盾叶薯蓣的乙醇发酵与皂苷双水相萃取的集成
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
盾叶薯蓣是用来生产甾体激素类药物前体薯蓣皂苷元的重要植物资源,其根茎中不仅含有1.1~16.5%的甾体皂苷,还含有40-50%的淀粉和40-50%的木质纤维素,传统酸水解法生产薯蓣皂苷元是直接将盾叶薯蓣根茎与酸混合进行水解反应,其中的淀粉和纤维素不仅没有得到利用而且其产物对环境造成了极大的污染。本论文针对传统酸水解法浪费资源、污染环境等问题,先将盾叶薯蓣中的淀粉和纤维素进行糖化和酒精发酵,再采用新型双水相体系对发酵液中的皂苷进行提取,整个工艺操作简单易行,达到了资源综合利用和清洁生产的目的。
     首先对盾叶薯蓣根茎中的淀粉和木质纤维素的含量进行了测定,测定结果:淀粉含量38.7%,木质纤维素含量40.9%,其中纤维素含量15.9%。
     其次对盾叶薯蓣淀粉的两种水解方式分别进行了考察,酸水解的最优条件为:盾叶薯蓣与酸液的料液比1:4,硫酸浓度1.2%,浸泡20h左右,高温蒸汽灭菌锅中130℃,处理50min。在此条件下葡萄糖浓度达到了89g/L,而且此过程没有对皂苷产生明显影响。采用文献报道的双酶法处理盾叶薯蓣后得到的葡萄糖浓度也为89g/L,与酸解淀粉法得到的葡萄糖浓度相同。
     再次,采用摇瓶实验对同步糖化发酵工艺进行了初步优化,结果表明盾叶薯蓣经淀粉水解后可直接作为酿酒酵母的发酵培养基,无需额外添加N源;发酵培养基的最佳初始pH为5.0;同步糖化发酵中纤维素酶的最佳加入时间为12h。采用酸解法和双酶法水解盾叶薯蓣淀粉后,在同步糖化发酵中纤维素酶的最佳用量分别为大于或等于120和100U/g盾叶薯蓣,发酵液中乙醇浓度分别为39.2和39.5g/L。所以在以后的实验中我们选择采用双酶法水解淀粉。
     在发酵罐实验中,进一步优化纤维素酶的加入时间为16h,纤维素酶的最佳用量为100U/g盾叶薯蓣,此时发酵液的乙醇浓度达到了50.6g/L,比对照提高了36.4%。纤维素到乙醇的转化率为33.9%,为理论转化率的59.8%。
     最后考察了微波辅助对乙醇-硫酸铵双水相萃取盾叶薯蓣乙醇发酵液中皂苷成分的影响,实验证明单纯使用双水相即能达到同微波辅助同样的效果;而对于盾叶薯蓣药材中皂苷成分,微波辅助双水相则比单纯双水相提取率提高了25.9%。发酵液的皂苷得率比盾叶薯蓣药材的皂苷得率高17.6%,而且在淀粉、纤维素的水解和发酵过程中,高级皂苷实现了逐步向低级皂苷的转化。
Dioscorea zingiberensis C. H. Wright (DZW) is an important plant resource to produce diosgenin which is the precursor of steroidal hormone drugs. Its tuber contains not only steroidal saponins of 1.1-16.5%but also starch of 40-50%and lignocelluse of 40-50%. Acid hydrolysis is traditionally used to produce diosgenin by directly mixing the DZW tuber and acid, in which the starch and cellulose are wasted and a great pollution exists to environment. Aiming at solving the problem of recource waste and environmental pollution, this dissertation focuses on the research of the saccharification and ethanol fermentation using the starch and cellulose in DZW and extraction of saponins using a novel aqueous two-phase system. The integrated process is simple and can achieve the goal of integrated utilization and clean production.
     First of all, the contents of starch and lignocellulose in the tuber of DZW were determined as follows:starch 38.7%, lignocellulose 40.9%, and cellulose 15.9%.
     The two hydrolysis methods (acid hydrolysis and two enzymes hydrolysis) were then inspected. The optimum conditions of acid hydrolysis are determined:the ratio of DZW and water of 1:4, the concentration of H2SO4 of 1.2%, the soak condition about 20h, hydrolyzing at 130℃for 50min. Under these conditions, the concentration of glucose achieves 89g/L and the content of saponins doesn't change much meanwhile. On the other hand, two kinds of enzymes were used to hydrolyze DZW and get the same concentration of glucose as the acid hydrolysis.
     The simultaneous saccharification and fermentation (SSF) was performed and optimized in the shake bottles. The experimental result showed that the hydrolyzed DZW can directly be used as the fermentation medium without addition of N resource. The optimal initial pH is 5.0 in culture medium. The optimal time for adding cellulase is 12h. The optimal adding amount of cellulase is more than or equal to 120 and 100 U/g DZW for acid hydrolysis and two enzymes hydrolysis, respectively. The concentration of ethanol is 39.2 and 39.5 g/L, respectively, in the fermentation broths. So the two-kind enzymes method is chosen for the starch hydrolisis.
     The SSF experiment was studied further in a fermentator. The optimal conditions of the adding time and amount of cellulase are 16h and 100 U/g DZW respectively. The transformation rate from cellulose to ethanol is 33.9%, which is 59.8%of the theoretical value.
     Finally, the microwave-assisted extraction of saponin from the fermentation broth was investigated using an aqueous two-phase system of ethanol-(NH4)2SO4, which shares the same result as one without microwave-assisted. While using DZW as material to extract saponins, the microwave-assisted extraction ratio is 25.9%higher than one without microwave-assisted. And the extraction rate of saponins from fermentation broth is 17.6%higher than that from DZW and there are more saponins with less sugar ligand in fermentation broths than that in DZW.
引文
[1]马现刚,徐恒泳,李文钊.木质纤维素生产燃料乙醇的研究进展[J].天然气化工,2008,33(4):60-65.
    [2]楚德强,马晓建,陈俊英.盾叶薯蓣发酵生产酒精的研究[J].酿酒科技,2007,2:25-28.
    [3]宋发军.甾体药物源植物薯蓣属植物中薯蓣皂甙元的研究及生产状况[J].天然产物研究与开发,2002,14(3):89-93.
    [4]司航.有机产品手册(第二版)[M].有机化工原料,化学工业出版社,1982.
    [5]董静洲,易自力,蒋建雄.盾叶薯蓣综合研究概况[J].湖北农业科学,2004,2:84-88.
    [6]毛慎予.药用植物的新宠-盾叶薯蓣[N].湖南林业.2000,6:18.
    [7]唐晓清,余伯阳,徐德然,等.HPLC-ELSD法测定麦冬中甾体皂甙元的含量[J].中国药科大学学报.2001,32(4):270-272.
    [8]陈立娜,都述虎,高艳坤,等.RP-HPLC法测定黄精中薯蓣皂苷元含量[J].现代中药研究与实践,2006,20(4):32-34.
    [9]顾永明,袁丽红,李文谦等.RP-HPLC法测定盾叶薯蓣细胞中薯蓣皂甙元含量[J].天然产物研究与开发-2004,16(4):331-333.
    [10]杨如同,唐世蓉,潘福生等.药源植物盾叶薯蓣甾体皂苷及皂苷元的研究进展[J].中国野生植物资源,2007,26(4):1-5.
    [11]王元兰.盾叶薯蓣皂苷元提取工艺研究[J].经济林研究,2000,20(2):67-68.
    [12]向红明,李金灿.黄姜中提取薯锁皂素的新工艺研究[J].安康师范专科学校学报,2003,15(1):56-59.
    [13]张裕卿,王东青,李滨县等.阶梯生物催化协同提取盾叶薯蓣中薯蓣皂苷元的研究[J].2006,37(5):688-691.
    [14]周振起,封玉贤.薯蓣皂甙元分离工艺的研究及其综合利用[J].西北植物学报,1995,15(3):254-260.
    [15]刘国梁,刘峥.盾叶薯蓣提取皂甙元副产淀粉的研究[J].山西化工,2003,23(1):6-7.
    [16]刘春.皂素生产废水污染特点及治理对策探讨[J].环境保护科学,2001,(6):22-24.
    [17]冯冰,马百平.天然产物的生物转化研究进展[J].中草药,2005,36(6):941-945.
    [18]董悦生,齐珊珊,刘琳,等.米曲霉直接转化盾叶薯蓣生产薯蓣皂苷元[J].过程工程学报,2009,9(5):993-998.
    [19]Lin L, Dong Y S, Qi S S, et al. Biotransformation of steriodal saponinsin Dioscorea zingiberensis C. H. Wright to diosgenin by Trichoderma harzianum[J]. Appl Microbiol Biotechnol,2010,85(4):933-940.
    [20]徐成基.中国薯蓣资源[M].成都:四川科学技术出版社,2000.
    [21]唐世蓉.薯蓣科植物甾体皂甙元的含量和鉴定[J].植物学报,1979,21(2):171-176.
    [22]聂凌鸿,林淑英,宁正祥.薯蓣属植物中薯蓣皂苷元的研究进展[J].中国生化药物杂志,2004,25(5):318-320.
    [23]谭远友,余展深,齐迎春等.栽培盾叶薯蓣中皂甙元含量与质量的动态变化[J].湖北民族学院学报(自然科学版),2000.2,18(1):17-18.
    [24]董静洲,易自力,蒋建雄.盾叶薯蓣综合研究概况[J].湖北农业科学,2004(2):84-88.
    [25]杨如同,唐世蓉,潘福生等.药源植物盾叶薯蓣甾体皂苷及皂苷元的研究进展[J].中国野生植物资源,2007,26(4):1-5.
    [26]唐世蓉,吴余芬,庞自洁.盾叶薯蓣甾体皂甙的分离鉴定[J].植物学报.1983,11,25(6)556-561.
    [27]刘承来,陈延镛,唐易芳等.盾叶薯蓣中苗体皂甙的分离和鉴定[J].植物学报,1984,26(3):283-289.
    [28]Qi S S,Dong Y S, Zhao Y K, et al. Identification and quantification of steroidal saponins and aglycone during biotransformation of Dioscorea zingiberensis by Aspergillus oryzae.Journal of Biotechnology.136: 356-401.
    [29]周振起,封玉贤.薯蓣皂甙元分离工艺的研究及其综合利用[J].西北植物学报,1995,15(3):254-260.
    [30]黄利群,陈四发,刘艳萍.黑曲霉(Aspergillas niger)新菌株HA608的诱变及选育[J].氨基酸和生物资源,1997,19(3):11-13.
    [31]刘国兴,王元好,孙丽慧等.盾叶薯蓣糖化液发酵生产2-,3-丁二醇过程工程学报.2009,2,9(1):95-100.
    [32]Hua W, Zhao H Z, Ni J R, et al. The best utilization of D. zingiberensis C.H. Wright by an eco-friendly process.Bioresouce Technology.2008,99(15):7407-7411.
    [33]Zhu Y L, Huang W, Ni J R. A promising clean process for production of diosgenin from Dioscoreazingiberensis C. H. Wright[J]. Journal of Cleaner Production,2010,3(18):242-247.
    [34]Ralph E H S,Warren M,Jack N. Saddler, et al. An overview of second generation biofuel technologies.Bioresource Technology,2010(101):1570-1580.
    [35]胡徐腾.纤维素乙醇研究开发进展[J].化工进展,2011,30(1):137-143.
    [36]黄彩霞,华慧颖,许苗苗.第二代生物燃料中纤维素乙醇的现状与发展[J].企业技术开发,2010,29(10):57-58.
    [37]陈介南,王义强,何钢等.木质纤维生产燃料乙醇的生物转化技术,2007,5.43(5),99-104.
    [38]Wyman C E. Biomass ethanol:technical progress, opportunities,and commercial challenges[J]. Annual Review of Energyand the Environment,1999,24:189-226.
    [39]陈洪章.纤维素生物技术(第1版)[M].北京:化学工业出版社,2005.
    [40]刘德礼,谢林生,马玉录.木质纤维素预处理技术研究进展[J].酿酒科技,2009(1):105-110.
    [41]曲音波.纤维素乙醇产业化[J].化学进展,2007,19:1098-1108.
    [42]金慧,王黎春,杜风光等.木质纤维素原料生产燃料乙醇预处理技术研究进展[J].酿酒科技,2009,7:95-98.
    [43]Yuya Y,Chizuru S, Yoshitoshi N.Effective enzyme saccharification and ethanol production[J]. Journal of Bioscience and Bioengineering,2010,110(l):78-86.
    [44]王健,袁永俊,张驰松.纤维素发酵产酒精研究进展[J].中国酿造,2006,6:9-13.
    [45]Gauss W F, Suzuki, S, Takagi M, et al. Manufacture of alcohol from cellulosicmaterials using plural ferments. Compiler:US,3990944 [P].1976-09-11 [1975-08-09]. http://www.freepatentsonline.com/3990944.html.
    [46]Park Ⅰ, Kim L, Kang K,et al.Cellulose ethanol production from waste newsprint by simultaneous saccharification and fermentation using Saccharomyces cerevisiae KNU5377. Process Biochemistry, 2010(45):487-492.
    [47]王栋,常春,王林风.利用SSF制取纤维乙醇的工艺研究[J].酿酒,2010,37(1):77-79.
    [48]Li Z G, Jiang B, Zhang D J, et al. Aqueous two-phase extraction of 1,3-propanediol from glycerol-based fermentation broths[J]. Separation and Purification Technology,2009,66:472-478.
    [49]刘琳,董悦生,修志龙.微波辅助双水相提取盾叶薯蓣中的皂苷成分[J].过程工程学报,2009,9(6):1147-1152.
    [50]向纪明,李金灿.黄姜中提取薯蓣皂素的新工艺研究[J].安康师专学报,2003,15(3):56-59.
    [51]赵旭东,赵艺等.黄姜皂素清洁生产工艺研究进展[J].环境与可持续发展,2008,3:47-48.
    [52]Van S P J. Use of detergents in the analysis of fibrous feeds Ⅱ. A rapid method for the determination of fiber and lignin [J]. J Ass Offic Agr Chem,1963,46:829-835.
    [53]Van Soest P J, Robertson J B, Lewis B A. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition [J]. J Dairy Sci,1991,74:3583-3597.
    [54]谢彩侠,高山林,朱丹妮,等.盾叶薯蓣中薯蓣皂甙元不同提取方法的比较[J].植物资源与环境学,2005,14(1):23-25.
    [55]刘国兴.盾叶薯蓣发酵生产2,3-丁二醇及其分离[D].大连:大连理工大学环境与生命学院,2006.
    [56]李如亮.生物化学实验[M].武汉:武汉大学出版社,1998.
    [57]Miller G L.Use of dinitrosalicylic acid reagent for determination of reducing sugar [J]. Analytical Chemistry,1959,31(3):426-428.
    [58]李丹.以菊芋茎叶及块茎为原料发酵生产2,3-丁二醇[D].大连:大连理工大学环境与生命学院,2010.
    [59]齐珊珊.米曲霉生物转化盾叶薯蓣中的甾体皂苷的研究[D].大连:大连理工大学环境与生命学院,2008.
    [60]国家医药管理局中草药情报中心站.植物药有效成分手册[M].北京:人民卫生出版社,1986.
    [61]林建原,汤琳晓.薯蓣皂苷元提取方法研究进展[J].广东微量元素科学,2009,16(10):20-23.
    [62]Wang H, Dong Y S, Xiu Z L. Microwave-assisted aqueous two-phase extraction of piceid, resveratrol and emodin from Polygonum cuspidatum by ethanol/ammonium sulphate systems.Biotechnol Lett, 2008,30:2079-2084.
    [63]刘琳,董悦生,修志龙.微波辅助双水相提取盾叶薯蓣中的皂苷成分.过程工程学报,2009,12.9(6):1147-1152.
    [64]唐世蓉,姜志东.盾叶薯蓣地上部分的三个新甾体皂甙[J].云南植物研究,1987,9(2):233-238.
    [65]马齐,秦涛,田萍.黄姜淀粉的理化性质分析[J].食品研究与开发,2007,28(5):98-101.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700