与睾丸高表达蛋白质RNF138相互作用的蛋白激酶NLK的功能研究和睾丸特异表达蛋白质RSA-14-44的功能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
1.丝氨酸/苏氨酸蛋白激酶NLK的功能研究
     本组前期在精子发生的分子机制研究中分离了一种睾丸高表达蛋白质为RNF138[1],后经研究提示它可与一种进化上保守的丝氨酸/苏氨酸蛋白激酶NLK(Nemo-like kinase, NLK)结合[2]。Zeng等人的研究指出,果蝇的Nemo蛋白能够磷酸化BMP信号的效应分子MAD并促进其出核,从而拮抗BMP信号通路[3]。最近的研究显示,Smad4能够结合NLK并被其磷酸化[4]。这些结果提示,NLK可能参与TGF-p信号通路调节,TGF-p信号能够调节细胞增殖、分化、迁移、凋亡等一系列细胞反应;而该信号的异常调节则可能导致各种疾病的发生,如纤维化、恶性肿瘤、自身免疫疾病和心血管疾病等。因此进一步明确NLK在TGF-β信号通路中的功能,将有助于进一步揭示TGF-β信号通路的调节机制,从而深化对TGF-β信号失调和相关疾病发生过程的认识。
     鉴于揭示NLK在TGF-β信号通路中的调节作用已成为当前研究的热点,本文也由此作了深入的探讨。我们首先利用免疫共沉淀实验,发现NLK与Smad3之间存在相互作用,并且两者的结合依赖于Smad3的MH2结构域。免疫荧光实验显示,在TGF-p刺激条件下NLK与Smad3在U20S细胞中共定位。
     在此基础上,通过双荧光素酶报告基因系统分析NLK对Smad3介导的转录反应的影响,我们发现,在不同的细胞模型中,瞬时表达NLK均可以抑制Smad3介导的转录反应。同时,我们利用RNA干扰技术,降低HaCaT、HeLa、HepG2和HCT-116细胞中内源性NLK的表达,检测Smad3及其下游靶基因PAI-1(plasminogen activator inhibitor-1, PAI-1)、CTGF (connective tissue growth factor, CTGF)、FN (fibronectin, FN)、p21、p15的变化。结果显示,降低细胞内NLK的表达水平,磷酸化Smad3以及Smad3总的蛋白质水平均显著上调,而Smad3下游靶基因的蛋白水平也有不同程度的升高。
     在此基础上,我们制备了NLK基因敲除的HCT-116细胞株,即NLK+/-和NLK-/-。首先检测NLK基因敲除的HCT-116细胞中细胞凋亡的变化,结果显示该类细胞并未发生显著的凋亡。随后,利用NLK基因敲除的HCT-116细胞,通过CCK-8法、平板克隆形成实验和软琼脂实验观察NLK基因缺失对HCT-116细胞增殖的影响。结果显示,NLK基因缺失抑制细胞增殖过程。
     2.睾丸特异表达GTPase RSA-14-44蛋白的功能研究
     哺乳动物的精子发生是一个典型的发育过程,其中涉及生精干细胞遗传信息的编译、重组、分配以及生精细胞形态的显著变化。精子发生过程的一个突出特征是具有阶段特异性,即在特定的发育阶段,出现特异的细胞或组织结构,以执行相应的特殊功能,而这些特异性结构绝大部分都是精子发生过程中阶段特异性基因表达的结果。因此,寻找并研究精子发生过程中差异表达的基因有助于我们深刻理解精子发生的独特机制。
     在前期工作中,我们鉴定了一个睾丸特异表达的Rho GTPase,并将其命名为RSA-14-44。进一步的实验证实RSA-14-44与20S蛋白酶体的催化亚基PSMB5之间存在相互作用,并且两者的结合依赖于RSA-14-44C末端190位的半胱氨酸。此外,RSA-14-44主要与PSMB5的前体相互作用,对细胞蛋白酶体活性水平的影响甚微。
     本研究主要集中于两个问题,(1)RSA-14-44与PSMB5亚细胞定位与其相互作用的具体关联,(2)RSA-14-44对PSMB5前体加工过程的影响。
     我们在MCF-7细胞瞬时表达Flag-RSA-14-44和Myc-PSMB5,观察两者在细胞中的定位情况。结果显示,RSA-14-44分布于细胞浆,并集中分布于细胞核周;而PSMB5在胞浆胞核均有分布,两者部分共定位于细胞核周。值得注意的是,将RSA-14-44190位的半胱氨酸突变为丝氨酸后,其定位从细胞核周扩展至细胞核内;蛋白质组分分离及分析的结果也证实了这一结果。因此,RSA-14-44第190位半胱氨酸的突变会导致其错误的亚细胞定位进而影响RSA-14-44与PSMB5之间的结合。
     我们在HEK293T细胞中共表达PSMB5和不同剂量的RSA-14-44。结果显示,伴随着RSA-14-44表达水平的提高,PSMB5前体的蛋白质水平显著下降,而PSMB5前体加工后所产生的PSMB5的蛋白质水平基本保持稳定。在此基础上,我们利用CHX (cycloheximide)阻断蛋白质合成,观察RSA-14-44表达上调对PSMB5前体的稳定性的影响。结果表明,RSA-14-44表达水平的上升可以显著降低PSMB5前体蛋白的稳定性,而加工成熟的PSMB5的稳定性不受影响;当190位半胱氨酸发生突变后,RSA-14-44对PSMB5前体蛋白稳定性的影响被消除,表明RSA-14-44通过结合PSMB5,参与负调节PSMB5前体蛋白质的稳定性,进而调节蛋白酶体的合成。
1. Exploring the function of NLK, a conserved serine/threonine protein kinase
     The transforming growth factor-β(TGF-β) family members including TGF-βisoforms, activins, bone morphogenetic proteins (BMPs), and growth and differentiation factors (PDFs), are the secreted cytokines that stimulate a broad array of cellular responses such as cell proliferation, differentiation, migration and apoptosis. Misregulation of these signaling involve in various diseases including fibrosis, malignant tumors, auto-immune diseases and vascular disorders. Thus, tightly controlling TGF-βsignaling is essential for maintaining normal cellular responses and tissue homeostasis.
     Nemo-like kinase (NLK) is an evolutionally conserved serine/threonine protein kinase. It was demonstrated that Nemo could antagonize BMP signaling through phosphorylating MAD, the BMP effector in Drosophila, which promote exporting MAD from the nucleus to the cytoplasm. Recent study also showed that Smad4 was phosphorylated by NLK, suggesting that NLK might be involved in regulating TGF-P signaling. Thus, we certainly get new insight into the mechanism of TGF-P signaling pathway by exploring the roles of NLK in the phosphoryation of Smads.
     NLK associates with Smad3 in vivo, which was confirmed by the co-immunoprecipitation assay. Detailed analyses further showed that the MH2 domain, located in the C terminal of Smad3, was essential for its association with NLK. Endogenous Smad3 co-localizes with transiently expressed NLK in U2OS cells in response to TGF-βstimuli.
     Based on these information, we investigated the possible effects of NLK on Smad3-mediated transcription by a dual-luciferase reporter assay. NLK suppresses Smad3-mediated transcription in both HEK293T and HeLa cells. Using the RNAi technology, we knocked down the expression of NLK in HaCaT, HeLa, HepG2 and HCT-116 cells and confirm the inhibition of Smad3-mediated transcription by NLK. As expected, the protein level of p21, a classical target gene of Smad3, is elevated obviously.
     Down-regulated cell proliferation was further observed in the NLK knockout HCT-116 cells (NLK+/- and NLK-/-), which was confirmed by the results of plate colony formation assay and the soft agar assay. However, no significant change of apoptosis was observed in the NLK+/- and NLK-/- HCT-116 cells.
     2. Investigating the function of RSA-14-44, a testis-specific Rho GTPase
     Mammalian spermatogenesis is a paradigm for development in which the genetic information from male germ stem cells is re-edited, re-organized and finally distributed into spermatozoa while a dramatic cellular metamorphosis occurs in germ cells. This intricate process is built upon a system that features distinctive patterns of structure and regulation, most of which are the results of a unique and well-coordinated program of gene expression. Thus, identification and characterization of these differentially expressed genes has provided us additional insight into the unique mechanisms of spermatogenesis.
     In the previous study, we identified a testis-specific Rho GTPase named RSA-14-44, which associates with PSMB5, a catalytic subunit of the 20S proteasome during spermatogenesis. Detailed analyses showed that only the precursors of PSMB5 associate with RSA-14-44, which was not a direct regulator of proteasome activity. Furthermore, RSA-14-44 C190S resulted in the disruption of association between RSA-14-44 and PSMB5.
     In the present study, we clarified the effect of the C190S mutant on the location of RSA-14-44 and the possible roles of RSA-14-44 in the autocleavage of PSMB5.
     First, we found that in transfected MCF-7 cells, RSA-14-44 partially co-localize with PSMB5 in a perinuclear region. Furthermore, we compared the localization of the RSA-14-44C190S mutant with wide-type protein by immunofluorescence. In contrast to the perinuclear centered pattern of the wild-type protein, RSA-14-44c190S is dispersed in both nuclear and cytoplasmic regions. This dramatic difference resulting from the C190S mutation was further confirmed by the immunoblot analysis of subcellular fractions.
     To specify the possible effects of RSA-14-44 on the autocleavage of PSMB5, we co-expressed PSMB5 with various amounts of RSA-14-44. Surprisingly, the levels of PSMB5 precursors decrease significantly as a result of the increase in the doses of RSA-14-44; nevertheless, no disturbance was observed in the level of mature PSMB5. Following this clue, we measured the stability of PSMB5 precursor under transient expression of RSA-14-44 to determine the precise role of RSA-14-44 in down-regulating its protein level. Actually, the PSMB5 precursor is unstable and its stability is down-regulated dramatically by co-expression of RSA-14-44. In contrast, mature PSMB5 has a much longer life time and is less sensitive to the expression of RSA-14-44. Disrupting the association of RSA-14-44 and PSMB5 completely reversed the effect of RSA-14-44 on the stability of the PSMB5 precursor, which suggests this association is a prerequisite for RSA-14-44 regulation of proteasome biogenesis.
引文
1.张晓东,人和大鼠精子发生相关基因的克隆及其基因结构和功能分析.中国协和医科大学博士毕业论文,2000.
    2. Yamada, M., et al., NARF, an nemo-like kinase (NLK)-associated ring finger protein regulates the ubiquitylation and degradation of T cell factor/lymphoid enhancer factor (TCF/LEF). J Biol Chem,2006.281(30):p.20749-60.
    3. Zeng, Y.A., et al., Drosophila Nemo antagonizes BMP signaling by phosphorylation of Mad and inhibition of its nuclear accumulation. Development,2007.134(11):p.2061-71.
    4. Shi, Y., et al., Human SMAD4 is phosphorylated at Thr9 and Ser138 by interacting with NLK. Mol Cell Biochem,2010.333(1-2):p.293-8.
    5.何维,高晓明,曹雪涛,熊思东,细胞因子.医学免疫学,2005.
    6. Heldin, C.H., M. Landstrom, and A. Moustakas, Mechanism of TGF-beta signaling to growth arrest, apoptosis, and epithelial-mesenchymal transition. Curr Opin Cell Biol,2009.21(2):p. 166-76.
    7. Itoh, S. and P. ten Dijke, Negative regulation of TGF-beta receptor/Smad signal transduction. Curr Opin Cell Biol,2007.19(2):p.176-84.
    8. Lander, E.S., et al., Initial sequencing and analysis of the human genome. Nature,2001. 409(6822):p.860-921.
    9. Li, M.O., et al., Transforming growth factor-beta regulation of immune responses. Annu Rev Immunol,2006.24:p.99-146.
    10. Massague, J., S.W. Blain, and R.S. Lo, TGFbeta signaling in growth control, cancer, and heritable disorders. Cell,2000.103(2):p.295-309.
    11. Zhang, Y.E., Non-Smad pathways in TGF-beta signaling. Cell Res,2009.19(1):p.128-39.
    12. Pignatelli, M. and C.J. Gilligan, Transforming growth factor-beta in G1 neoplasia, wound healing and immune response. Baillieres Clin Gastroenterol,1996.10(1):p.65-81.
    13. Wrighton, K.H., X. Lin, and X.H. Feng, Phospho-control of TGF-beta superfamily signaling. Cell Res,2009.19(1):p.8-20.
    14. Shi, Y. and J. Massague, Mechanisms of TGF-beta signaling from cell membrane to the nucleus. Cell,2003.113(6):p.685-700.
    15. Derynck, R. and Y.E. Zhang, Smad-dependent and Smad-independent pathways in TGF-beta family signalling. Nature,2003.425(6958):p.577-84.
    16. Massague, J., J. Seoane, and D. Wotton, Smad transcription factors. Genes Dev,2005.19(23): p.2783-810.
    17. Choi, K.W. and S. Benzer, Rotation of photoreceptor clusters in the developing Drosophila eye requires the nemo gene. Cell,1994.78(1):p.125-36.
    18. Brott, B.K., B.A. Pinsky, and R.L. Erikson, Nlk is a murine protein kinase related to Erk/MAP kinases and localized in the nucleus. Proc Natl Acad Sci U S A,1998.95(3):p.963-8.
    19. Kortenjann, M., et al., Abnormal bone marrow stroma in mice deficient for nemo-like kinase, Nlk. Eur J Immunol,2001.31(12):p.3580-7.
    20. Kojima, H., et al., STAT3 regulates Nemo-like kinase by mediating its interaction with IL-6-stimulated TGFbeta-activated kinase 1 for STAT3 Ser-727 phosphorylation. Proc Natl Acad Sci U S A,2005.102(12):p.4524-9.
    21. Smit, L., et al., Wnt activates the Takl/Nemo-like kinasepathway. J Biol Chem,2004.279(17): p.17232-40.
    22. Kanei-Ishii, C., et al., Wnt-l signal induces phosphorylation and degradation of c-Mybprotein via TAK1, HIPK2, and NLK. Genes Dev,2004.18(7):p.816-29.
    23. Yamaguchi, K., et al., Identification of a member of the MAPKKK family as a potential mediator of TGF-beta signal transduction. Science,1995.270(5244):p.2008-11.
    24. Takaesu, G., et al., TAB2, a novel adaptor protein, mediates activation of TAK1 MAPKKK by linking TAK1 to TRAF6 in the IL-l signal transduction pathway. Mol Cell,2000.5(4):p. 649-58.
    25. Ishitani, T., et al., The TAK1-NLK-MAPK-related pathway antagonizes signalling between beta-catenin and transcription factor TCF. Nature,1999.399(6738):p.798-802.
    26. Meneghini, M.D., et al., MAP kinase and Wnt pathways converge to downregulate an HMG-domain repressor in Caenorhabditis elegans. Nature,1999.399(6738):p.793-7.
    27. Shin, T.H., et al., MOM-4, a MAP kinase kinase kinase-related protein, activates WRM-1/LIT-1 kinase to transduce anterior/posterior polarity signals in C. elegans. Mol Cell, 1999.4(2):p.275-80.
    28. Rottinger, E., et al., Nemo-like kinase (NLK) acts downstream of Notch/Delta signalling to downregulate TCF during mesoderm induction in the sea urchin embryo. Development,2006. 133(21):p.4341-53.
    29. Li, M., et al., TAB2 scaffolds TAKI and NLK in repressing canonical WNT signaling. J Biol Chem,2010.
    30. Ishitani, T., J. Ninomiya-Tsuji, and K. Matsumoto, Regulation of lymphoid enhancer factor 1/T-cell factor by mitogen-activated protein kinase-related Nemo-like kinase-dependent phosphorylation in Wnt/beta-catenin signaling. Mol Cell Biol,2003.23(4):p.1379-89.
    31. Kurahashi, T., et al., The Wnt-NLK signaling pathway inhibits A-Myb activity by inhibiting the association with coactivator CBP and methylating histone H3. Mol Biol Cell,2005.16(10):p. 4705-13.
    32. Ohkawara, B., et al., Role of the TAK1-NLK-STAT5 pathway in TGF-beta-mediated mesoderm induction. Genes Dev,2004.18(4):p.381-6.
    33. Satoh, K., et al., Nemo-like kinase-myocyte enhancer factor 2A signaling regulates anterior formation in Xenopus development. Mol Cell Biol,2007.27(21):p.7623-30.
    34. Saijo, K., et al., A Nurr1/CoREST pathway in microglia and astrocytes protects dopaminergic neurons from inflammation-induced death. Cell,2009.137(1):p.47-59.
    35. Kim, S., et al., Regulation of FOXO1 by TAKI-Nemo-like kinase pathway. J Biol Chem,2010. 285(11):p.8122-9.
    36. Ishitani, T., et al., Nemo-like kinase suppresses Notch signalling by interfering with formation of the Notch active transcriptional complex. Nat Cell Biol,2010.12(3):p.278-85.
    37. Yasuda, J., et al., Nemo-like kinase suppresses a wide range of transcription factors, including nuclear factor-kappaB. Cancer Sci,2004.95(1):p.52-7.
    38. Matsuura, I., et al., Cyclin-dependent kinases regulate the antiproliferative function ofSmads. Nature,2004.430(6996):p.226-31.
    39. Alarcon, C., et al., Nuclear CDKs drive Smad transcriptional activation and turnover in BMP and TGF-beta pathways. Cell,2009.139(4):p.757-69.
    40. Gao, S., et al., Ubiquitin ligase Nedd4L targets activated Smad2/3 to limit TGF-beta signaling. Mol Cell,2009.36(3):p.457-68.
    41. Yakymovych, I., et al., Regulation of Smad signaling by protein kinase C. FASEB J,2001. 15(3):p.553-5.
    42. Huntley, M.A. and G.B. Golding, Simple sequences are rare in the Protein Data Bank. Proteins,2002.48(1):p.134-40.
    43. Karlin, S., et al., Amino acid runs in eukaryotic proteomes and disease associations. Proc Natl Acad Sci U S A,2002.99(1):p.333-8.
    44. Trottier, Y., et al., Polyglutamine expansion as a pathological epitope in Huntington's disease and four dominant cerebellar ataxias. Nature,1995.378(6555):p.403-6.
    45. Gatchel, J.R. and H.Y. Zoghbi, Diseases of unstable repeat expansion:mechanisms and common principles. Nat Rev Genet,2005.6(10):p.743-55.
    46. Akarsu, A.N., et al., Genomic structure of HOXD13 gene:a nine polyalanine duplication causes synpolydactyly in two unrelated families. Hum Mol Genet,1996.5(7):p.945-52.
    47. Albrecht, A.N., et al., A molecular pathogenesis for transcription factor associated poly-alanine tract expansions. Hum Mol Genet,2004.13(20):p.2351-9.
    48. Caburet, S., et al., A recurrent polyalanine expansion in the transcription factor FOXL2 induces extensive nuclear and cytoplasmic protein aggregation. J Med Genet,2004.41(12):p. 932-6.
    49. Nasrallah, I.M., J.C. Minarcik, and J.A. Golden, A polyalanine tract expansion in Arx forms intranuclear inclusions and results in increased cell death. J Cell Biol,2004.167(3):p.411-6.
    50. Crisponi, L., et al., The putative forkhead transcription factor FOXL2 is mutated in blepharophimosis/ptosis/epicanthus inversus syndrome. Nat Genet,2001.27(2):p.159-66.
    51. De Baere, E., et al., FOXL2 and BPES:mutational hotspots, phenotypic variability, and revision of the genotype-phenotype correlation. Am J Hum Genet,2003.72(2):p.478-87.
    52. Brown, S.A., et al., Holoprosencephaly due to mutations in ZIC2, a homologue of Drosophila odd-paired. Nat Genet,1998.20(2):p.180-3.
    53. Brown, L.Y., et al., Holoprosencephaly due to mutations in ZIC2:alanine tract expansion mutations may be caused by parental somatic recombination. Hum Mol Genet,2001.10(8):p. 791-6.
    54. Amiel, J., et al., Polyalanine expansion and frameshift mutations of the paired-like homeobox gene PHOX2B in congenital central hypoventilation syndrome. Nat Genet,2003.33(4):p. 459-61.
    55. Matera, I., et al., PHOX2B mutations and polyalanine expansions correlate with the severity of the respiratory phenotype and associated symptoms in both congenital and late onset Central Hypoventilation syndrome. J Med Genet,2004.41(5):p.373-80.
    56. Bienvenu, T., et al., ARX, a novel Prd-class-hotneobox gene highly expressed in the telencephalon, is mutated in X-linked mental retardation. Hum Mol Genet,2002.11(8):p. 981-91.
    57. Kitamura, K., et al., Mutation of ARX causes abnormal development offorebrain and testes in mice and X-linked lissencephaly with abnormal genitalia in humans. Nat Genet,2002.32(3): p.359-69.
    58. Stromme, P., et al., Mutations in the human ortholog of Aristaless cause X-linked mental retardation and epilepsy. Nat Genet,2002.30(4):p.441-5.
    59. Laumonnier, F., et al., Transcription factor SOX3 is involved in X-linked mental retardation with growth hormone deficiency. Am J Hum Genet,2002.71(6):p.1450-5.
    60. Mundlos, S., et al., Mutations involving the transcription factor CBFA1 cause cleidocranial dysplasia. Cell,1997.89(5):p.773-9.
    61. Goodman, F.R., et al., Novel HOXA13 mutations and the phenotypic spectrum of hand-foot-genital syndrome. Am J Hum Genet,2000.67(1):p.197-202.
    62. Innis, J.W., et al., Polyalanine expansion in HOXA13:three new affected families and the molecular consequences in a mouse model. Hum Mol Genet,2004.13(22):p.2841-51.
    63. Goodman, F.R., et al., Synpolydactyly phenotypes correlate with size of expansions in HOXD13 polyalanine tract. Proc Natl Acad Sci U S A,1997.94(14):p.7458-63.
    64. Uyama, E., et al., Nuclear accumulation of expanded PABP2 gene product in oculopharyngeal muscular dystrophy. Muscle Nerve,2000.23(10):p.1549-54.
    65. Brais, B., et al., Short GCG expansions in the PABP2 gene cause oculopharyngeal muscular dystrophy. Nat Genet,1998.18(2):p.164-7.
    66. Faux, N.G., et al., Functional insights from the distribution and role of homopeptide repeat-containing proteins. Genome Res,2005.15(4):p.537-51.
    67. Salichs, E., et al., Genome-wide analysis of histidine repeats reveals their role in the localization of human proteins to the nuclear speckles compartment. PLoS Genet,2009.5(3): p. e1000397.
    68. Lamond, A.I. and D.L. Spector, Nuclear speckles:a model for nuclear organelles. Nat Rev Mol Cell Biol,2003.4(8):p.605-12.
    69. Golemis, E.A., and Adams, P. D., Protein-protein interactions, in A molecular cloning manual 2nd Edition.2005, Cold Spring Harbor Laboratory Press:New York. p.938.
    70. Jonk, L.J., et al., Identification and functional characterization of a Smad binding element (SBE) in the JunB promoter that acts as a transforming growth factor-beta, activin, and bone morphogeneticprotein-inducible enhancer. J Biol Chem,1998.273(33):p.21145-52.
    71. Hsu, L.J., et al., Transforming growth factor beta1 signaling via interaction with cell surface Hyal-2 and recruitment of WWOX/WOX1. J Biol Chem,2009.284(23):p.16049-59.
    72. Taylor, R.C., S.P. Cullen, and S.J. Martin, Apoptosis:controlled demolition at the cellular level. Nat Rev Mol Cell Biol,2008.9(3):p.231-41.
    73. Cross, T.G., et al., Serine/threonine protein kinases and apoptosis. Exp Cell Res,2000.256(1): p.34-41.
    74. Dhanasekaran, D.N. and E.P. Reddy, JNK signaling in apoptosis. Oncogene,2008.27(48):p. 6245-51.
    75. MacKeigan, J.P., L.O. Murphy, and J. Blenis, Sensitized RNAi screen of human kinases and phosphatases identifies new regulators of apoptosis and chemoresistance. Nat Cell Biol,2005. 7(6):p.591-600.
    76. Yasuda, J., et al., Nemo-like kinase induces apoptosis in DLD-1 human colon cancer cells. Biochem Biophys Res Commun,2003.308(2):p.227-33.
    77. Emami, K.H., et al., Nemo-like kinase induces apoptosis and inhibits androgen receptor signaling in prostate cancer cells. Prostate,2009.69(14):p.1481-92.
    78. Massague, J., TGFbeta in Cancer. Cell,2008.134(2):p.215-30.
    79. Massague, J., G1 cell-cycle control and cancer. Nature,2004.432(7015):p.298-306.
    80. Sherr C.J., R.J.M., CDK inhibitors:positive and negative regulators of Gl-phase progression Genes & Dev.,1999.13:p.1501-1512.
    81. Seoane, J., H.V. Le, and J. Massague, Myc suppression of the p21(Cipl) Cdk inhibitor influences the outcome of the p53 response to DNA damage. Nature,2002.419(6908):p. 729-34.
    82. Staller, P., et al., Repression of p15INK4b expression by Myc through association with Miz-1. Nat Cell Biol,2001.3(4):p.392-9.
    83. Chen, C.R., et al., E2F4/5 and p107 as Smad cofactors linking the TGFbeta receptor to c-myc repression. Cell,2002.110(1):p.19-32.
    84. Pardali, K., et al., Role of Smad proteins and transcription factor Spl in p21(Wafl/Cipl) regulation by transforming growth factor-beta. J Biol Chem,2000.275(38):p.29244-56.
    85. Feng, X.H., X. Lin, and R. Derynck, Smad2, Smad3 and Smad4 cooperate with Sp1 to induce p15(Ink4B) transcription in response to TGF-beta. EMBO J,2000.19(19):p.5178-93.
    86. Seoane, J., et al., Integration of Smad and forkhead pathways in the control of neuroepithelial and glioblastoma cell proliferation. Cell,2004.117(2):p.211-23.
    87. Gomis, R.R., et al., A FoxO-Smad synexpression group in human keratinocytes. Proc Natl Acad Sci U S A,2006.103(34):p.12747-52.
    88. Moon, R.T., et al., WNT and beta-catenin signalling:diseases and therapies. Nat Rev Genet, 2004.5(9):p.691-701.
    89. Clevers, H., Wnt/beta-catenin signaling in development and disease. Cell,2006.127(3):p. 469-80.
    90. Shibuya, H., et al., TAB1:an activator of the TAK1 MAPKKK in TGF-beta signal transduction. Science,1996.272(5265):p.1179-82.
    91. Ohnishi, E., et al., Nemo-like kinase, an essential effector of anterior formation, functions downstream ofp38 mitogen-activated protein kinase. Mol Cell Biol,2010.30(3):p.675-83.
    1. Dym, M., Spermatogonial stem cells of the testis. Proc Natl Acad Sci U S A,1994.91(24):p. 11287-9.
    2. Hecht, N.B. and J.D. Penshow, In situ localization of mRNAs coding for mouse testicular structural genes. Exp Cell Res,1987.173(1):p.274-81.
    3. 袁莉刚,大鼠RSA-14-44基因功能的初步研究.甘肃农业大学学位论文,2004.
    4. 田永强,精子发生相关基因功能的研究.中国协和医科大学博十后研究工作总结报告,2004.
    5. Burridge, K. and K. Wennerberg, Rho and Rac take center stage. Cell,2004.116(2):p. 167-79.
    6. Etienne-Manneville, S. and A. Hall, Rho GTPases in cell biology. Nature,2002.420(6916):p. 629-35.
    7. Walker, K. and M.F. Olson, Targeting Ras and Rho GTPases as opportunities for cancer therapeutics. Curr Opin Genet Dev,2005.15(1):p.62-8.
    8. Mackay, D.J. and A. Hall, Rho GTPases. J Biol Chem,1998.273(33):p.20685-8.
    9. Ridley, A.J., Rho family proteins:coordinating cell responses. Trends Cell Biol,2001.11(12): p.471-7.
    10. Boureux, A., et al., Evolution of the Rho family of ras-like GTPases in eukaryotes. Mol Biol Evol,2007.24(1):p.203-16.
    11. Vega, F.M. and A.J. Ridley, Rho GTPases in cancer cell biology. FEBS Lett,2008.582(14):p. 2093-101.
    12. Freeman, E.A., P. Jani, and C.E. Millette, Expression and potential function of Rho family small G proteins in cells of the mammalian seminiferous epithelium. Cell Commun Adhes, 2002.9(4):p.189-204.
    13. Naud, N., et al., Rho family GTPase Rnd2 interacts and co-localizes with MgcRacGAP in male germ cells. Biochem J,2003.372(Pt 1):p.105-12.
    14. Lui, W.Y., D.D. Mruk, and C.Y. Cheng, Interactions among IQGAP1, Cdc42, and the cadherin/catenin protein complex regulate Sertoli-germ cell adherens junction dynamics in the testis. J Cell Physiol,2005.202(1):p.49-66.
    15. Sarkar, A., et al., Antagonistic roles of Rac and Rho in organizing the germ cell microenvironment. Curr Biol,2007.17(14):p.1253-8.
    16. Adly, M.A. and M.R. Hussein, Immunohistological Profile of the Ras Homologous B Protein (RhoB) in Human Testes Showing Normal Spermatogenesis, Spermatogenic Arrest and Sertoli Cell Only Syndrome. Pathol Oncol Res,2009.
    17. Wong, E.W. and C.Y. Cheng, Polarity proteins and cell-cell interactions in the testis. Int Rev Cell Mol Biol,2009.278:p.309-53.
    18. Maddox, A.S. and K. Oegema, Closing the GAP:a role for a RhoA GAP in cytokinesis. Mol Cell,2003.11(4):p.846-8.
    19. Kimura, K., et al., Accumulation of GTP-bound RhoA during cytokinesis and a critical role of ECT2 in this accumulation. J Biol Chem,2000.275(23):p.17233-6.
    20. Cuellar-Mata, P., et al., The GTP-binding protein RhoA localizes to the cortical granules of Strongylocentrotus purpuratas sea urchin egg and is secreted during fertilization. Eur J Cell Biol,2000.79(2):p.81-91.
    21. Orlowski, M., The multicatalytic proteinase complex, a major extralysosomal proteolytic system. Biochemistry,1990.29(45):p.10289-97.
    22. Rechsteiner, M., L. Hoffman, and W. Dubiel, The multicatalytic and 26 S proteases. J Biol Chem,1993.268(9):p.6065-8.
    23. Rivett, A.J., Proteasomes:multicatalytic proteinase complexes. Biochem J,1993.291 (Pt 1): p.1-10.
    24. Ciechanover, A., The ubiquitin-proteasome pathway:on protein death and cell life. Embo J, 1998.17(24):p.7151-60.
    25. Tanaka, K., et al., Direct evidence for nuclear and cytoplasmic colocalization of proteasomes (multiprotease complexes) in liver. J Cell Physiol,1989.139(1):p.34-41.
    26. Cheng, Y., Toward an atomic model of the 26S proteasome. Curr Opin Struct Biol,2009.19(2): p.203-8.
    27. Walz, J., et al.,26S proteasome structure revealed by three-dimensional electron microscopy. J Struct Biol,1998.121(1):p.19-29.
    28. Unno, M., et al., Structure determination of the constitutive 20S proteasome from bovine liver at 2.75 A resolution. J Biochem,2002.131(2):p.171-3.
    29. Unno, M., et al., The structure of the mammalian 20S proteasome at 2.75 A resolution. Structure,2002.10(5):p.609-18.
    30. Groll, M., et al., Probing structural determinants distal to the site of hydrolysis that control substrate specificity of the 20S proteasome. Chem Biol,2002.9(5):p.655-62.
    31. Liu, Z., R. Oughtred, and S.S. Wing, Characterization of E3Histone, a novel testis ubiquitin protein ligase which ubiquitinates histones. Mol Cell Biol,2005.25(7):p.2819-31.
    32. Ma, J., E. Katz, and J.M. Belote, Expression of proteasome subunit isoforms during spermatogenesis in Drosophila melanogaster. Insect Mol Biol,2002.11(6):p.627-39.
    33. Sutovsky, P., et al., A putative, ubiquitin-dependent mechanism for the recognition and elimination of defective spermatozoa in the mammalian epididymis. J Cell Sci,2001.114(Pt 9): p.1665-75.
    34. Coux, O., K. Tanaka, and A.L. Goldberg, Structure and functions of the 20S and 26S proteasomes. Annu Rev Biochem,1996.65:p.801-47.
    35. 张宁,GTPase蛋白RSA-14-44的功能研究.北京协和医学院博士毕业论文,2008.
    36. Enenkel, C., A. Lehmann, and P.M. Kloetzel, Subcellular distribution of proteasomes implicates a major location of protein degradation in the nuclear envelope-ER network in yeast. EMBO J,1998.17(21):p.6144-54.
    37. Voges, D., P. Zwickl, and W. Baumeister, The 26S proteasome:a molecular machine designed for controlled proteolysis. Annu Rev Biochem,1999.68:p.1015-68.
    38. Chenette, E.J., A. Abo, and CJ. Der, Critical and distinct roles of amino-and carboxyl-terminal sequences in regulation of the biological activity of the Chp atypical Rho GTPase. J Biol Chem,2005.280(14):p.13784-92.
    39. Chenette, E.J., N.Y. Mitin, and C.J. Der, Multiple sequence elements facilitate Chp Rho GTPase subcellular location, membrane association, and transforming activity. Mol Biol Cell, 2006.17(7):p.3108-21.
    40. Zhou, F., et al., CSS-Palm:palmitoylation site prediction with a clustering and scoring strategy (CSS). Bioinformatics,2006.22(7):p.894-6.
    41. Murata, S., H. Yashiroda, and K. Tanaka, Molecular mechanisms of proteasome assembly. Nat Rev Mol Cell Biol,2009.10(2):p.104-15.
    42. Li, X., et al., beta-Subunit appendages promote 20S proteasome assembly by overcoming an Ump1-dependent checkpoint. EMBO J,2007.26(9):p.2339-49.
    43. Nandi, D., et al., Intermediates in the formation of mouse 20S proteasomes:implications for the assembly of precursor beta subunits. EMBO J,1997.16(17):p.5363-75.
    44. Kusmierczyk, A.R., et al., A multimeric assembly factor controls the formation of alternative 20Sproteasomes. Nat Struct Mol Biol,2008.15(3):p.237-44.
    45. Yashiroda, H., et al., Crystal structure of a chaperone complex that contributes to the assembly of yeast 20S proteasomes. Nat Struct Mol Biol,2008.15(3):p.228-36.
    46. Le Tallec, B., et al.,20S proteasome assembly is orchestrated by two distinct pairs of chaperones in yeast and in mammals. Mol Cell,2007.27(4):p.660-74.
    47. Mayr, J., et al., Late events in the assembly of 20S proteasomes.J Struct Biol,1998.124(2-3): p.179-88.
    48. Chen, P. and M. Hochstrasser, Autocatalytic subunit processing couples active site formation in the 20S proteasome to completion of assembly. Cell,1996.86(6):p.961-72.
    49. Kingsbury, D.J., T.A. Griffin, and R.A. Colbert, Novel propeptide function in 20 Sproteasome assembly influences beta subunit composition. J Biol Chem,2000.275(31):p.24156-62.
    50. De, M., et al., Beta 2 subunit propeptides influence cooperative proteasome assembly. J Biol Chem,2003.278(8):p.6153-9.
    51. Groettrup, M., C.J. Kirk, and M. Basler, Proteasomes in immune cells:more than peptide producers? Nat Rev Immunol,2010.10(1):p.73-8.
    52. Tanaka, K. and M. Kasahara, The MHC class I ligand-generating system:roles of immunoproteasomes and the interferon-gamma-inducible proteasome activator PA28. Immunol Rev,1998.163; p.161-76.
    53. Murata, S., et al., Regulation of CD8+T cell development by thymus-specific proteasomes. Science,2007.316(5829):p.1349-53.
    54. Tomaru, U., et al., Exclusive expression of proteasome subunit{beta}5t in the human thymic cortex. Blood,2009.113(21):p.5186-91.
    55. Yuan, X., M. Miller, and J.M. Belote, Duplicated proteasome subunit genes in Drosophila melanogaster encoding testes-specific isoforms. Genetics,1996.144(1):p.147-57.
    56. Zhong, L. and J.M. Belote, The testis-specific proteasome subunit Prosalpha6T of D. melanogaster is required for individualization and nuclear maturation during spermatogenesis. Development,2007.134(19):p.3517-25.
    1. Itoh, S. and P. ten Dijke, Negative regulation of TGF-beta receptor/Smad signal transduction. Curr Opin Cell Biol,2007.19(2):p.176-84.
    2. Heldin, C.H., M. Landstrom, and A. Moustakas, Mechanism of TGF-beta signaling to growth arrest, apoptosis, and epithelial-mesenchymal transition. Curr Opin Cell Biol,2009.21(2):p. 166-76.
    3. Massague, J., S.W. Blain, and R.S. Lo, TGFbeta signaling in growth control, cancer, and heritable disorders. Cell,2000.103(2):p.295-309.
    4. Zhang, Y.E., Non-Smad pathways in TGF-beta signaling. Cell Res,2009.19(1):p.128-39.
    5. Li, M.O., et al., Transforming growth factor-beta regulation of immune responses. Annu Rev Immunol,2006.24:p.99-146.
    6. Goumans, M.J., Z. Liu, and P. ten Dijke, TGF-beta signaling in vascular biology and dysfunction. Cell Res,2009.19(1):p.116-27.
    7. Leask, A. and D.J. Abraham, TGF-beta signaling and the fibrotic response. FASEB J,2004. 18(7):p.816-27.
    8. Derynck, R., et al., Human transforming growth factor-beta complementary DNA sequence and expression in normal and transformed cells. Nature,1985.316(6030):p.701-5.
    9. Cheifetz, S., et al., The transforming growth factor-beta system, a complex pattern of cross-reactive ligands and receptors. Cell,1987.48(3):p.409-15.
    10. Annes, J.P., J.S. Munger, and D.B. Rifkin, Making sense of latent TGFbeta activation. J Cell Sci,2003.116(Pt 2):p.217-24.
    11. Massague, J., et al., TGF-beta receptors. Mol Reprod Dev,1992.32(2):p.99-104.
    12. Shi, Y. and J. Massague, Mechanisms of TGF-beta signaling from cell membrane to the nucleus. Cell,2003.113(6):p.685-700.
    13. Feng, X.H. and R. Derynck, Specificity and versatility in tgf-beta signaling through Smads. Annu Rev Cell Dev Biol,2005.21:p.659-93.
    14. Stockwell, B.R. and S.L. Schreiber, TGF-beta-signaling with small molecule FKBP12 antagonists that bind myristoylated FKBP12-TGF-beta type I receptor fusion proteins. Chem Biol,1998.5(7):p.385-95.
    15. Huse, M., et al., Crystal structure of the cytoplasmic domain of the type I TGF beta receptor in complex with FKBP12. Cell,1999.96(3):p.425-36.
    16. Wang, T. and P.K. Donahoe, The immunophilin FKBP12:a molecular guardian of the TGF-beta family type I receptors. Front Biosci,2004.9:p.619-31.
    17. Wang, T., et al., The immunophilin FKBP 12 functions as a common inhibitor of the TGF beta family type I receptors. Cell,1996.86(3):p.435-44.
    18. Sekelsky, J.J., et al., Genetic characterization and cloning of mothers against dpp, a gene required for decapentaplegic function in Drosophila melanogaster. Genetics,1995.139(3):p. 1347-58.
    19. Savage, C., et al., Caenorhabditis elegans genes sma-2, sma-3, and sma-4 define a conserved family of transforming growth factor beta pathway components. Proc Natl Acad Sci U S A, 1996.93(2):p.790-4.
    20. Derynck, R., et al., Nomenclature:vertebrate mediators of TGFbeta family signals. Cell,1996. 87(2):p.173.
    21. Derynck, R. and Y.E. Zhang, Smad-dependent and Smad-independent pathways in TGF-beta family signalling. Nature,2003.425(6958):p.577-84.
    22. Wrighton, K.H., X. Lin, and X.H. Feng, Phospho-control of TGF-beta superfamily signaling. Cell Res,2009.19(1):p.8-20.
    23. Ebisawa, T., et al., Smurfl interacts with transforming growth factor-beta type I receptor through Smad7 and induces receptor degradation. J Biol Chem,2001.276(16):p.12477-80.
    24. Kavsak, P., et al., Smad7 binds to Smurfl to form an E3 ubiquitin ligase that targets the TGF beta receptor for degradation. Mol Cell,2000.6(6):p.1365-75.
    25. Massague, J., J. Seoane, and D. Wotton, Smad transcription factors. Genes Dev,2005.19(23): p.2783-810.
    26. Kang, J.S., C. Liu, and R. Derynck, New regulatory mechanisms of TGF-beta receptor function. Trends Cell Biol,2009.19(8):p.385-94.
    27. Varshavsky, A., The ubiquitin system. Trends Biochem Sci,1997.22(10):p.383-7.
    28. Brown, M.S., et al., Regulated intramembrane proteolysis:a control mechanism conserved from bacteria to humans. Cell,2000.100(4):p.391-8.
    29. Pickart, C.M., Back to the future with ubiquitin. Cell,2004.116(2):p.181-90.
    30. Pickart, C.M., Mechanisms underlying ubiquitination. Annu Rev Biochem,2001.70:p. 503-33.
    31. Ogunjimi, A.A., et al., Regulation of Smurf2 ubiquitin ligase activity by anchoring the E2 to the HECT domain. Mol Cell,2005.19(3):p.297-308.
    32. Yamashita, M., et al., Ubiquitin ligase Smurfl controls osteoblast activity and bone homeostasis by targeting MEKK2 for degradation. Cell,2005.121(1):p.101-13.
    33. Yamaguchi, T., et al., FKBP12 functions as an adaptor of the Smad7-Smurfl complex on activin type 1 receptor. J Mol Endocrinol,2006.36(3):p.569-79.
    34. Kowanetz, M., et al., TGFbeta induces SIK to negatively regulate type I receptor kinase signaling. J Cell Biol,2008.182(4):p.655-62.
    35. Batut, J., et al., Two highly related regulatory subunits of PP2A exert opposite effects on TGF-beta/Activin/Nodal signalling. Development,2008.135(17):p.2927-37.
    36. Shi, W., et al., GADD34-PP1c recruited by Smad7 dephosphorylates TGFbeta type I receptor. J Cell Biol,2004.164(2):p.291-300.
    37. Valdimarsdottir, G., et al., Smad7 and protein phosphatase 1 alpha are critical determinants in the duration of TGF-beta/ALK1 signaling in endothelial cells. BMC Cell Biol,2006.7:p.16.
    38. Matsuura, I., et al., Cyclin-dependent kinases regulate the antiproliferative function ofSmads. Nature,2004.430(6996):p.226-31.
    39. Alarcon, C., et al., Nuclear CDKs drive Smad transcriptional activation and turnover in BMP and TGF-beta pathways. Cell,2009.139(4):p.757-69.
    40. Wicks, S.J., et al., Inactivation of smad-transforming growth factor beta signaling by Ca(2+)-calmodulin-dependent protein kinase II. Mol Cell Biol,2000.20(21):p.8103-11.
    41. Yakymovych, I., et al., Regulation of Smad signaling by protein kinase C. FASEB J,2001. 15(3):p.553-5.
    42. Lin, X., et al., PPM1A functions as a Smad phosphatase to terminate TGFbeta signaling. Cell, 2006.125(5):p.915-28.
    43. Bu, S., et al., Opposite effects of dihydrosphingosine 1-phosphate and sphingosine 1-phosphate on transforming growth factor-beta/Smad signaling are mediated through the
    45. Duan, X., et al., Protein serine/threonine phosphatase PPM1A dephosphorylates Smadl in the bone morphogenetic protein signaling pathway. J Biol Chem,2006.281(48):p.36526-32.
    46. Knockaert, M., et al., Unique players in the BMP pathway:small C-terminal domain phosphatases dephosphorylate Smadl to attenuate BMP signaling. Proc Natl Acad Sci U S A, 2006.103(32):p.11940-5.
    47. Chen, H.B., et al., Identification of phosphatases for Smad in the BMP/DPP pathway. Genes Dev,2006.20(6):p.648-53.
    48. Zhang, Y., et al., Regulation of Smad degradation and activity by Smurf2, an E3 ubiquitin ligase. Proc Natl Acad Sci U S A,2001.98(3):p.974-9.
    49. Zhu, H., et al., A SMAD ubiquitin ligase targets the BMP pathway and affects embryonic pattern formation. Nature,1999.400(6745):p.687-93.
    50. Gao, S., et al., Ubiquitin ligase Nedd4L targets activated Smad2/3 to limit TGF-beta signaling. Mol Cell,2009.36(3):p.457-68.
    51. Xu, J. and L. Attisano, Mutations in the tumor suppressors Smad2 and Smad4 inactivate transforming growth factor beta signaling by targeting Smads to the ubiquitin-proteasome pathway. Proc Natl Acad Sci U S A,2000.97(9):p.4820-5.
    52. Dupont, S., et al., FAM/USP9x, a deubiquitinating enzyme essential for TGFbeta signaling, controls Smad4 monoubiquitination. Cell,2009.136(1):p.123-35.
    53. Gomis, R.R., et al., C/EBPbeta at the core of the TGFbeta cytostatic response and its evasion in metastatic breast cancer cells. Cancer Cell,2006.10(3):p.203-14.
    54. Wu, J.W., et al., Structural mechanism of Smad4 recognition by the nuclear oncoprotein Ski: insights on Ski-mediated repression of TGF-beta signaling. Cell,2002.111(3):p.357-67.
    55. Cohen, S.B., et al., Heterodimers of the SnoN and Ski oncoproteins form preferentially over homodimers and are more potent transforming agents. Nucleic Acids Res,1999.27(4):p. 1006-14.
    56. Heyman, H.C. and E. Stavnezer. A carboxyl-terminal region of the ski oncoprotein mediates homodimerization as well as heterodimerization with the related protein SnoN. J Biol Chem, 1994.269(43):p.26996-7003.
    57. Deheuninck, J. and K. Luo, Ski and SnoN, potent negative regulators of TGF-beta signaling. Cell Res,2009.19(1):p.47-57.
    58. Luo, K., Ski and SnoN:negative regulators of TGF-beta signaling. Curr Opin Genet Dev,2004. 14(1):p.65-70.
    59. Stroschein, S.L., et al., Negative feedback regulation of TGF-beta signaling by the SnoN oncoprotein. Science.1999.286(5440):p.771-4.
    60. Akiyoshi, S., et al., c-Ski acts as a transcriptional co-repressor in transforming growth factor-beta signaling through interaction with smads. J Biol Chem,1999.274(49):p. 35269-77.
    61. Luo, K., et al., The Ski oncoprotein interacts with the Smad proteins to repress TGFbeta signaling. Genes Dev,1999.13(17):p.2196-206.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700