propagat.,vol.18,no.5,pp.627-633,Sept.1970.
    [25]C.E.Baum,L.B.Felsen,J.A.Fuller,R.Mittra,D.L.Sengupta,C.-T.Tai,and J.R.Wait,Transient electromagnetic fields,Berlin Heidelberg New York:Springer-Verlag,1976.
    [26]汪文秉,瞬态电磁场,西安:西安交通大学出版社,1991年。
    [27]Simon P.Walker,"Scattering analysis via time-domain integral equations:methods to reduce the scaling of cost with frequency," IEEE Antennas and Propagation Magazine,vol.39,no.5,pp.13-20,Oct.1997.
    [28]A.Arif Ergin,Balasubramaniam Shanker,and Eric Michielssen,"The plane-wave time-domain algorithm for the fast analysis of transient wave phenomena," IEEE Antennas and Propagation Magazine,vol.41,no.4,pp.39-52,Aug.1999.
    [29]Ali E.Yilmaz,Jian-Ming Jin,and Eric Michielssen,"Time domain adaptive integral method for surface integral equations," IEEE Trans.Antennas Propagat.,vol.52,no.10,pp.2692-2708,Oct.2004.
    [30]Douglas A.Vechinski and Sadasiva M.Rao,"A stable procedure to calculate the transient scattering by conducting surfaces of arbitrary shape," IEEE Trans.Antennas Propagat.,vol.40,no.6,June 1992.
    [31]Guang Xing Jiang,H.B.Zhu,G.Q.Ji,and W.Cao,"Improved stable scheme for the time domain integral equation method," vol.17,no.1,Jan.2007.
    [32]Ali Sadigh and Ercument Arvas,"Treating the instabilities in marching-on-intime method from a different perspective," IEEE Trans.Antennas Propagat.,vol.41,no.12,pp.1695-1702,Dec.1993.
    [33]Giuliano Manara,Agostino Monorchio,and Ruggero Reggiannini,"A space-time discretization criterion for a stable time-marching solution of the electric field integral equation," IEEE Trans.Antennas Propagat.,vol.45,no.3,Mar.1997.
    [34]Raviraj S.Adve,and Tapan Kumar Sarkar,"Extrapolation of time-domain responses from three-dimensional conducting objects utilizing the matrix pencil technique," IEEE Trans.Antennas Propagat.,vol.45,pp.147-156,Jan.1997.
    [35]din-Lin Hu and Chi Hou Chan,"Improved temporal basis function for time domain electric field integral equation method," IEE Electronics Letters,vol.35,no.11,May 1999.
    [36]Daniel S.Weile,Greeshma Pisharody,Nan-Wei Chert,Balasubramaniam Shanker,and Eric Michielssen,"A novel scheme for the solution of the time-domain integral equations of electromagnetics",IEEE Trans.Antennas Propagat.,vol.52,no.1,January 2004.
    [37]Back Ho Jung,Yong-Seek Chung,and Tapan K.Sarkar,"Time-domain EFIE,MFIE,and CFIE formulations using Laguerre polynomials temporal basis functions for the analysis of transient scattering from arbitrary shaped conducting tructures," Progress In Electromagnetics Research,PIER 39,1-45,2003.
    [38]C.W.Chuang,and T.H.Lee,"Calculation of fields radiated by rotationally symmetric horn antennas using moment method," Technical Report 717822-6,May 1987.
    [39]Z.Ying,A.A.Kishk and P.-S.Kildal,"Broadband compact horn feed for primefocus reflectors," Electronics letters,vol.31,no.14,pp.1114-1115,July 1995.
    [40]Ahmed A.Kishk,L.Shafai,"Small reflector antenna with low sidelobes," IEEE Trans.Antennas Propagat.,vol.51,no.10,pp.2907-2912,Oct.2003.
    [41]梅志林,小F数毫米波成像折衍射透镜焦区场分析,博士学位论文,东南大学,2004年6月。
    [42]Timothy E.Durham,and Christos G.Christodoulou,"Electromagnetic radiation from structures consisting of combined body of revolution and Arbitrarv Surfaces,"IEEE Trans.Antennas Propagat.,vol.40,no.9,pp.1061-1067,Sept.1992.
    [43]周晨,旋转对称矩量法及其在天线设计中的应用,南京理工大学,硕士学位论文,2006年7月。
    [44]张强,机载天线罩电磁特性分析技术研究,南京邮电大学,博士学位论文,2005年12月。
    [45]Roberto D.Graglia,P.L.E.Uslenghi,"Surface currents on impedance bodies of revolution," IEEE Trans.Antennas Propagat.,vol.36,no.9,Setp.1988.
    [46]Thomas B.A.Senior,"Approximate boundary condition," IEEE Trans.Antennas Propagat.,vol.29,no.5,pp.826-829,Sept.1981.
    [47]谢处方,吴先良,3.2“阻抗边界条件”,电磁散射理论与计算,安徽大学出版社,2002.
    [50]Thomas B.A.Senior,"Approximate boundary condition," IEEE Trans.Antennas Propagat.,vol.29,no.5,pp.826-829,Sept.1981.
    [49]Dagang Fang,Ch.4 "Spectrual domain approach and its application to microstrip antennas," in Antenna Theory and Microstrip Antennas,pp.146-217,Beijing:Science pub.,Jan.2006.
    [50]Daniel J.Hoppe,Yahya Rahmat-Samii,"Scattering by superquadric dielectriccoated cylinders using higher order impedance boundary conditions," IEEE Trans.Antennas Propagat.,vol.40,no.12,pp.1513-1523,Dec.1992.
    [51]Weng Cho Chew,Jian-Ming Jin,Eric Michielssen,Jiming Song,etc.,Fast and efficient algorithms in computational electromagnetics,Boston,London:Artech House,2001,pp.699-714.
    [52]熊邺,方大纲,盛卫星,“雷达散射截面基于MBPE模型在频空两域的双内插”,电波科学学报,16(3),P.287-290,2001.
    [53]熊邺,方大纲,刘铁军,“电磁场数值计算中的内插和外推”,电波科学学报,17(4),P.325-333,2002.
    [54]Alex C.Woo,Helen T.G.Wang,Michael J.Schuh,Michael L.Sanders,"Benchmark radar targets for the validation of computational electromagnetics programs,"IEEE Antennas and Propagation Magazine,vol.35,no.1 Feb.1993.
    [55]Arvas E.A,Rahhal-Arabi,A.Sadigh,Sadasiva M.Rao,"Scattering from multiple conducting and dielectric bodies of arbitrary shape," IEEE Antennas and Propagation Magazine,vol.33,no.2,Apr.1991.
    [56]张剑锋,旋转对称介质壳体的矩量法分析,南京电子技术研究所,硕士学位论文,2004年1月。
    [57]Xin-Qing Sheng,Jian-Ming Jin,JimingSong,Cai-Cheng Lu,Weng Cho Chew,"On the formulation of hybrid finite-element and boundary-integral methods for 3-D scattering," IEEE Trans.Antennas Propagat.,vol.46,no.3,Mar.1998.
    [58]陶洪琪,两种方向图有特殊要求的单元天线的优化设计,南京理工大学,硕士学位论文,2005年7月。
    [59]En-Yuan Sun,and W.V.T.Rusch,"EFIE time-marching scattering from bodies of revolution and its application," IEEE Trans.Antennas Propagat.,vol.42,no.3,pp.412-417,Mar.1994.
    [60]Allen Wang,Aluizio Prata.Jr.,and W.V.T.Rusch,"Efficient computation of the time-domain scattering from bodies of revolution," Antennas and Propagation Society International Symposium,vol.1,pp.318-321,July 1993.
    [61]Yong-Seek Chung,Tapan K.Sarkar,Back Ho Jung,Magdalena Salazar-Palma,Zhong Ji,Seongman Jang,and Kyungjung Kim,"Solution of time domain electric field integral equation using the Laguerre polynomials," IEEE Trans.Antennas Propagat.,vol.52,no.9,pp.2319-2327,Sept.2004.
    [62]Back Ho Jung,Tapan K.Sarkar,Yong-Seek Chung,Magdalena Salazar-Palma,Zhong Ji,Seongman Jang,and Kyungjung Kim,"Transient electromag-netic Scattering from dielectric objects using the electric field integral equation with Laguerre polynomials as temporal basis functions," IEEE Trans.Antennas Propagat.,vol.52,no.9,pp.2329-2339,Sept.2004.
    [63]Zhong Ji,Tapan K.Sarkar,Back Ho Jung,Yong-Seek Chung,Magdalena Salazar-Palma,Mengtao Yuan,"A stable solution of time domain electric field integral equation for thin-wire antennas using the Laguerre polynomials," IEEE Trans.Antennas Propagat.,vol.52,no.10,pp.2641-2648,Oct.2004.
    [64]Zhong Ji,Tapan K.Sarkar,Back Ho Jung,Magdalena Salazar-Palma and Mengtao Yuan,"A Comparison of marching-on-in-time method with marching-on-indegree method for the TD-EFIE solver",IEEE AP/URSI Symposium,Washington,D.C.,July 2005.
    [65]William H.Press,Saul A.Teukolsky,Willian T.Vetterling,and Brian P.Flannery,chap.13,"Fourier and spectral applications," in Numerical recipes in Fortran 77: the art of scientific computing,pp.577-580,2nd,New York:Press Syndicate of the University of Cambridge,1997.
    [66]Robert A.Shore,and Arthur D.Yaghjian,"A low order-singularity electric-field integral equation solvable with pulse basis functions and point matching," AFRLSN-HS-TR-2005-007,In-House Technique Report,June 2004.
    [67]W.Gander,and W.Gautschi,"Adaptive quadrature—revisited," BIT,vol.40,2000,pp.84-101.
    [68]William H.Press,Saul A.Teukolsky,William T.Vetterling,and Brian P.Flannery,§13.9 "Computing Fourier integrals using the FFT," in Numerical Recipes in Fortran 77:The Art of Scientific Computing,second edition,pp.577-580,New York:Press Syndicate of the University of Cambridge.
    [69]Donald R.Wilton,and Nathan J.Champagne,"Evaluation and integration of the thin wire kernel," IEEE Trans.Antennas Propagat.,vol.54,no.4,April 2006.
    [70]Johnson J.H.Wang,§3-4,"Singularities in integral equations," in Generalized moment methods in electromagnetics:formulation and computer solution of integral equations,p.78,John Wiley & Sons,Inc.,1991.
    [71]陆卫兵,复杂电磁问题的快速算法研究和软件实现,博士学位论文,东南大学,2005年3月。
    [72]Bjarne Stroustrup著,裘宗燕译,“C++程序设计语言”,特别版,Pearson Education,北京:机械工业出版社。
    [73]David J.Kruglinski,Scot Wingo,George Shepherd著,希望图书创作室译,“Visual C++6.0技术内幕”,第五版,Microsoft Press,北京:北京希望电子出版社。
    [74]荷塘月色创作组,“如何使用OpenGL开发程序”,北京:北京理工大学出版社,1999.1。
    [75]Dave Shreiner,Mason Woo,Jackie Neider,Tom Davis著,邓郑祥译,“OpenGL 编程指南,”第四版,Addison Westey,北京:人民邮电出版社,2005.4。

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700