随机重组多表位恶性疟疾疫苗M.RCAg-1的制备及免疫保护性差异的机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
蚊媒传播的疟疾是全球最严重的三大传染病之一。目前,全球约40%的世界人口处于罹患疟疾的危险之中,而每年有5亿人受到疟原虫感染,约100万人死于恶性疟疾,其中大部分是五岁以下的儿童和孕妇。由于恶性疟原虫对现有药物的抗药性不断出现和蔓延,蚊媒对杀虫剂抗药性的产生等因素影响,疟疾的防治成为世界性的难题之一。疟原虫生活周期复杂,抗原具有阶段特异性、虫株差异性和高度变异性等特点,长期以来形成研制抗疟原虫疫苗的技术瓶颈。因此,针对恶性疟原虫不同生活时期的免疫反应特点,选取诱导产生多种免疫反应类型的不同抗原构建多表位疫苗已经成为研究疟疾疫苗的热点。
     在本课题组前期工作中,针对参与抗疟原虫红内期感染的免疫类型,选择了来自8个恶性疟原虫抗原的11个B细胞和Th细胞表位,利用epitope shuffling (表位改组)技术成功构建了随机组合多表位恶性疟疾疫苗M. RCAg-1。通过在BALB/c小鼠、新西兰兔、恒河猴的免疫原性和体内外保护性实验观察,证实其具有良好的免疫原性和免疫保护效果,是一个极具潜力的疟疾候选疫苗。
     本研究首先按照国家生物制品研制标准,筛选出表达多表位疫苗M. RCAg-1重组蛋白的工程菌,建立了高效表达蛋白的纯化工艺,评价了三种已用于人临床试验的佐剂与M. RCAg-1抗原配伍后,对小鼠和新西兰白兔体液免疫反应,CD4+T细胞反应及免疫兔血清抗体在体外对恶性疟原虫生长影响的作用。并且针对不同载体表达的M. RCAg-1重组蛋白在免疫动物后,其兔免疫血清在体外对恶性疟原虫生长的不同抑制作用,深入分析了其可能的原因,取得了以下结果:
     1.经pDS-ex-EKase载体系统表达的重组抗原蛋白的免疫原性和免疫保护性最好,因此确定将BL21(DE3)-M. RCAg-1/pDS-ex-EKase蛋白表达菌株作为工程菌株,并且确定了M. RCAg-1蛋白最佳的表达、纯化方式,能够获得稳定的纯度大于97%的重组蛋白,提供进一步的疫苗相关临床前评价实验使用;
     2.分别在pDS-ex-EKase和pDS-ex-PPase载体系统,以及pBV220温控启动子系统中表达了三种M. RCAg-1重组蛋白,发现尽管这些蛋白的氨基酸序列基本相同,在动物模型体内的免疫原性相同,但是其体外免疫保护性却出现明显差异,其中通过pDS-ex-EKase载体系统制备的抗原,免疫新西兰兔后,血清抗体对恶性疟原虫的体外生长抑制率近100%,而通过其它两类载体系统制备的同一抗原,其兔血清抗体对恶性疟原虫的抑制率下降至50%或以下;
     3.利用生物信息学和色谱技术分析,发现从不同表达载体制备的重组蛋白在二级和三级结构上出现极大差异,证明蛋白质分子的空间构象发生了改变,而且一些表位在分子中的位置也有明显的改变;
     4.经全面测定包含在三个基本相同序列抗原分子中的每个表位肽所诱导产生的抗体滴度,经统计学相关性方法分析,证明在针对体液免疫反应和辅助性T细胞免疫反应的多表位人工抗原中,影响抗原免疫保护性的关键因素是诱导产生高滴度抗体反应的表位百分率和平均抗体滴度;
     本研究确定了制备和纯化M. RCAg-1的稳定高效的原核表达系统,并摸索出符合国家生物制品审批管理规范,能满足工业化生产规模的中试制备条件。通过构建不同表达系统,发现蛋白质分子的空间构象对人工多表位抗原的免疫保护效应至关重要,影响其空间构象的因素不仅涉及读码框架内的肽链序列,还涉及表达载体与插入片段间结合部位的肽段序列,它们都能通过影响人工抗原分子的蛋白折叠形式,从而改变肽链中α-螺旋的数量、表位在分子中的位置和蛋白质分子的稳定性。本文还证实,在针对体液免疫反应和辅助性T细胞免疫反应的多表位人工抗原中,影响抗原免疫保护性的关键因素是诱导产生高抗体水平的表位百分率和平均抗体滴度。这些实验结果对设计出新一代更优化的红细胞内期多表位疟疾疫苗具有重要的指导意义。
Malaria is one of the most infectious diseases to human health in the world. There are an estimated 500 million cases and up to 1 million deaths from malaria each year,which mainly are under 5 years of age and pregnant women. The emergence and spread of drug-resistant parasites and insecticide-resistant Anopheles mosquito vectors make prevention and treatment of malaria a big problem in the world. Plasmodium's complex life cycles, antigenic stage-specificity, diversity and variation, have been the unique obstacles to develop antimalarial vaccines for a long time. Thus, the development of a multiple antigens and epitopes vaccine against Plasmodium falciparum to elicit relative immune responses at different stages has become a major hotspot in the development of malaria vaccines.
     In the previous work, we have successfully constructed polyepitope Plasmodium falciparum malaria vaccines M.RCAg-1 by random tandem with epitope shuffling technology platform,11 B cell and Th cell epitopes seclected from 8 Plasmodium falciparum antigens as the study subject according to immune type involved in blood-stage infection against Plasmodium. At present, the experiments of immunogenicity and protection in vitro and vivo in immunized mice, rabbits and rhesus monkeys have been observed, which confirmed its good immunogenicity and protective effect in vivo, and the vaccine is an potential malaria candidate vaccine.
     Based on the national standard of biological products, the present work study on the screen of engineering bacteria expressing polyeitope vaccine M.RCAg-1 recombination protein, the establishment of the technique for highly effective protein expression and purification, the evaluation of the effect of three adjuvants acceptable in human clinical experiment formulation with purified M.RCAg-1 protein on the humoral immune response and CD4+ T cell response of inbred strain mice and New Zealand white rabbits, and the effect of antibody on Plasmodium falciparum growth in vitro. The potential reason of different inhibition effect of recombinant protein expressing in different victors immune rabbits sera on Plasmodium falciparum growth in vitro were also analyzed. The results are as follows:
     1. the imunogenicity and protection of recombinant antigen protein through pDS-ex-Ekase system expression is best, therefore, the bacterial strain of BL21 (DE3)-M.RCAg-1/pDS-ex-Ekase protein expression is determined as engineering bacterial strain. Also the optimal pattern of the expression and purification of M.RCAg-1 protein is determined. The recombinant protein could be obtained stably and over 97% purity which could the need of following experiment of vaccine related preclinical evaluation;
     2. Three kind of recombinant proteins were expressed in pDS-ex-Ekase and pDS-ex-PPase carrier system and pBV220 temperature controlling promoter system, the three proteins have almost the same amino acid sequence, the same immunogenicity in animal models, however, the obviously different immunoprotections. When New Zealand white rabbit immunized by antigen of pDS-ex-Ekase carrier system, the sera antibody inhibited the growth of Plasmodium falciparum in vitro almost 100%, However below 50% when immunized by antigens of the other two carrier systems.
     3. The significant differences of secondary and tertiary structures were shown in recombinant proteins from different expression vectors, analyzed by bioinformatics and chromatographic technique, which demonstrated the change of protein molecule spaces conformation, and the obviously change of some epitope locations.
     4. The statistics analysis of antibody titer induced by every epitope peptid which was contained in three antigens with almost the same sequences showed the key factors of antigen immunoprotection in Humoral immune reaction and adjuvanticity T cell immune reaction. The key factors were epitope percentage and average antibody titer.
     The present study determined the stable and highly effective preparation and purification of M.RCAg-1 in prokaryotic expression systems, and explored the condition of semi-works production according to national biological product examination and management standard which can meet industrialization production. The study of construction in different expression systems showed the space conformation of protein molecule is crucial to immunoprotection effect of artificial polyepitope antigen. Factors influencing space conformation involved not only the peptide sequence of reading frame but also the peptide sequence in binding site between expression carrier and insertion element, these factors changed the amount ofα-helix in peptide, the epitope location in molecule, and the protein stability by influence of protein fold style in artificial antigen. The present study also demonstrated, to polyepitope artificial antigen which induced humoral immune reaction and adjuvanticity T cell immune reaction, the key factors influencing antigen immunoprotection were epitope percentage and average antibody titer which induced highly antibody level. The results could be important to the design of new and optimal erythrocytic stage polyepitope malaria vaccine.
引文
1. WHO, malaria.2007. http://www.who.int/mediacentre/factsheets/fs094/en/.
    2. Gupta, S., et al., Immunity to non-cerebral severe malaria is acquired after one or two infections. Nat Med,1999.5(3):p.340-3.
    3. Raghunath, D., Malaria vaccine:are we anywhere close? J Postgrad Med,2004.50(1):p.51-4.
    4. Webster, D. and A.V. Hill, Progress with new malaria vaccines. Bull World Health Organ,2003. 81(12):p.902-9.
    5. Rieckmann, K.H., et al., Use of attenuated sporozoites in the immunization of human volunteers against falciparum malaria. Bull World Health Organ,1979.57 Suppl 1:p.261-5.
    6. Alonso, P.L., et al., Efficacy of the RTS.S/AS02A vaccine against Plasmodium falciparum infection and disease in young African children:randomised controlled trial. Lancet,2004.364(9443):p. 1411-20.
    7. Alonso, P.L., et al., Randomised trial of efficacy of SPf66 vaccine against Plasmodium falciparum malaria in children in southern Tanzania. Lancet,1994.344(8931):p.1175-81.
    8. Waters, A., Malaria:new vaccines for old? Cell,2006.124(4):p.689-93.
    9. Richie, T.L. and A. Saul, Progress and challenges for malaria vaccines. Nature,2002.415(6872):p. 694-701.
    10. Patarroyo, M.E., et al., Induction of protective immunity against experimental infection with malaria using synthetic peptides. Nature,1987.328(6131):p.629-32.
    11. Patarroyo, M.E., et al., A synthetic vaccine protects humans against challenge with asexual blood stages of Plasmodium falciparum malaria. Nature,1988.332(6160):p.158-61.
    12. Urdaneta, M., et al., Evaluation of SPf66 malaria vaccine efficacy in Brazil. Am J Trop Med Hyg, 1998.58(3):p.378-85.
    13. D'Alessandro, U., et al., Efficacy trial of malaria vaccine SPf66 in Gambian infants. Lancet,1995. 346(8973):p.462-7.
    14. Acosta, C.J., et al., Evaluation of the SPf66 vaccine for malaria control when delivered through the EPI scheme in Tanzania. Trop Med Int Health,1999.4(5):p.368-76.
    15. Nosten, F., et al., Randomised double-blind placebo-controlled trial of SPf66 malaria vaccine in children in northwestern Thailand. Shoklo SPf66 Malaria Vaccine Trial Group. Lancet,1996. 348(9029):p.701-7.
    16. Ockenhouse, C.F., et al., Phase Ⅰ/Ⅱa safety, immunogenicity, and efficacy trial of NYVAC-Pf7, a pox-vectored, multiantigen, multistage vaccine candidate for Plasmodium falciparum malaria. J Infect Dis,1998.177(6):p.1664-73.
    17. Shi, Y.P., et al., Development, expression, and murine testing of a multistage Plasmodium falciparum malaria vaccine candidate. Vaccine,2000.18(25):p.2902-14.
    18. Genton, B., et al., A recombinant blood-stage malaria vaccine reduces Plasmodium falciparum density and exerts selective pressure on parasite populations in a phase I-2b trial in Papua New Guinea. J Infect Dis,2002.185(6):p.820-7.
    19. Fluck, C., et al., Effect of the malaria vaccine Combination B on merozoite surface antigen 2 diversity. Infect Genet Evol,2007.7(1):p.44-51.
    20. Cai, Q.L., et al., Immunogenicity of polyepitope libraries assembled by epitope shuffling:an approach to the development of chimeric gene vaccination against malaria. Vaccine,2004.23(2):p. 267-77.
    21. Cai, Q., et al., Immunogenicity and in vitro protective efficacy of a polyepitope Plasmodium falciparum candidate vaccine constructed by epitope shuffling. Vaccine,2007.25(28):p.5155-65.
    1. Zhou, Z., et al., Development, characterization and immunogenicity of a multi-stage, multi-valent Plasmodium falciparum vaccine antigen (FALVAC-IA) expressed in Escherichia coli. Hum Vaccin, 2006.2(1):p.14-23.
    2. Dipti, C.A., S.K. Jain, and K. Navin, A novel recombinant multiepitope protein as a hepatitis C diagnostic intermediate of high sensitivity and specificity. Protein Expr Purif,2006.47(1):p. 319-28.
    3. Rafi-Janajreh, A., et al., Influence of adjuvants in inducing immune responses to different epitopes included in a multiepitope, multivalent, multistage Plasmodium falciparum candidate vaccine (FALVAC-1) in outbred mice. Exp Parasitol,2002.101(1):p.3-12.
    4. Haynes, B.F., et al., HIV type I V3 region primer-induced antibody suppression is overcome by administration of C4-V3 peptides as a polyvalent immunogen. AIDS Res Hum Retroviruses,1995. 11(2):p.211-21.
    5. Cox, J.H., et al., Orientation of epitopes influences the immunogenicity of synthetic peptide dimers. Eur J Immunol,1988.18(12):p.2015-9.
    6. Celada, F. and E.E. Sercarz, Preferential pairing of T-B specificities in the same antigen:the concept of directional help. Vaccine,1988.6(2):p.94-8.
    7. Kironde, F.A., et al., Towards the design of heterovalent anti-malaria vaccines:a hybrid immunogen capable of eliciting immune responses to epitopes of circumsporozoite antigens from two different species of the malaria parasite, Plasmodium. Immunology,1991.74(2):p.323-8.
    8. Levely, M.E., M.A. Mitchell, and J.A. Nicholas, Synthetic immunogens constructed from T-cell and B-cell stimulating peptides (T:B chimeras):preferential stimulation of unique T-and B-cell specificities is influenced by immunogen configuration. Cell Immunol,1990.125(1):p.65-78.
    9. Jiang, Y., et al., Effects of the configuration of a multi-epitope chimeric malaria DNA vaccine on its antigenicity to mice. Chin Med J (Engl),1999.112(8):p.686-90.
    10. Thomson, S.A., et al., Minimal epitopes expressed in a recombinant polyepitope protein are processed and presented to CD8+ cytotoxic T cells:implications for vaccine design. Proc Natl Acad Sci U S A,1995.92(13):p.5845-9.
    11. Theisen, D.M., et al., Differential antigenicity of recombinant polyepitope-antigens based on loop-and helix-forming B and T cell epitopes. J Immunol Methods,2000.242(1-2):p.145-57.
    12. Stevenson, M.M., et al., Modulation of host responses to blood-stage malaria by interleukin-12: from therapy to adjuvant activity. Microbes Infect,2001.3(1):p.49-59.
    13. Su, Z. and M.M. Stevenson, Central role of endogenous gamma interferon in protective immunity against blood-stage Plasmodium chabaudi AS infection. Infect Immun,2000.68(8):p.4399-406.
    14. Su, Z. and M.M. Stevenson, IL-12 is required for antibody-mediated protective immunity against blood-stage Plasmodium chabaudi AS malaria infection in mice. J Immunol,2002.168(3):p. 1348-55.
    15. van der Heyde, H.C., et al., The time course of selected malarial infections in cytokine-deficient mice. Exp Parasitol,1997.85(2):p.206-13.
    16. Guy, B., The perfect mix:recent progress in adjuvant research. Nat Rev Microbiol,2007.5(7):p. 505-17.
    17. Kenter, G.G., et al., Phase I immunotherapeutic trial with long peptides spanning the E6 and E7 sequences of high-risk human papillomavirus 16 in end-stage cervical cancer patients shows low toxicity and robust immunogenicity. Clin Cancer Res,2008.14(1):p.169-77.
    18. Hu, J., et al., Safety and immunogenicity of a malaria vaccine, Plasmodium falciparum AMA-1/MSP-1 chimeric protein formulated in montanide ISA 720 in healthy adults. PLoS ONE, 2008.3(4):p. e1952.
    19. Osorio, M, et al., Heterophilic NeuGcGM3 ganglioside cancer vaccine in advanced melanoma patients:Results of a Phase Ⅰb/Ⅱa Study. Cancer Biol Ther,2007.7(4).
    20. Davies, G., Vaccine adjuvant formulation:a relatively neglected field that is crucial to vaccine success. Expert Rev Vaccines,2008.7(3):p.287-91.
    1. Smith, D.L., et al., The entomological inoculation rate and Plasmodium falciparum infection in African children. Nature,2005.438(7067):p.492-5.
    2. Greenwood, B.M., et al., Malaria. Lancet,2005.365(9469):p.1487-98.
    3. Idro, R., et al., Risk factors for persisting neurological and cognitive impairments following cerebral malaria. Arch Dis Child,2006.91(2):p.142-8.
    4. Rogerson, S.J., et al., Malaria in pregnancy:pathogenesis and immunity. Lancet Infect Dis,2007. 7(2):p.105-17.
    5. Van geertruyden, J.P. and U. D'Alessandro, Malaria and HIV:a silent alliance. Trends Parasitol, 2007.23(10):p.465-7.
    6. Webster, D. and A.V. Hill, Progress with new malaria vaccines. Bull World Health Organ,2003. 81(12):p.902-9.
    7. Raghunath, D., Malaria vaccine:are we anywhere close? J Postgrad Med,2004.50(1):p.51-4.
    8. Rieckmann, K.H., et al., Use of attenuated sporozoites in the immunization of human volunteers against falciparum malaria. Bull World Health Organ,1979.57 Suppl 1:p.261-5.
    9. Alonso, P.L., et al., Efficacy of the RTS,S/AS02A vaccine against Plasmodium falciparum infection and disease in young African children:randomised controlled trial. Lancet,2004.364(9443):p. 1411-20.
    10. Daily, J.P., et al., Distinct physiological states of Plasmodium falciparum in malaria-infected patients. Nature,2007.450(7172):p.1091-5.
    11. Volkman, S.K., et al., A genome-wide map of diversity in Plasmodium falciparum. Nat Genet,2007. 39(1):p.113-9.
    12. Hoffman, S.L., et al., Immunity to malaria and naturally acquired antibodies to the circumsporozoite protein of Plasmodium falciparum. N Engl J Med,1986.315(10):p.601-6.
    13. Plebanski, M., et al., Precursor frequency analysis of cytotoxic T lymphocytes to pre-erythrocytic antigens of Plasmodium falciparum in West Africa. J Immunol,1997.158(6):p.2849-55.
    14. Kumar, K.A., et al., The circumsporozoite protein is an immunodominant protective antigen in irradiated sporozoites. Nature,2006.444(7121):p.937-40.
    15. Good, M.F., Vaccine-induced immunity to malaria parasites and the need for novel strategies. Trends Parasitol,2005.21(1):p.29-34.
    16. Blackman, M.J., et al., Antibodies inhibit the protease-mediated processing of a malaria merozoite surface protein. J Exp Med,1994.180(1):p.389-93.
    17. Carter, R. and D.H. Chen, Malaria transmission blocked by immunisation with gametes of the malaria parasite. Nature,1976.263(5572):p.57-60.
    18. Carter, R., Transmission blocking malaria vaccines. Vaccine,2001.19(17-19):p.2309-14.
    19. Bouharoun-Tayoun, H., et al., Antibodies that protect humans against Plasmodium falciparum blood stages do not on their own inhibit parasite growth and invasion in vitro, but act in cooperation with monocytes. J Exp Med,1990.172(6):p.1633-41.
    20. Haynes, J.D., J.K. Moch, and D.S. Smoot, Erythrocytic malaria growth or invasion inhibition assays with emphasis on suspension culture GIA. Methods Mol Med,2002.72:p.535-54.
    21. Giersing, B.K., et al., Potency assay design for adjuvanted recombinant proteins as malaria vaccines. Vaccine,2006.24(20):p.4264-70.
    22. WHO/TDR, Handbook of Good Laboratory Practice Geneva,2001.243.
    23. Bejon, P., et al., Calculation of liver-to-blood inocula, parasite growth rates, and preerythrocytic vaccine efficacy, from serial quantitative polymerase chain reaction studies of volunteers challenged with malaria sporozoites. J Infect Dis,2005.191(4):p.619-26.
    24. Alonso, P.L., et al., Duration of protection with RTS,S/AS02A malaria vaccine in prevention of Plasmodium falciparum disease in Mozambican children:single-blind extended follow-up of a randomised controlled trial. Lancet,2005.366(9502):p.2012-8.
    25. Kumar, K.A., et al., Quantitative Plasmodium sporozoite neutralization assay (TSNA). J Immunol Methods,2004.292(1-2):p.157-64.
    26. Kappe, S.H., C.A. Buscaglia, and V. Nussenzweig, Plasmodium sporozoite molecular cell biology. Annu Rev Cell Dev Biol,2004.20:p.29-59.
    27. Dame, J.B., et al., Structure of the gene encoding the immunodominant surface antigen on the sporozoite of the human malaria parasite Plasmodium falciparum. Science,1984.225(4662):p. 593-9.
    28. Singh, A.P., et al., Plasmodium circumsporozoite protein promotes the development of the liver stages of the parasite. Cell,2007.131(3):p.492-504.
    29. Ballou, W.R., et al., Safety and efficacy of a recombinant DNA Plasmodium falciparum sporozoite vaccine. Lancet,1987.1(8545):p.1277-81.
    30. Brown, A.E., et al., Safety, immunogenicity and limited efficacy study of a recombinant Plasmodium falciparum circumsporozoite vaccine in Thai soldiers. Vaccine,1994.12(2):p.102-8.
    31. Stewart, V.A., et al., Pre-clinical evaluation of new adjuvant formulations to improve the immunogenicity of the malaria vaccine RTS,S/AS02A. Vaccine,2006.24(42-43):p.6483-92.
    32. Stoute, J.A., et al., A preliminary evaluation of a recombinant circumsporozoite protein vaccine against Plasmodium falciparum malaria. RTS,S Malaria Vaccine Evaluation Group. N Engl J Med, 1997.336(2):p.86-91.
    33. Kester, K.E., et al., Efficacy of recombinant circumsporozoite protein vaccine regimens against experimental Plasmodium falciparum malaria. J Infect Dis,2001.183(4):p.640-7.
    34. Bojang, K.A., et al., Efficacy of RTS,S/AS02 malaria vaccine against Plasmodium falciparum infection in semi-immune adult men in The Gambia:a randomised trial. Lancet,2001.358(9297):p. 1927-34.
    35. Enosse, S., et al., RTS,S/AS02A malaria vaccine does not induce parasite CSP T cell epitope selection and reduces multiplicity of infection. PLoS Clin Trials,2006.1(1):p. e5.
    36. Alloueche, A., et al., Protective efficacy of the RTS.S/AS02 Plasmodium falciparum malaria vaccine is not strain specific. Am J Trop Med Hyg,2003.68(1):p.97-101.
    37. Webster, D.P., et al., Enhanced T cell-mediated protection against malaria in human challenges by using the recombinant poxviruses FP9 and modified vaccinia virus Ankara. Proc Natl Acad Sci U S A,2005.102(13):p.4836-41.
    38. Moorthy, V.S., et al., A randomised, double-blind, controlled vaccine efficacy trial of DNA/MVA ME-TRAP against malaria infection in Gambian adults. PLoS Med,2004.1(2):p. e33.
    39. Bejon, P., et al., A phase 2b randomised trial of the candidate malaria vaccines FP9 ME-TRAP and MVA ME-TRAP among children in Kenya. PLoS Clin Trials,2006.1(6):p. e29.
    40. Bejon, P., et al., Extended follow-up following a phase 2b randomized trial of the candidate malaria vaccines FP9 ME-TRAP and MVA ME-TRAP among children in Kenya. PLoS ONE,2007.2(1):p. e707.
    41. Bruna-Romero, O., et al., Complete, long-lasting protection against malaria of mice primed and boosted with two distinct viral vectors expressing the same plasmodial antigen. Proc Natl Acad Sci U S A,2001.98(20):p.11491-6.
    42. Stewart, V.A., et al., Priming with an adenovirus 35-circumsporozoite protein (CS) vaccine followed by RTS,S/AS01B boosting significantly improves immunogenicity to Plasmodium falciparum CS compared to that with either malaria vaccine alone. Infect Immun,2007.75(5):p.2283-90.
    43. Ophorst, O.J., et al., Increased immunogenicity of recombinant Ad35-based malaria vaccine through formulation with aluminium phosphate adjuvant. Vaccine,2007.25(35):p.6501-10.
    44. John, C.C., et al., Correlation of high levels of antibodies to multiple pre-erythrocytic Plasmodium falciparum antigens and protection from infection. Am J Trop Med Hyg,2005.73(1):p.222-8.
    45. Hillier, C.J., et al., Process development and analysis of liver-stage antigen 1, a preerythrocyte-stage protein-based vaccine for Plasmodium falciparum. Infect Immun,2005.73(4):p.2109-15.
    46. Epstein, J.E., et al., Malaria vaccines:are we getting closer? Curr Opin Mol Ther,2007.9(1):p. 12-24.
    47. Daubersies, P., et al., Protection against Plasmodium falciparum malaria in chimpanzees by immunization with the conserved pre-erythrocytic liver-stage antigen 3. Nat Med,2000.6(11):p. 1258-63.
    48. Perlaza, B.L., et al., Long synthetic peptides encompassing the Plasmodium falciparum LSA3 are the target of human B and T cells and are potent inducers of B helper, T helper and cytolytic T cell responses in mice. Eur J Immunol,2001.31(7):p.2200-9.
    49. Wang, R., et al., Induction of antigen-specific cytotoxic T lymphocytes in humans by a malaria DNA vaccine. Science,1998.282(5388):p.476-80.
    50. Wang, R., et al., Induction of CD4(+) T cell-dependent CD8(+) type 1 responses in humans by a malaria DNA vaccine. Proc Natl Acad Sci U S A,2001.98(19):p.10817-22.
    51. Wang, R., et al., Induction in humans of CD8+ and CD4+ T cell and antibody responses by sequential immunization with malaria DNA and recombinant protein. J Immunol,2004.172(9):p. 5561-9.
    52. Gupta, S., et al., Immunity to non-cerebral severe malaria is acquired after one or two infections. Nat Med,1999.5(3):p.340-3.
    53. Blackman, M.J., et al., A single fragment of a malaria merozoite surface protein remains on the parasite during red cell invasion and is the target of invasion-inhibiting antibodies. J Exp Med, 1990.172(1):p.379-82.
    54. Quin, S.J., et al., Low CD4(+) T cell responses to the C-terminal region of the malaria merozoite surface protein-1 may be attributed to processing within distinct MHC class Ⅱ pathways. Eur J Immunol,2001.31(1):p.72-81.
    55. Branch, O.H., et al., A longitudinal investigation of IgG and IgM antibody responses to the merozoite surface protein-119-kiloDalton domain of Plasmodium falciparum in pregnant women and infants:associations with febrile illness, parasitemia, and anemia. Am J Trop Med Hyg,1998. 58(2):p.211-9.
    56. John, C.C., et al., Evidence that invasion-inhibitory antibodies specific for the 19-kDa fragment of merozoite surface protein-] (MSP-119) can play a protective role against blood-stage Plasmodium falciparum infection in individuals in a malaria endemic area of Africa. J Immunol,2004.173(1):p. 666-72.
    57. Guevara Patino, J.A., et al., Antibodies that inhibit malaria merozoite surface protein-1 processing and erythrocyte invasion are blocked by naturally acquired human antibodies. J Exp Med,1997. 186(10):p.1689-99.
    58. Ockenhouse, C.F., et al., Phase I safety and immunogenicity trial of FMP1/AS02A, a Plasmodium falciparum MSP-1 asexual blood stage vaccine. Vaccine,2006.24(15):p.3009-17.
    59. Stoute, J.A., et al., Phase 1 randomized double-blind safety and immunogenicity trial of Plasmodium falciparum malaria merozoite surface protein FMP1 vaccine, adjuvanted with AS02A, in adults in western Kenya. Vaccine,2007.25(1):p.176-84.
    60. Thera, M.A., et al., Safety and allele-specific immunogenicity of a malaria vaccine in Malian adults: results of a phase I randomized trial. PLoS Clin Trials,2006.1(7):p. e34.
    61. Withers, M.R., et al., Safety and reactogenicity of an MSP-1 malaria vaccine candidate:a randomized phase Ib dose-escalation trial in Kenyan children. PLoS Clin Trials,2006.1(7):p. e32.
    62. Bouharoun-Tayoun, H., et al., Mechanisms underlying the monocyte-mediated antibody-dependent killing of Plasmodium falciparum asexual blood stages. J Exp Med,1995.182(2):p.409-18.
    63. Oeuvray, C., et al., Merozoite surface protein-3:a malaria protein inducing antibodies that promote Plasmodium falciparum killing by cooperation with blood monocytes. Blood,1994.84(5):p. 1594-602.
    64. Badell, E., et al., Human malaria in immunocompromised mice:an in vivo model to study defense mechanisms against Plasmodium falciparum. J Exp Med,2000.192(11):p.1653-60.
    65. Roussilhon, C., et al., Long-term clinical protection from falciparum malaria is strongly associated with IgG3 antibodies to merozoite surface protein 3. PLoS Med,2007.4(11):p. e320.
    66. Hisaeda, H., et al., Merozoite surface protein 3 and protection against malaria in Aotus nancymai monkeys. J Infect Dis,2002.185(5):p.657-64.
    67. Druilhe, P., et al., A malaria vaccine that elicits in humans antibodies able to kill Plasmodium falciparum. PLoS Med,2005.2(11):p. e344.
    68. Silvie, O., et al., A role for apical membrane antigen 1 during invasion of hepatocytes by Plasmodium falciparum sporozoites. J Biol Chem,2004.279(10):p.9490-6.
    69. Polley, S.D., et al., Human antibodies to recombinant protein constructs of Plasmodium falciparum Apical Membrane Antigen 1 (AMA1) and their associations with protection from malaria. Vaccine, 2004.23(5):p.718-28.
    70. Dutta, S., et al., Mode of action of invasion-inhibitory antibodies directed against apical membrane antigen 1 of Plasmodium falciparum. Infect Immun,2005.73(4):p.2116-22.
    71. Pizarro, J.C., et al., Crystal structure of the malaria vaccine candidate apical membrane antigen 1. Science,2005.308(5720):p.408-11.
    72. Bai, T., et al., Structure of AMA1 from Plasmodium falciparum reveals a clustering of polymorphisms that surround a conserved hydrophobic pocket. Proc Natl Acad Sci U S A,2005. 102(36):p.12736-41.
    73. Lalitha, P.V., et al., Production of the subdomains of the Plasmodium falciparum apical membrane antigen 1 ectodomain and analysis of the immune response. Infect Immun,2004.72(8):p.4464-70.
    74. Stowers, A.W., et al., Vaccination of monkeys with recombinant Plasmodium falciparum apical membrane antigen 1 confers protection against blood-stage malaria. Infect Immun,2002.70(12):p. 6961-7.
    75. Malkin, E.M., et al., Phase 1 clinical trial of apical membrane antigen 1:an asexual blood-stage vaccine for Plasmodium falciparum malaria. Infect Immun,2005.73(6):p.3677-85.
    76. Mullen, G.E., et al., Enhancement of functional antibody responses to AMA1-C1/Alhydrogel, a Plasmodium falciparum malaria vaccine, with CpG oligodeoxynucleotide. Vaccine,2006.24(14):p. 2497-505.
    77. Kocken, C.H., et al., High-level expression of the malaria blood-stage vaccine candidate Plasmodium falciparum apical membrane antigen 1 and induction of antibodies that inhibit erythrocyte invasion. Infect Immun,2002.70(8):p.4471-6.
    78. Pang, X.L., T. Mitamura, and T. Horii, Antibodies reactive with the N-terminal domain of Plasmodium falciparum serine repeat antigen inhibit cell proliferation by agglutinating merozoites andschizonts. Infect Immun,1999.67(4):p.1821-7.
    79. Soe, S., et al., Plasmodium falciparum serine repeat protein, a new target of monocyte-dependent antibody-mediated parasite killing. Infect Immun,2002.70(12):p.7182-4.
    80. Mamillapalli, A., et al., Sequence polymorphisms in the receptor-binding domain of Plasmodium falciparum EBA-175:implications for malaria vaccine development. Mol Biochem Parasitol,2006. 146(1):p.120-3.
    81. Epstein, J.E., et al., Safety, tolerability, and antibody responses in humans after sequential immunization with a PfCSP DNA vaccine followed by the recombinant protein vaccine RTS,S/AS02A. Vaccine,2004.22(13-14):p.1592-603.
    82. Dunachie, S.J., et al., A clinical trial of prime-boost immunisation with the candidate malaria vaccines RTS,S/AS02A and MVA-CS. Vaccine,2006.24(15):p.2850-9.
    83. Heppner, D.G., Jr., et al., Towards an RTS,S-based, multi-stage, multi-antigen vaccine against falciparum malaria:progress at the Walter Reed Army Institute of Research. Vaccine,2005. 23(17-18):p.2243-50.
    84. Kammer, A.R., et al., A new and versatile virosomal antigen delivery system to induce cellular and humoral immune responses. Vaccine,2007.25(41):p.7065-74.
    85. Okitsu, S.L., et al., Structure-activity-based design of a synthetic malaria peptide eliciting sporozoite inhibitory antibodies in a virosomal formulation. Chem Biol,2007.14(5):p.577-87.
    86. Mueller, M.S., et al., Induction of parasite growth-inhibitory antibodies by a virosomal formulation of a peptidomimetic of loop Ⅰ from domain Ⅲ of Plasmodium falciparum apical membrane antigen I. Infect Immun,2003.71(8):p.4749-58.
    87. Genton, B., et al., A recombinant blood-stage malaria vaccine reduces Plasmodium falciparum density and exerts selective pressure on parasite populations in a phase 1-2b trial in Papua New Guinea. J Infect Dis,2002.185(6):p.820-7.
    88. Pan, W., et al., Fusion of two malaria vaccine candidate antigens enhances product yield, immunogenicity, and antibody-mediated inhibition of parasite growth in vitro. J Immunol,2004. 172(10):p.6167-74.
    89. Theisen, M., et al., A Plasmodium falciparum GLURP-MSP3 chimeric protein; expression in Lactococcus lactis, immunogenicity and induction of biologically active antibodies. Vaccine,2004. 22(9-10):p.1188-98.
    90. Hermsen, C.C., et al., Glutamate-rich protein (GLURP) induces antibodies that inhibit in vitro growth of Plasmodium falciparum in a phase 1 malaria vaccine trial. Vaccine,2007.25(15):p. 2930-40.
    91. Chen, Q., et al., Immunization with PfEMP1-DBLlalpha generates antibodies that disrupt rosettes and protect against the sequestration of Plasmodium falciparum-infected erythrocytes. Vaccine, 2004.22(21-22):p.2701-12.
    92. Graves, P.M., et al., High frequency of antibody response to Plasmodium falciparum gametocyte antigens during acute malaria infections in Papua New Guinea highlanders. Am J Trop Med Hyg, 1990.42(6):p.515-20.
    93. Malkin, E.M., et al., Phase I vaccine trial of Pvs25H:a transmission blocking vaccine for Plasmodium vivax malaria. Vaccine,2005.23(24):p.3131-8.
    94. Luke, T.C. and S.L. Hoffman, Rationale and plans for developing a non-replicating, metabolically active, radiation-attenuated Plasmodium falciparum sporozoite vaccine. J Exp Biol,2003.206(Pt 21):p.3803-8.
    95. Fraser, C.K., et al., Improving vaccines by incorporating immunological coadjuvants. Expert Rev Vaccines,2007.6(4):p.559-78.
    96. Mueller, A.K., et al., Genetically modified Plasmodium parasites as a protective experimental malaria vaccine. Nature,2005.433(7022):p.164-7.
    97. van Dijk, M.R., et al., Genetically attenuated, P36p-deficient malarial sporozoites induce protective immunity and apoptosis of infected liver cells. Proc Natl Acad Sci U S A,2005.102(34):p.12194-9.
    98. Mueller, A.K., et al., Plasmodium liver stage developmental arrest by depletion of a protein at the parasite-host interface. Proc Natl Acad Sci U S A,2005.102(8):p.3022-7.
    99. Davenport, M.P. and A.V. Hill, Reverse immunogenetics:from HLA-disease associations to vaccine candidates. Mol Med Today,1996.2(1):p.38-45.
    100. Dhiman, N., et al., Gene expression microarrays:a 21st century tool for directed vaccine design. Vaccine,2001.20(1-2):p.22-30.
    101. Rappuoli, R., Reverse vaccinology, a genome-based approach to vaccine development. Vaccine, 2001.19(17-19):p.2688-91.
    102. Carucci, D.J., Genomic tools for gene and protein discovery in malaria:toward new vaccines. Vaccine,2001.19(17-19):p.2315-8.
    103. Hayward, R.E., et al., Shotgun DNA microarrays and stage-specific gene expression in Plasmodium falciparum malaria. Mol Microbiol,2000.35(1):p.6-14.
    1. Jones, D.E., et al., Bacterial motif DNA as an adjuvant for the breakdown of immune self-tolerance to pyruvate dehydrogenase complex. Hepatology,2002.36(3):p.679-86.
    2. Smith, J.W., et al., Response to influenza vaccine in adjuvant 65-4. J Hyg (Lond),1975.74(2):p. 251-9.
    3. Weibel, R.E., et al., Ten-year follow-up study for safety of adjuvant 65 influenza vaccine in man. Proc Soc Exp Biol Med,1973.143(4):p.1053-6.
    4. Hilleman, M.R., et al., Studies for safety of adjuvant 65. Ann Allergy,1972.30(8):p.477-83.
    5. Kimura, J., et al., Studies on the adjuvant effect of water-in-oil-in-water (w/o/w) emulsion of sesame oil.1. Enhanced and persistent antibody formation by antigen incorporated into the water-in-oil-in-water emulsion. Jpn J Exp Med,1978.48(2):p.149-54.
    6. Woodard, L.F. and R.L. Jasman, Stable oil-in-water emulsions:preparation and use as vaccine vehicles for lipophilic adjuvants. Vaccine,1985.3(2):p.137-44.
    7. Jones, G.L., et al., Peptide vaccines derived from a malarial surface antigen:effects of dose and adjuvants on immunogenicity. Immunol Lett,1990.24(4):p.253-60.
    8. Allison, A.C. and N.E. Byars, Immunological adjuvants:desirable properties and side-effects. Mol Immunol,1991.28(3):p.279-84.
    9. Schirmbeck, R., et al., Antibody and cytotoxic T-cell responses to soluble hepatitis B virus (HBV) S antigen in mice:implication for the pathogenesis of HBV-induced hepatitis. J Virol,1994.68(3):p. 1418-25.
    10. Traquina, P., et al., MF59 adjuvant enhances the antibody response to recombinant hepatitis B surface antigen vaccine in primates. J Infect Dis,1996.174(6):p.1168-75.
    11. Brewer, J.M., et al., In interleukin-4-deficient mice, alum not only generates T helper 1 responses equivalent to freund's complete adjuvant, but continues to induce T helper 2 cytokine production. Eur J Immunol,1996.26(9):p.2062-6.
    12. Walls, R.S., Eosinophil response to alum adjuvants:involvement of T cells in non-antigen-dependent mechanisms. Proc Soc Exp Biol Med,1977.156(3):p.431-5.
    13. Gupta, R.K., et al., Adjuvant properties of aluminum and calcium compounds. Pharm Biotechnol, 1995.6:p.229-48.
    14. Butler, N.R., et al., Advantages of aluminium hydroxide adsorbed combined diphtheria, tetanus, and pertussis vaccines for the immunization of infants. Br Med J,1969.1(5645):p.663-6.
    15. Straw, B.E., et al., Comparison of tissue reactions produced by Haemophilus pleuropneumoniae vaccines made with six different adjuvants in swine. Can J Comp Med,1985.49(2):p.149-51.
    16. Audibert, F.M. and L.D. Lise, Adjuvants:current status, clinical perspectives and future prospects. Immunol Today,1993.14(6):p.281-4.
    17. Beran, J., [The importance of the second generation adjuvanted systems in "new" vaccines]. Klin Mikrobiol Infekc Lek,2008.14(1):p.5-12.
    18. Inamura, S., et al., Synthesis of peptidogly can fragments and evaluation of their biological activity. Org Biomol Chem,2006.4(2):p.232-42.
    19. Dinarello, C.A. and J.M. Krueger, Induction of interleukin 1 by synthetic and naturally occurring muramyl peptides. Fed Proc,1986.45(11):p.2545-8.
    20. Warren, H.S. and L.A. Chedid, Future prospects for vaccine adjuvants. Crit Rev Immunol,1988. 8(2):p.83-101.
    21. Langford, M.P., et al., Systemic and ocular antibody responses to inactivated acute hemorrhagic conjunctivitis (AHC) virus; enterovirus 70 (EV70). Ocul Immunol Inflamm,2003.11(3):p.197-209.
    22. Yoo, Y.C., et al., Adjuvant activity of muramyl dipeptide derivatives to enhance immunogenicity of a hantavirus-inactivated vaccine. Vaccine,1998.16(2-3):p.216-24.
    23. Koike, Y., et al., Enhancing activity of mycobacterial cell-derived adjuvants on immunogenicity of recombinant human hepatitis B virus vaccine. Vaccine,1998.16(20):p.1982-9.
    24. Kalyuzhin, O.V., A.E. Zemlyakov, and B.B. Fuchs, Distinctive immunomodulating properties and interactivity with model membranes and cells of two homologous muramyl dipeptide derivatives differing by their lipophilicity. Int J Immunopharmacol,1996.18(11):p.651-9.
    25. Parant, M.A., et al., Immunostimulant activities of a lipophilic muramyl dipeptide derivative and of desmuramyl peptidolipid analogs. Infect Immun,1980.27(3):p.826-31.
    26. Tomai, M.A. and A.G. Johnson, T cell and interferon-gamma involvement in the adjuvant action of a detoxified endotoxin. J Biol Response Mod,1989.8(6):p.625-43.
    27. Masihi, K.N., et al., Effects of muramyl dipeptide and trehalose dimycolate on resistance of mice to Toxoplasma gondii and Acanthamoeba culbertsoni infections. Int Arch Allergy Appl Immunol,1986. 81(2):p.112-7.
    28. Nishizawa, M., et al., Efficient syntheses of a series of trehalose dimycolate (TDM)/trehalose dicorynomycolate (TDCM) analogues and their interleukin-6 level enhancement activity in mice sera. J Org Chem,2007.72(5):p.1627-33.
    29. Cox, J. and A. Coulter, Prospects for the development of new vaccine adjuvants. BioDrugs,1999. 12(6):p.439-53.
    30. Myschik, J., et al., Immunostimulatory biodegradable implants containing the adjuvant Quil-A-Part II:In vivo evaluation. J Drug Target,2008.16(3):p.224-32.
    31. Tsybul'skii, A.V., et al., [Elaboration of new adjuvant lipid-saponin complex and its use at experimental immunization by bacterial antigen]. Biomed Khim,2007.53(3):p.297-306.
    32. Kensil, C.R., et al., Separation and characterization of saponins with adjuvant activity from Quillaja saponaria Molina cortex. J Immunol,1991.146(2):p.431-7.
    33. Takahashi, H., et al., Induction of CD8+ cytotoxic T cells by immunization with purified HIV-1 envelope protein in ISCOMs. Nature,1990.344(6269):p.873-5.
    34. Aguilar, J.C. and E.G. Rodriguez, Vaccine adjuvants revisited. Vaccine,2007.25(19):p.3752-62.
    35. Cooper, P.D. and E.J. Steele, Algammulin, a new vaccine adjuvant comprising gamma inulin particles containing alum:preparation and in vitro properties. Vaccine,1991.9(5):p.351-7.
    36. Cooper, P.D., C. McComb, and E.J. Steele, The adjuvanticity of Algammulin, a new vaccine adjuvant. Vaccine,1991.9(6):p.408-15.
    37. Cooper, P.D., R. Turner, and J. McGovern, Algammulin (gamma inulin/alum hybrid adjuvant) has greater adjuvanticity than alum for hepatitis B surface antigen in mice. Immunol Lett,1991.27(2): p.131-4.
    38. Silva, D.G., P.D. Cooper, and N. Petrovsky, Inulin-derived adjuvants efficiently promote both Thl and Th2 immune responses. Immunol Cell Biol,2004.82(6):p.611-6.
    39. Bramwell, V.W. and Y. Perrie, Particulate delivery systems for vaccines. Crit Rev Ther Drug Carrier Syst,2005.22(2):p.151-214.
    40. Allison, A.C. and G. Gregoriadis, Liposomes as immunological adjuvants. Recent Results Cancer Res,1976(56):p.58-64.
    41. Eldridge, J.H., et al., Biodegradable microspheres as a vaccine delivery system. Mol Immunol,1991. 28(3):p.287-94.
    42. Eldridge, J.H., et al., Biodegradable and biocompatible poly(DL-lactide-co-glycolide) microspheres as an adjuvant for staphylococcal enterotoxin B toxoid which enhances the level of toxin-neutralizing antibodies. Infect Immun,1991.59(9):p.2978-86.
    43. Singh, M., et al., Polylactide-co-glycolide microp articles with surface adsorbed antigens as vaccine delivery systems. Curr Drug Deliv,2006.3(1):p.115-20.
    44. Fifis, T., et al., Size-dependent immunogenicity:therapeutic and protective properties of nano-vaccines against tumors. J Immunol,2004.173(5):p.3148-54.
    45. Scheerlinck, J.P., et al., Systemic immune responses in sheep, induced by a novel nano-bead adjuvant. Vaccine,2006.24(8):p.1124-31.
    46. Cox, E., et al., Adjuvants modulating mucosal immune responses or directing systemic responses towards the mucosa. Vet Res,2006.37(3):p.511-39.
    47. Pearse, M.J. and D. Drane, ISCOMATRIX adjuvant for antigen delivery. Adv Drug Deliv Rev,2005. 57(3):p.465-74.
    48. Antonis, A.F., et al., A novel recombinant virus-like particle vaccine for prevention of porcine parvovirus-induced reproductive failure. Vaccine,2006.24(26):p.5481-90.
    49. Young, S.L., et al., Transcutaneous vaccination with virus-like particles. Vaccine,2006.24(26):p. 5406-12.
    50. Dell, K., et al., Intranasal immunization with human papillomavirus type 16 capsomeres in the presence of non-toxic cholera toxin-based adjuvants elicits increased vaginal immunoglobulin levels. Vaccine,2006.24(13):p.2238-47.
    51. Kuck, D., et al., Efficiency of HPV 16 L1/E7 DNA immunization:influence of cellular localization and capsid assembly. Vaccine,2006.24(15):p.2952-65.
    52. Akira, S. and K. Takeda, Toll-like receptor signalling. Nat Rev Immunol,2004.4(7):p.499-511.
    53. Takeda, K. and S. Akira, Toll-like receptors in innate immunity. Int Immunol,2005.17(1):p.1-14.
    54. Riedl, P., et al., Priming Thl immunity to viral core particles is facilitated by trace amounts of RNA bound to its arginine-rich domain. J Immunol,2002.168(10):p.4951-9.
    55. Iglesias, E., et al., Coinoculation with hepatitis B surface and core antigen promotes a Th1 immune response to a multiepitopic protein of HIV-1. Immunol Cell Biol,2006.84(2):p.174-83.
    56. Svirshchevskaya, E., et al., Selection of cryptic B-cell epitopes using informational analysis of protein sequences. J Bioinform Comput Biol,2006.4(2):p.389-402.
    57. Kundig, T.M., et al., Der p 1 peptide on virus-like particles is safe and highly immunogenic in healthy adults. J Allergy Clin Immunol,2006.117(6):p.1470-6.
    58. Klinman, D.M., Immunotherapeutic uses of CpG oligodeoxynucleotides. Nat Rev Immunol,2004. 4(4):p.249-58.
    59. Bessler, W.G. and G. Jung, Synthetic lipopeptides as novel adjuvants. Res Immunol,1992.143(5):p. 548-53; discussion 579-80.
    60. Bessler, W.G., Synthetic lipopeptide immunomodulators derived from bacterial lipoprotein:tools for the standardization of in vitro assays. Dev Biol Stand,1992.77:p.49-56.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700