人造板VOC散发控制:原理、方法和效果
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
室内空气品质(Indoor air quality,简称IAQ)显著影响人们的舒适、健康和工作效率,而人造板散发的挥发性有机化合物(Volatile organiccompounds,简称VOCs)是造成室内空气品质低劣的主要原因之一。源头控制是改善室内空气品质的最佳方法,因此研究人造板VOC散发控制原理和方法,发展低散发人造板具有重要意义。传统研究中缺乏人造板不同生产阶段的VOC散发分析,导致原材料及生产工艺对人造板VOC散发的影响不明晰,缺乏遴选人造板表面阻隔层的有效方法,并且鲜有研究涉及优化吸附剂在人造板中的掺杂位置。本论文针对上述问题开展了相关研究,主要学术贡献如下:
     首先,测定了人造板不同生产阶段包括脲醛树脂、木片、施胶纤维、密度板、酚醛树脂等在内散发的VOC种类及可散发含量,发现胶粘剂中的甲醛可散发含量是影响人造板甲醛散发的主要因素,而人造板散发的其它VOC主要来源于木片;生产过程中的干燥及热压工艺有利于人造板中VOC种类及可散发含量的减少;得到了胶粘剂中甲醛可散发含量与人造板甲醛散发因子间的关联式,为在生产过程中预测和控制人造板甲醛散发速率提供了指导。
     其次,提出了测定人造板表面阻隔层内VOC扩散系数和分离系数的动态/静态舱法,其优点是测试时间短,测试结果精度较高,并导出了描述阻隔层阻隔效果的无量纲关联式,为遴选阻隔层降低人造板VOC散发速率提供了技术手段。
     第三,发展了简易的密闭环境舱法用于筛选甲醛吸附性能优良的吸附剂,并结合多层材料VOC散发模型建立了人造板中掺杂吸附剂的位置优化模型,提出了求解优化模型的方法,研究证明了较优的掺杂方式是将吸附剂全部置于人造板的顶层,为控制人造板VOC散发提供了理论依据。
     最后,基于上述分析,提出了低散发人造板的设计方法,并研制了实验室样品,实测结果表明人造板甲醛散发速率可降低约75%。
Indoor air quality (IAQ) significantly influences people’s comfort, health andproductivity, and volatile organic compounds (VOCs) emitted from wood-based panelsare recognized as one of the major causes resulting in poor IAQ. Since source control isthe best mean for improving IAQ, it is important to study the control principle andmethod of VOC emissions from wood-based panels, and subsequently developlow-emitting wood-based panels. For the previous studies on this problem, there aresome shortcomings:(1) it lacks VOC emission analysis at different stages ofwood-based panels during its manufacturing process, hence the influence of rawmaterials and manufacturing techniques on VOC emissions from wood-based panels isunclear;(2) it lacks effective method for selecting barrier layers on the surface ofwood-based panels; and (3) there is little research on optimizing the doping position ofadsorbents in wood-based panels. This thesis conducted research for theseaforementioned problems, and the main academic contributions are as follows:
     Firstly, the VOC species and emittable content at different manufacturing stages ofwood-based panels such as urea-formaldehyde resin, wood chip, wood fiber after resinapplication, medium density fiberboard and phenol-formaldehyde resin are determined.It is observed that the formaldehyde emission from wood-based panels is dominated bythe emittable formaldehyde content in adhesives, whereas the other VOCs emitted fromwood-based panels mainly come from wood chips; the drying and hot-pressingtechniques during manufacturing process are helpful in reducing the VOC species andemittable content in wood-based panels; the correlation between emittableformaldehyde content in adhesives and formaldehyde emission factor from wood-basedpanels is obtained, which provides guidance on predicting and controlling formaldehydeemission rate from wood-based panels during their manufacturing process.
     Secondly, a novel method, dynamic/static chamber method (DSC method) isproposed to measure the diffusion and partition coefficients of VOC in barrier layers onthe surface of wood-based panels. The method is time-saving and has high accuracy.Moreover, a group of dimensionless correlations for characterizing the effect ofbarrier layers on VOC emissions from wood-based panels is induced. They offer a technical tool to select barrier layers for lowering VOC emission rate from
     wood-based panels.
     Thirdly, a simple closed chamber method is developed to choose adsorbents withexcellent adsorption performance for formaldehyde. Combining the mass transfer modelfor VOC emission from multi-layered materials, an optimization model for determiningthe optimum doping position of adsorbents in wood-based panels is established, andmethod for solving the optimization model is proposed. It is proved that the optimumdoping mode is placing the overall adsorbents into the top layer of wood-based panels,which provides theoretical basis to control VOC emission from wood-based panels.
     Finally, based on above analysis, a design method for low-emitting wood-basedpanels is put forward and then laboratory samples are prepared. Experimental resultsshow that the formaldehyde emission rate from wood-based panels can be reduced by75%.
引文
[1] Klepeis N E, Nelson W C, Ott W R, et al. The National Human Activity PatternSurvey (NHAPS): a resource for assessing exposure to environmental pollutants.Journal of Exposure Analysis and Environmental Epidemiology,2001,11(3):231-252.
    [2] USEPA. Sick building syndrome (SBS). Indoor Air Facts No.4(revised).Washington, DC: U.S. Environmental Protection Agency,1991.
    [3]周中平,赵寿堂,朱立,等.室内污染检测与控制.北京:化学工业出版社,2002.
    [4] WHO. Indoor air pollutants: exposure and health effects. EURO Reports andStudys78, World Health Organization, Geneva,1983.
    [5] Dorgan C B, Dorgan C E, Kanarek M S, et al. Health and productivity benefits ofimproved indoor air quality. ASHRAE Transactions,1998,104(1):658-665.
    [6] Molhave L. The sick buildings and other buildings with indoor climate problems.Environment International,1989,15:65-74.
    [7] Kim Y M, Harrad S, Harrison R M. Concentrations and sources of VOCs in urbandomestic and public microenvironments. Environ Sci Technol,2001,35(6):997-1004.
    [8] USEPA. Reducing risk: setting priorities and strategies for environmentalprotection. Science advisory board. US Environmental Protection Agency,Washington, DC,1990.
    [9] WHO. The World Health Report2002, Geneva: World Health Organization,2002.
    [10] Fisk W J. Estimates of potential nationwide productivity and health benefits frombetter indoor environments: an update. In: Spengler J D, Samet J M, McCarthy J F,Hill M, eds. Indoor Air Quality Handbook;2000.
    [11]张舵.全球近一半人遭受室内空气污染.人民日报,16版,2004-12-30.
    [12] WHO. Indoor air quality: Organic pollutants. EURO Reports and Studies No.111.Copenhagen: WHO Regional Office for Europe.1989.
    [13]张寅平,张立志,刘晓华,等.建筑环境传质学.中国建筑工业出版社,2006.
    [14] Spengler J D, Samet J M, McCarthy J F. Indoor Air Quality Handbook. NewYork:McGraw-Hill Companies, Inc.2001.
    [15]钱小瑜.我国人造板工业“十一五”展望.木材工业,2006,20(02):12-15.
    [16]刘姝威,杨徽,谢中圆.装修建材零售行业发展趋势.农村金融研究,2006,(08):57-59.
    [17]中国家具年鉴.中国轻工业信息中心,2010.
    [18]宋广生.我国城市家庭室内甲醛污染分析.环境经济,2006,(04):55-59.
    [19] Tang X J, Bai Y, Duong A, et al. Formaldehyde in China: Production, consumption,exposure levels, and health effects. Environment International,2009,35(8):1210-1224.
    [20]刘长忠.室内装修污染严重,规范市场刻不容缓.中新社北京五月十四日电题,2001-01-15.
    [21] ASHRAE. BSR/ASHRAE Standard62-1989R(public review draft.Atlanta(GA):ASHRAE,1996(August).
    [22] CIBSE (Charted Institution of Building Services Engineers). Editorial. Build Serv.J.1996,18(11):7.
    [23]莫金汉.光催化降解室内有机化学污染物的若干重要机理问题研究[博士学位论文].北京:清华大学,2009.
    [24] Xu Y, Raja S, Ferro A R, et al. Effectiveness of heating, ventilation and airconditioning system with HEPA filter unit on indoor air quality and asthmaticchildren's health. Building and Environment,45(2):330-337.
    [25] Chen H L, Lee H M, Chen S H, et al. Influence of Ar addition on ozone generationin a non-thermal plasma-a numerical investigation. Plasma Sources Science&Technology,2010,19(5):1-14.
    [26] Mo J H, Zhang Y P, Xu Q J, et al. Determination and risk assessment ofby-products resulting from photocatalytic oxidation of toluene. Applied CatalysisB-Environmental,2009,89(3-4):570-576.
    [27]熊建银.建材VOC散发特性研究:测定,微介观诠释及模拟[博士学位论文].北京:清华大学,2010.
    [28] Carniglia S C. Construction of the tortuosity factor from porosimetry. Journal ofCatalysis,1986,102(2):401-418.
    [29] Blondeau P, Tiffonnet A L, Damian A, et al. Assessment of contaminantdiffusivities in building materials from porosimetry tests. Indoor Air,2003,13(3):302-310.
    [30] Seo J, Kato S, Ataka Y, et al. Evaluation of effective diffusion coefficient invarious building materials and absorbents by mercury intrusion porosimetry.Proceedings of the10th International Conference on Indoor Air Quality andClimate (Indoor Air2005), Beijing, China,2005:1854-1859.
    [31] Haghighat F, Lee C S, Ghaly W S. Measurement of diffusion coefficients of VOCsfor building materials: review and development of a calculation procedure. IndoorAir,2002,12(2):81-91.
    [32] Xiong J Y, Zhang Y P, Wang X K, et al. Macro-meso two-scale model forpredicting the VOC diffusion coefficients and emission characteristics of porousbuilding materials. Atmospheric Environment,2008,42(21):5278-5290.
    [33] Dunn J E. Models and statistical-methods for gaseous emission testing of finitesources in well-mixed chambers. Atmospheric Environment,1987,21(2):425-430.
    [34] Clausen P A, Laursen B, Wolkoff P, et al. Emission of volatile organic compoundsfrom a vinyl floor covering//Modeling of Indoor Air Quality and Exposure, P.ASTM STP1205. American Society for Testing and Materials, Nagda N L.1993:3-13.
    [35] Chang J C S, Guo Z. Characterization of organic emissions from a wood finishingproduct-wood stain. Indoor Air,1992,2:146-153.
    [36] Guo Z H. Review of indoor emission source models. Part1. Overview.Environmental Pollution,2002,120(3):533-549.
    [37] Zhu J, Zhang J, Lusztyk E, et al. Measurements of VOC emissions from threebuilding materials using small environmental chamber under defined standard testconditions. Proceedings of the91st Annual Meeting&Exhibition, Pittsburgh, PA:Air&Waste Management Association,1998:98-TP-48.04(A61).
    [38] Hoetjer J J, Koerts F. A model for formaldehyde release from particleboard.Formaldehyde Release from Wood Products, Washington, DC: American ChemicalSociety,1986:125-144.
    [39] Mathews T J, Hawthorne A R, Thompson C V. Formaldehyde sorption anddesorption characteristics of gypsum wallboard. Environmental Science andTechnology,1987,21:629-634.
    [40] Tichenor B A, Guo Z, Dunn J E, et al. The interaction of vapor phase organiccompounds with indoor sinks. Indoor Air,1991,1:23-35.
    [41] An Y, Zhang J S, Shaw C Y. Measurements of VOC adsorption/desorptioncharacteristics of typical interior building materials. HVAC&R Research,1999,5(4):297-316.
    [42] Chang J C S, Sparks L E, Guo Z. Evaluation of sink effects on VOC from a latexpaint. Journal of the Air and Waste Management Association,1998,48:953-958.
    [43] Jorgensen R B, Dokka T H, Bjorseth O. Introduction of a sink-diffusion model todescribe the interaction between volatile organic compounds (VOCs) and materialsurfaces. Indoor Air,2000,10(1):27-38.
    [44] Won D, Corsi R L, Rynes M. Sorptive interactions between VOC and indoormaterials. Environ Sci Technol,2000,34(19):4193-4198.
    [45] Christiansson J, Yu T W, Neretnieks I. Emission of VOCs fromPVC-floorings-models for predicting the time dependent emission rates andresulting concentrations in the indoor air. Proceedings of the6th InternationalConference on Indoor Air Quality and Climate (Indoor Air93), Helsinki, Finland,1993:389-394.
    [46] Little J C, Hodgson A T, Gadgil A J. Modeling emissions of volatileorganic-compounds from new carpets. Atmospheric Environment,1994,28(2):227-234.
    [47] Xu Y, Zhang Y P. An improved mass transfer based model for analyzing VOCemissions from building materials. Atmospheric Environment,2003,37(18):2497-2505.
    [48] Huang H Y, Haghighat F. Modelling of volatile organic compounds emission fromdry building materials. Building and Environment,2002,37(11):1127-1138.
    [49] Yang X, Chen Q, Zhang J S, et al. Numerical simulation of VOC emissions fromdry materials. Building and Environment,2001,36(10):1099-1107.
    [50] Yang X D. Study of Building Material Emissions and Indoor Air Quality [PhDThesis]. USA: Massachusetts Institute of Technology,1999.
    [51] Yang X, Chen Q, Zhang J S, et al. A mass transfer model for simulating VOCsorption on building materials. Atmospheric Environment,2001,35(7):1291-1299.
    [52] Deng B Q, Kim C N. An analytical model for VOCs emission from dry buildingmaterials. Atmospheric Environment,2004,38(8):1173-1180.
    [53] Xu Y, Zhang Y P. A general model for analyzing single surface VOC emissioncharacteristics from building materials and its application. AtmosphericEnvironment,2004,38(1):113-119.
    [54] Wang X K, Zhang Y P, Zhao R Y. Study on characteristics of double surface VOCemissions from dry flat-plate building materials. Chinese Science Bulletin,2006,51(18):2287-2293.
    [55] Kumar D, Little J C. Characterizing the source/sink behavior of double-layerbuilding materials. Atmospheric Environment,2003,37(39-40):5529-5537.
    [56] Zhang L Z, Niu J L. Modeling VOCs emissions in a room with a single-zonemulti-component multi-layer technique. Building and Environment,2004,39(5):523-531.
    [57] Hu H P, Zhang Y P, Wang X K, et al. An analytical mass transfer model forpredicting VOC emissions from multi-layered building materials with convectivesurfaces on both sides. International Journal of Heat and Mass Transfer,2007,50(11-12):2069-2077.
    [58] Wang X K, Zhang Y P. General analytical mass transfer model for VOC emissionsfrom multi-layer dry building materials with internal chemical reactions. ChineseScience Bulletin,2011,56(2):222-228.
    [59] Yan W, Zhang Y P, Wang X K. Simulation of VOC emissions from buildingmaterials by using the state-space method. Building and Environment,2009,44(3):471-478.
    [60] Qian K, Zhang Y P, Little J C, et al. Dimensionless correlations to predict VOCemissions from dry building materials. Atmospheric Environment,2007,41(2):352-359.
    [61] Xiong J Y, Zhang Y P, Huang S D. Scaling VOC emission characteristics ofbuilding materials in a static chamber: model development and application. Indoorand Built Environment, accepted,2010.
    [62] Lee C S. A theoretical study on VOC source and sink behavior of porous buildingmaterials [PhD Thesis]. Canada: Concordia University,2003.
    [63] Lee C S, Haghighat F, Ghaly W S. A study on VOC source and sink behavior inporous building materials-analytical model development and assessment. IndoorAir,2005,15(3):183-196.
    [64] Murakami S, Kato S, Kondo Y, et al. VOC distribution in a room based on CFDsimulation coupled with emission/sorption analysis. Proceedings of the7thInternational Conference on Air Distribution in Rooms, UK,2000:473-478.
    [65] Murakami S, Kato S, Ito K, et al. Modeling and CFD prediction for diffusion andadsorption within room with various adsorption isotherms. Indoor Air,2003,13:20-27.
    [66] Haghighat F, Huang H, Lee C S. Modeling approaches for indoor air VOC emissionform drying materials-a review. ASHRAE,2005:635-645.
    [67] Schwarzenbach R, Gschwend P M, Imboden D M. Environmental OrganicChemistry. New York: John Wiley&Sons,1993.
    [68] Cox S S, Little J C, Hodgson A T. Measuring concentrations of volatile organiccompounds in vinyl flooring. Journal of the Air&Waste Management Association,2001,51(8):1195-1201.
    [69] Smith J F, Zhang J S, Guo B, et al. Determination of emittable initial VOCconcentrations in building materials and sorption isotherm for IVOCs. Proceedingsof the11th International Conference on Indoor Air Quality and Climate (Indoor Air2008), Copenhagen, Denmark,2008:70.
    [70] Smith J F, Gao Z, Zhang J S, et al. A new experimental method for thedetermination of emittable initial VOC concentrations in building materials andsorption isotherms for IVOCs. CLEAN-Soil, Air, Water,2009,37(6):454-458.
    [71] Wang X K, Zhang Y P. A new method for determining the initial mobileformaldehyde concentrations, partition coefficients, and diffusion coefficients ofdry building materials. Journal of the Air&Waste Management Association,2009,59(7):819-825.
    [72]王新轲.干建材VOC散发预测、测定及控制研究[博士学位论文].北京:清华大学,2007.
    [73] GB18580-2001.室内装饰装修材料人造板及其制品中甲醛释放限量.中国人民共和国建设部,国家质量监督检验检疫总局.北京:中国标准出版社,2002.
    [74] Xiong J Y, Chen W H, Smith J F, et al. An improved extraction method todetermine the initial emittable concentration and the partition coefficient of VOCsin dry building materials. Atmospheric Environment,2009,43(26):4102-4107.
    [75] Xiong J Y, Zhang Y P. Impact of temperature on the initial emittable concentrationof formaldehyde in building materials: experimental observation. Indoor Air,2010,20(6):523-529.
    [76]严伟.建材VOCs散发关键参数测定及散发模拟研究[硕士学位论文].北京:清华大学,2009.
    [77] Kirchner S, Badey J R, Knudsen H N, et al. Sorption capacity and diffusioncoefficients of indoor surface materials exposed to VOCs: proposal of new testprocedures. Proceedings of the8th International Conference on Indoor Air Qualityand Climate (Indoor Air99), Edinburgh,1999:430-435.
    [78] Hansson P, Stymne H. VOC diffusion and absorption properties of indoor materials:consequences for indoor air quality. Proceedings of Healthy Buildings2000, Espoo,Finland,2000:151-156.
    [79] Meininghaus R, Gunnarsen L, Knudsen H N. Diffusion and sorption of volatileorganic compounds in building materials-Impact on indoor air quality. EnvironSci Technol,2000,34(15):3101-3108.
    [80] Xu J, Zhang J S, Grunewald J, et al. A study on the similarities between watervapor and VOC diffusion in porous media by a dual chamber method. Clean-Soil,Air, Water,2009,37(6):444-453.
    [81] Jorgensen R B, Bjorseth O, Malvik B. Chamber testing of adsorption of volatileorganic compounds (VOCs) on material surfaces. Indoor Air,1999,9(1):2-9.
    [82] Bodalal A, Zhang J S, Plett E G. A method for measuring internal diffusion andequilibrium partition coefficients of volatile organic compounds for buildingmaterials. Building and Environment,2000,35(2):101-110.
    [83] Cox S S, Zhao D Y, Little J C. Measuring partition and diffusion coefficients forvolatile organic compounds in vinyl flooring. Atmospheric Environment,2001,35(22):3823-3830.
    [84] Crank J. The mathematics of Diffusion.2ndEdition. New York: Oxford UniversityPress,1975.
    [85]穆有炳,赵临五,储富祥,等.低成本E_2级人造板用脲醛树脂胶的制备及其应用.中国胶粘剂,2008,(07):32-35.
    [86]孙乐芳.脲醛树脂胶的技术现状及发展对策.化工科技市场,2002,(07):26-28+22.
    [87]严顺英.低毒型脲醛树脂的合成动力学研究[硕士学位论文].云南:昆明理工大学,2006.
    [88] Myers G E. Advances in methods to reduce formaldehyde emission. In: Hamel, M.P.(Ed.), Composite Board Products for Furniture and Cabinet-Innovations inManufacture and Utilization. Forest Products Society, Madison, WI.1989.
    [89] Kim S, Kim H J. Comparison of standard methods and gas chromatography methodin determination of formaldehyde emission from MDF bonded withformaldehyde-based resins. Bioresource Technology,2005,96(13):1457-1464.
    [90] Tohmura S, Hse C Y, Higuchi M. Formaldehyde emission and high-temperaturestability of cured urea-formaldehyde resins. Journal of Wood Science,2000,46(4):303-309.
    [91] Roffael E. Volatile organic compounds and formaldehyde in nature, wood andwood based panels. Holz Als Roh-Und Werkstoff,2006,64(2):144-149.
    [92]马心,颜镇.游离甲醛和人造板释放甲醛(续).木材工业,1997,(03):18-21.
    [93] Park B D, Kim J W. Dynamic mechanical analysis of urea-formaldehyde resinadhesives with different formaldehyde-to-urea molar ratios. Journal of AppliedPolymer Science,2008,108(3):2045-2051.
    [94]李凯夫.绿色人造板关键技术的一点思考(续).国际木业,2003,(04):12-14.
    [95]范春彦,宋宝林.人造板甲醛释放的控制措施.吉林林业科技,2004,(06):44-46.
    [96]陆军,张吉先,柴文淼.人造板的甲醛释放及其控制措施的研究进展.林产工业,2003,(06):12-15.
    [97]王维新.甲醛释放与检测.北京:化学工业出版社,2003.
    [98]孙立人,陈莲梅,王晓凌.人造板甲醛释放量的影响因素.林业机械与木工设备,2003,(04):22-23.
    [99]韩永新,朱小棉.人造板中甲醛的释放及其控制.职业与健康,2007,(08):643.
    [100]王春鹏,赵临五,卜洪忠,等. E_0级胶合板用UMF树脂胶固化体系的研究.林产工业,2008,(05):23-27.
    [101]王春鹏,赵临五,卜洪忠,等. E_0级胶合板用低成本UMF树脂胶的研制.林产工业,2007,(06):46-50.
    [102] Wang W L, Gardner D J, Baumann M G D. Volatile organic compound emissionsduring hot-pressing of southern pine particleboard: Panel size effects and trade-offbetween press time and temperature. Forest Products Journal,2002,52(4):24-30.
    [103]周定国.国外人造板甲醛散发研究现状.世界林业研究,1995,(05):9-17.
    [104] E.罗发埃尔.人造板和其他材料的甲醛散发(中文译本).中国林业出版社,1990.
    [105] Yuan H, Little J C, Marand E, et al. Using fugacity to predict volatile emissionsfrom layered materials with a clay/polymer diffusion barrier. AtmosphericEnvironment,2007,41(40):9300-9308.
    [106] Myers G E. Effect of separate additions to furnish or veneer on formaldehydeemission and other properties-a literature-review (1960-1984). Forest ProductsJournal,1985,35(6):57-62.
    [107] Myers G E. Effects of post-manufacture board treatments on formaldehydeemission-a literature-review (1960-1984). Forest Products Journal,1986,36(6):41-51.
    [108]王恺.木材工业适用大全,人造板表面装饰卷.中国林业出版社,2002.
    [109]张立芳.合成树脂饰面人造板.化学工业出版社,2004.
    [110]2008年我国人造板和木地板产量.木材工业,2009,23(04):50.
    [111] Xiong J Y, Zhang Y P, He Z K, et al. Effect of Additive Adsorption Fibers withinBuilding Materials on VOC Emission Characteristics. Proceedings of Indoor Air2008, Copenhagen Denmark, August17-22.2008.
    [112] Koontz M D, Hoag M L. Volatile organic compound emissions from particleboardand medium density fiberboard. In: proceedings of measuring and controllingvolatile organic compound and particulate emissions from wood processingoperations and wood-based products, Weinheim, Wiley-VCH,76-87.1995.
    [113] Baumann M G D, Batterman S A, Zhang G Z. Terpene emissions fromparticleboard and medium-density fiberboard products. Forest Products Journal,1999,49(1):49-56.
    [114] Baumann M G D, Lorenz L F, Batterman S A, et al. Aldehyde emissions fromparticleboard and medium density fiberboard products. Forest Products Journal,2000,50(9):75-82.
    [115] Kim S, Kim J A, Kim H J, et al. Determination of formaldehyde and TVOCemission factor from wood-based composites by small chamber method. PolymerTesting,2006,25(5):605-614.
    [116] Meyer B, Hermanns K. Formaldehyde release from wood products-an overview.Acs Symposium Series,1986,316:1-16.
    [117]马春平.绿色无醛人造板胶粘剂和含氮含磷酚醛树脂的合成与性能研究[硕士学位论文].陕西:西北大学,2006.
    [118] Schwope A D, Lyman W J, Reid R C. Methods for assessing exposure to chemicalsubstances. EPA Report, Vol.11, US Environmental Protection Agency, Office ofToxic Substances, Washington, DC,1989, EPA560/5-85-015.1989.
    [119] ASTM. D5116-97. Standard guide for small-scale environmental chamberdeterminations of organic emissions from indoor materials/product. WestConshohocken, PA: American Society of Test and Materials.1997.
    [120] ASTM. D6670-01. Standard practice for full-scale chamber determination ofvolatile organic emissions from indoor materials/products. West Conshohocken,PA: American Society of Test and Materials.2001.
    [121] Huang H, Haghighat F, Blondeau P. Volatile organic compound (VOC) adsorptionon material: influence of gas phase concentration, relative humidity and VOC type.Indoor Air,2006,16(3):236-247.
    [122] Tiffonnet A L, Blondeau P, Allard F, et al. Sorption isotherms of acetone onvarious building materials. Indoor and Built Environment,2002,11(2):95-104.
    [123] GB/T18883-2002.室内空气质量标准.中华人民共和国国家质量监督检验检疫总局,卫生部,国家环境保护总局.北京:中国标准出版社,2002.
    [124] Zhang Y P, Luo X X, Wang X K, et al. Influence of temperature on formaldehydeemission parameters of dry building materials. Atmospheric Environment,2007,41(15):3203-3216.
    [125] Meyer B, Boehme C. Formaldehyde emission from solid wood. Forest ProductsJournal,1997,47(5):45-48.
    [126]何中凯,张寅平.人造板车间内工人甲醛暴露的健康风险评估.建筑科学,2010,26(8):8-12.
    [127] GBZ2-2002.工作场所有害因素职业接触限值.中华人民共和国卫生部.北京:中国标准出版社,2003.
    [128] Kumar A, Sood A. Modeling of polymerization of urea and formaldehyde usingfunctional-group approach. Journal of Applied Polymer Science,1990,40(9-10):1473-1486.
    [129] Ludiam P R, King J G. Size exclusion chromatography of UF resin in DMFcontaining LiCl. Journal of Applied Polymer Science1984,29:3863-3872.
    [130] Tomita B. C-13NMR analysis of urea-formaldehyde resins. Technical workshop onformaldehyde. Vol.2. Consumer Product Safety Commission at National Bureau ofStandards, Gaithersburg, MD.1980.
    [131] Salthammer T, Mentese S, Marutzky R. Formaldehyde in the Indoor Environment.Chemical Reviews,2010,110(4):2536-2572.
    [132] Brandani S, Brandani V, Digiacomo G. The system formaldehyde water-methanol-thermodynamics of solvated and associated solutions. Industrial&EngineeringChemistry Research,1992,31(7):1792-1798.
    [133] Maiwald M, Fischer H H, Ott M, et al. Quantitative NMR Spectroscopy of complexliquid mixtures: Methods and results for chemical equilibria informaldehyde-water-methanol at temperatures up to383K. Industrial&Engineering Chemistry Research,2003,42(2):259-266.
    [134] Fu S Y, Cheng J, Ma L F. Study on influence of methanol content on properties oflow formaldehyde UF resin. Chemistry and Industry of Forest Products,2004,24(1):56-60.
    [135]王维新.使用酚醛树脂作胶粘剂的人造板有没有环境污染问题?人造板通讯,2004,(08):26-27.
    [136] Manninen A M, Pasanen P, Holopainen J K. Comparing the VOC emissionsbetween air-dried and heat-treated Scots pine wood. Atmospheric Environment,2002,36(11):1763-1768.
    [137] Risholm-Sundman M, Lundgren M, Vestin E, et al. Emission of acetic acid andother volatile organic compounds from different species of solid wood. Holz AlsRoh-Und Werkstoff,1998,56:125-129.
    [138] Schafer M, Roffael E. On the formaldehyde release of wood. Holz Als Roh-UndWerkstoff,2000,58(4):259-264.
    [139] Jiang T, Gardner D J, Baumann M G D. Volatile organic compound emissionsarising from the hot-pressing of mixed-hardwood particleboard. Forest ProductsJournal,2002,52(11-12):66-77.
    [140] USEPA. Introduction to Indoor Air Quality, a Reference Manual,EPA/400/3-91/003, Section7[M]. US Government Printing Office, Washington,DC,1991.
    [141] IARC. IARC classifies formaldehyde as carcinogenic to humans. Press Release, No.153, June15,2004.
    [142] Gupta G D, Misra A, Agarwal D K. Inhalation toxicity of furfural vapours: anassessment of biochemical response in rat lungs. Journal of Applied Toxicology,1991,11:343-347.
    [143] Vernet-Maury E, Alaoui-Ismaili O, Dittmar A, Delhomme,G., et al. Basic emotionsinduced by odorants: a new approach based on autonomic pattern results. Journal ofAutonomous Nervous System,1999,75:176-183.
    [144] ISO16000-10. Indoor air-Part10: Determination of the emission of volatileorganic compounds from building products and finishing-Emission test cellmethod.2006.
    [145] Wolkoff P, Nielsen P A. A new approach for indoor climate labeling of buildingmaterials-Emission testing, modeling, and comfort evaluation. AtmosphericEnvironment,1996,30(15):2679-2689.
    [146] Zhang L Z, Niu J L. Mass transfer of volatile organic compounds from paintingmaterial in a standard field and laboratory emission cell. International Journal ofHeat and Mass Transfer,2003,46(13):2415-2423.
    [147] Kim S, Kim J A, An J Y, et al. TVOC and formaldehyde emission behaviors fromflooring materials bonded with environmental-friendly MF/PVAc hybrid resins.Indoor Air,2007,17(5):404-415.
    [148] Wolkoff P, Salthammer T, Woolfenden E A. Emission cells and comparison tosmall chambers for materials emissions testing. Gefahrstoffe Reinhaltung Der Luft,2005,65(3):93-98.
    [149] Wehinger A, Schmid A, Mechtcheriakov S, et al. Lung cancer detection by protontransfer reaction mass-spectrometric analysis of human breath gas. InternationalJournal of Mass Spectrometry,2007,265(1):49-59.
    [150] Moser B, Bodrogi F, Eibl G, et al. Mass spectrometric profile of exhaled breath-field study by PTR-MS. Respiratory Physiology&Neurobiology,2005,145(2-3):295-300.
    [151]车向凯,谢彦红,缪淑贤.数理方程.北京:高等教育出版社,2006.
    [152] ASTM. D5157-97. Standard guide for statistical evaluation of indoor air qualitymodels.2003.
    [153] Zhang L Z, Niu J L. Laminar fluid flow and mass transfer in a standard field andlaboratory emission cell. International Journal of Heat and Mass Transfer,2003,46(1):91-100.
    [154]何中凯,张寅平,王新轲.一种测量吸附剂甲醛吸附性能的新方法.工程热物理学报,2010,31(1):136-138.
    [155] Zhang J S, Chen Q Y. Modeling VOC Sorption of Building Materials and Its Impacton Indoor Air Quality. ASHRAE RP-1097,2001.
    [156] Rong H Q, Ryu Z Y, Zheng J T, et al. Effect of air oxidation of Rayon-basedactivated carbon fibers on the adsorption behavior for formaldehyde. Carbon,2002,40(13):2291-2300.
    [157]李翠红.分子筛吸附剂对甲醛分子吸附性能的研究[硕士学位论文].辽宁:大连理工大学,2005.
    [158]曾若浪.建筑围护结构理想热质体热性能研究[博士学位论文].北京:清华大学,2010.
    [159]陈连喜,田华,叶春生,等.硅溶胶制备与应用研究进展.山西化工,2007,(04):9-12+17.
    [160]阿里巴巴网站产品信息.[2011-01-10]. http://detail.china.alibaba.com/.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700