北运河水体中氨氮的氧化过程及微生物响应特征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国河流普遍存在氨氮污染严重的问题,由于氮进入河流后的迁移转化过程非常复杂,氨氮通过硝化、反硝化过程和水生生物同化作用得到降解,这两种机制都存在微生物的参与,因此氮降解过程中微生物的研究对认识氮转化过程、解决氮污染问题十分重要。氨氮作为我国河流的主要污染物,其降解过程中的氨氧化过程常常是限速过程,其中化能自养细菌氨氧化细菌需要利用氨氮和二氧化碳作为氮源和碳源,结合氧分子将氨氮降解至亚硝态氮,而这一过程有机碳虽然不直接参与,但在硝化过程中具有重要地位。要深入了解河流水体中氨氮降解过程就必须从氮的形态及转化、环境因素和微生物各方面进行分析。通过分子生物学技术进行氨氧化细菌的定量研究,得到河流水体氨氮降解特点及参与其转化的微生物之间的关系,并对影响氮的转化、微生物活性的环境因子进行研究,探索河流动态过程中氮素迁移转化机理,为河流氨氮污染的治理奠定基础。
     北运河氨氮污染严重,溶解氧浓度较低,可生化降解性差,水质改善困难,本文研究的主要目的是:(1)掌握北运河水体污染特征和主要污染因子;(2)从水体中浮游细菌多样性及群落结构特征了解北运河水体的生态环境状况;(3)建立科学可信的水体氨氧化细菌定量方法对氨氧化细菌的生长过程及其与氮和溶解性有机碳的响应关系;(4)评估北运河水体的硝化活性及其与环境因子的关系;(5)探索人为因素及环境因子对北运河硝化过程的影响。
     论文主要研究结论可概括为以下几个方面:
     (1)通过2010年至2011年春、夏、秋、冬四季北运河20个采样点水体各水质指标的监测和现场调查,得到北运河的污染特征。北运河水体污染严重,主要水质指标总氮、总磷、COD等指标均超过地表水V类水标准,经过因子分析得出氨氮和COD为主要污染因子。北运河干流水体氨氮在时间和空间尺度都保持在较高的水平,清河、坝河、凉水河支流汇入对北运河营养盐浓度有较大贡献。氨氮浓度在较短距离内表现出降低的趋势,溶解氧水平则因支流汇入、闸坝拦截等人为活动影响出现较大波动。
     (2)分别于春季、夏季、冬季三个季节对北运河干流的10个点进行水体采集监测,采用T-RFLP技术对水体浮游细菌群落结构进行分析。根据得到的TRFs片段计算微生物多样性指数和均匀度指数,分析得出目前北运河水体生态结构已经较为脆弱,夏季细菌群落种类明显高于其他两个季节,218bp片段是北运河水体中的绝对优势菌种。通过CANOCO软件分析细菌群落结构与水质指标的空间特点和相关关系,北运河水体的微生物群落结构空间上差异较大,支流输入和闸坝的设置对微生物的群落结构均能产生影响,总磷、总有机碳和温度对微生物群落的影响较大。
     (3)以amoA基因作为扩增氨氧化细菌的目的基因,扩增出的491bp的DNA片段进行测序并在GenBank上进行Blast同源性比对,结果表明与多条非培养的氨单加氧酶基因片段有较高的同源性。采用Real-time PCR荧光染料方法对氨单加氧酶基因拷贝数进行测定。Real-time PCR得到amoA基因的扩增曲线,扩增效率和熔解曲线表明结果可信,北运河水体中AOB数量为6.9×107-1.7×109copies/L。通过与其他研究区水体中氨氧化细菌数量进行比较后可知,北运河水体中氨氧化细菌数量较为可观,高于中国的东江、岷江和法国的赛纳河。
     通过室内模拟实验,观察北运河水体氨氮自然降解过程中,氨氧化细菌数量和各形态氮的变化情况。对于高污染的水体在没有外源输入的情况下,硝化过程需要进行19天才能将氨氮降解至较低水平,在这个过程中除了氨氧化细菌对氨氮降解的贡献外,可能还存在其他微生物的作用,如异养微生物等。在氨氧化过程进行完全之后,氨氧化细菌及其他异养微生物由于缺乏氮源而出现死亡,微生物细胞释放出有机氮和有机碳而造成二次有机污染。
     (4)水体中的碳降解过程与氨降解过程分两个不同的阶段进行,氨氧化过程的碳源是CO2形态而非有机碳,但氨氧化过程却必须在有机碳存在的条件下才能进行,同时两个过程又在争夺氧气以进行降解。应用ATU作为硝化抑制剂在室内条件下分别对十日内碳化过程和硝化过程耗氧量进行观察,并通过无机氮离子浓度的变化情况获取水体的硝化活性。可知北运河水体硝化耗氧量对水体耗氧的比重较大,硝化过程是参与水体溶解氧消耗的重要部分。而与其他河流相比,北运河水体也具有较高的潜在硝化活性。北运河水体氨氮浓度却一直保持在较高的水平,高浓度有机碳和氨氮为氨氧化细菌及其他微生物提供了足够的能量来源。以目前水体的硝化活性,只能使氨氮维持在稳定的浓度水甲,自然硝化能力不能满足高浓度氨氮的降解需要。对营养因子与硝化活性的回归分析得出,溶解性总有机碳浓度对硝化活性具有抑制作用。
     (5)采用原位实验对两个重点闸坝区段一沙河闸和杨洼闸上下游设置连续监测断面,对氨氮浓度、溶解性总有机碳浓度、硝化活性及氨氧化细菌数量的空间分布变化进行分析,结合两河段的污染特征和实际特点发现,沙河水库内和杨洼闸上两个闸上位置水体的氨氮浓度和硝化活性水平相似。沙河闸下游由于污染源汇入导致了硝化活性和氨氧化细菌增加,但高硝化能力只能作用于较短距离内,下游硝化活性与氨氧化细菌下降,氨氮浓度上升。杨洼闸闸坝频繁开启调节,使闸下瞬时流速激增对水体进行人为扰动,导致溶解氧徒增,下游颗粒物再悬浮,对硝化活性和氨氧化细菌的增长有益,但随着颗粒物迁移有可能造成内源污染释放导致下游氨氮上升。
Many rivers in urban have been seriously polluted by industrialization and urbanization. Excess influx of nitrogen from anthropogenic source into rivers can alter the nutrient pool in an aquatic system. Ammonia nitrogen was degraded through nitrification and denitrification processes and aquatic bio-assimilation. There are microorganisms participate in both kinds of mechanism. Therefore, it is very important to understand the role of microorganisms in the process of nitrogen transformation in order to address nitrogen pollution. Ammonia-oxidizing process is rate-limiting in which chemoautotrophic ammonia-oxidizing bacteria transfers ammonia to nitrite uses ammonia and carbon dioxide as a carbon and nitrogen, combined with oxygen molecules. In this process, organic carbon is not directly involved in, but plays an important role in the nitrification process. Analyzing on each form of nitrogen, transformation, environmental factors and microorganisms in degradation process helps to know much better about ammonia pollution of river water. To study the ammonia-oxidizing process and ammonia-oxidizing bacterial by molecular biology techniques redound to understanding dynamic process nitrogen transport mechanism and make a foundation to govern of the river ammonia pollution.
     Beiyun River is the important urban river in Beijing that ammonia pollutes seriously and dissolved oxygen concentration lowly. The main purpose of this study was:(1) Understand water pollutants concentration in Beiyun River and Nitrogen pollute distribution feature;(2) Assess the spatial pattern of bacterial community in Beiyun River and the relationship with nutrients and other environmental factors in water;(3) Establish a credible scientific method to determine the quantity of ammonia oxidizing bacteria in water and observe the relation of AOB growth trend response to nitrogen and organic carbon;(4) assess the nitrification activity in water of Beiyun River and its influence factors;(5) explore the impact of human factors and environmental factors on the nitrification process of Beiyun River. The main conclusions be summarized as following:
     1) Water quality and pollutants' spatial-temporal distribution characteristic was monitored during2010-2011spring, summer, autumn and winter seasons. TN, TP and COD in water were higher than Environmental quality standards for surface water level Ⅲ and Ammonia nitrogen and COD were the main pollute factors by factor analyze. Ammonia concentration was maintained at a high level on temporal and spatial scales. The distributaries, Qinghe River, Bahe River and Liangshuihe River, were influent large number of nutrient concentrations into Beiyun River. Ammonia concentration was showed decreasing trend within a short distance of Beiyun river where was without pollution resources. Dissolved oxygen was showed fluctuating which was affected by influent of distributary and intercept of flood gate and other human activities.
     2) The bacterial community composition in Beiyun River was examined by terminal restriction fragment length polymorphism (T-RFLP) with PCR amplified16S rDNA fragment during spring, summer and winter2011. The richness, diversity, and evenness in water samples were low that indicated the ecological status of Beiyun River was fragile.The bacterial communities in summer was significantly higher than spring and winter and the218bp fragment was the dominant bacterial in Beiyun river. The bacterial communities in closed water area like reservoir and floodgate have large differences with flux in Beiyun River. Canonical Correspondence Analysis (CCA) through CANOCO software represented the bacterial community in Beiyun River was influenced by nutrients and environmental variables, such as DOC, TP and temperature.
     3)491bp16S rDNA fragment was amplified targeting the ammonia-monooxygenase gene analyzed Blast homology in GenBank showed that amplification products had high homology with culture-independent ammonia-oxidizing bacteria. AOB population in water was quantified by qRT-PCR targeting amoA, the application curve and melting curve showed that the results were reliable that arrange from6.9×107to1.7x109copies/L. Compared with the results in other research showed that AOB population in Beiyun River was considerable quantity and more than which was in Dong River, Minjiang River and Seine River.
     Degradation process of inorganic nitrogen and DOC simultaneous with AOB growth in water of Beiyun River was observed through simulation experiments in laboratory. The nitrification process required19days capable of ammonia degradation to a lower level in high ammonia pollution water with no exogenous input. In this process there may have heterotrophic microorganisms involved in the degradation of ammonia beside AOB. AOB and heterotrophic microbes went to death and release organic nitrogen and organic carbon after Ammonia-oxidizing process completely due to lack of nitrogen.
     4) Carbon degradation process and ammonia degradation process was conducted into two phases. Ammonia-oxidizing process using CO2as carbon source rather than organic carbon that are competed oxygen with carbon degradation process. In order to assess the amount of oxygen consumed during nitrification, an allylthiourea in-hibitor (ATU) was used within ten days of the carbonization process and the oxygen consumption of the nitrification process were observed. And nitrifying activity calculated by the difference between the sum of nitrite and nitrate ions in the samples incubated without and with ATU inhibitor. The result showed that oxygen consumption for microbiological decomposition of nitrogen compounds account for a larger proportion of total biological oxygen demand. Compared with other rivers, potential nitrification activity in water of Beiyun River was high which was provided a sufficient organic carbon and ammonia nitrogen to ammonia-oxidizing bacteria and other microorganisms. But the nitrifying activity in Beiyun River was unable to depredate such high concentrations of ammonia. Nutritional factors and nitrification activity were regressed that result of DTN and DOC concentration was negatively correlated with nitrification activity.
     5) The space distribution of ammonia, DOC, nitrification activity and the population of ammonia-oxidizing bacteria in two study areas was monitored in situ experiment. The result was showed that ammonia concentration and nitrification activity in water of Shahe Reservoir and Yangwa floodgate were similar. Nitrifying activity and population of AOB in downstream of Shahe floodgate was decreasing due to pollution sources import. But the high nitrification capacity just maintained at a short distance of downstream, ammonia was increasing while nitrifying activity and population of AOB in downstream decreased. Dissolved oxygen increasing and particulate matter resuspension in downstream because Yangwa floodgate had been open frequently lead to flow rate proliferation instantaneous which beneficial to the growth of nitrifying activity and ammonia-oxidizing bacteria. At the same time, removal of particulate matter could be an internal pollution result in ammonia increasing in downstream.
引文
[1]兰中仁.温度对NH3+-N废水硝化动力学参数影响的实验研究[J].四川环境,2005.24(3):4-10.
    [2]Admiraal W., B.Y.J.H. Comparison of nitrification rates in three branches of the lower river Rhine[J]. Biogeochemistry,1989(8):138-151.
    [3]Chesterikoff A., G.B.B.G. Inorganic nitrogen dynamics in the River Seine downstream from Paris(France)[J]. Biogeochemistry,1992(17):147-164.
    [4]夏星辉,周劲松,杨志峰,陈静生.黄河流域河水氮污染分析[J].环境科学学报.2001,21(5):563-57
    [5]刘腊美,龙天渝,李崇明,李继承.嘉陵江流域非点源溶解态氮污染负荷模拟研究[J].农业环境科学学报.2009,28(4):808-813
    [6]张学青,杨志峰,夏星辉.黄河水体硝化过程的模拟实验研究[J].环境化学.2005,24(3):245-254
    [7]Cebron A, Berthe T, Gamier J. Nitrification and Nitrifying Bacteria in the Lower Seine River and Estuary (France)[J]. Applied and Environmental Microbiology.2003,69(12):7091-7100
    [8]Winter C A, Hein T, Kavka G, Mach R L. Longitudinal Changes in the Bacterial Community Composition of the Danube River: a Whole-River Approach[J]. Applied and Environmental Microbiology,2007,73(2): 421-431
    [9]Bernhard A. E, D.T.G.A., Loss of diversity of ammonia oxidizing bacteria correlates with increasing salinity in an estuary system[J]. Environmental Microbiology,2005,7(9):1289-1297.
    [10]Zhang Dan, Z.D.L.Y., Community analysis of ammonia oxidizer in the oxygen-limited nitritation stage of OLAND system by DGGE of PCR amplified 16S rDNA fragments and FISH[J]. Journal of Environmental Sciences,2004,16(5):838-842.
    [11]Chen Guoyuan, Qiu Shanlian, Zhou Yiyong. Diversity and abundance of ammonia-oxidizing bacteria in eutrophic and oligotrophic basins of a shallow Chinese lake (Lake Donghu)[J]. Research in Microbiology, 2009,160(3):173-178
    [12]Zehr J P and Ward B B.Nitrogen Cycling in the Ocean:New Perspectives on Processes and Paradigms [J]. Applied and Environmental Microbiology.2002,68(3):1015-1024
    [13]朱兆良.中国土壤氮素研究[J].上壤学报.2008,45(5):778-783
    [14]沈志良.长江和长江口氮的生物地球化学研究—关于长江N通量的研究[J].海洋科学.2002,26(12):10
    [15]熊代群,杜晓明,唐文浩,黄满湘,谷庆宝,国力君,李发生.海河天津段与河口海域水体氮素分布特征及其与溶解氧的关系[J].环境科学研究.2005,18(3):1-4
    [16]宋晓红,石学法,蔡德陵.三峡截流后长江口秋季TSM. POC和PN的分布特征[J].海洋科学进展,2007,25(2):165-174
    [17]刑萌,刘卫国.西安浐、灞河硝酸盐氮同位素特征及污染源示踪探讨[J].地球学报.2008,29(6):783-789
    [18]罗先香,闫琴,于晓莉,王震宇.河[J湿地氮素生物地球化学循环研究[J].环境科学与技术2009,32(12D):181-187
    [19]刘秀娟,余志明,宋秀贤,曹西华.长江口海域悬浮颗粒有机物的稳定氮同位素分布及其生物地球化学意义[J].海洋科学.2010,(1):11-17
    [20]Zhang J, Wu Y, Jennerjahn, T C et al. Distribtaion of organic matter in the Changjiang (Yangtz River)Estuary and their stable carbon and nitrogen isotopic ratios:Implications for source discrimination and sedimentary dynamics[J]. Marine Chemistry,2007.106(2):111-126
    [21]王东红,黄清辉,王春霞等.长江中下游浅水湖泊中总氮及其形态的时空分布[J].环境科学.2004,25(增刊):27-30
    [22]潘成荣,李凌,叶琳琳等.瓦埠湖沉积物中氮与磷赋存形态分析[J].水资源保护.2007,23(4):10-14
    [23]胡俊,刘永定,刘剑彤等.滇池沉积物间隙水中氮、磷形态及相关性的研究[J].环境科学学报.2005,25(10):1391-1396
    [24]陈志军,朱健.艾比湖氮素的水平分布及环境意义[J].盐湖研究.2010,18(1):29-32
    [25]王娟,王圣瑞,金相灿,张跃进等.沉水植物黑藻对沉积物氨氮吸附/释放特征的影响[J].生态环境.2007,16(2):336-341
    [26]熊汉锋,黄世宽,陈治平,廖勤周,谭启玲,王运华.梁子湖湿地植物的氮磷积累特征[J].生态学杂志.2007,26(4):466-470
    [27]邢光熹,曹亚澄.太湖地区水体氮的污染源和反硝化[J].中国科学(B辑),2001,31(2):130-136
    [28]林琳,吴敬禄.太湖梅梁湾富营养化过程的同位素地球化学证据[J].中国科学(D辑).2005,35(增刊Ⅱ):55-62
    [29]曾巾,杨柳燕,肖琳等.湖泊氮素生物地球化学循环及微生物的作用[J].湖泊科学.2007,19(4):382-389
    [30]郭建宁,卢少勇,金相灿,张利红,盛力.低溶解氧状态下河网区不同类型沉积物的氮释放规律[J].环境科学学报.2010,30(3):614-620
    [31]Michael J P, Meyer J L. Streams in the urban landscape[J]. Annual Review of Ecology and Systematics. 2001.32:333-365
    [32]Muyzer G, Waal E C, Uitterlinden A G. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S Rrna[J]. Appl. Environ. Microbiol.1993,59(3):695-700
    [33]Walsh C. J., Roy A. H., Feminella J. W, Cottingham P. D., Groffan P. M. The urban stream syndrome: current knowledge and the search for a cure[J]. J. N. Am. Benthol. Soc.,2005,24(3):706-723
    [34]Mulholland, P J, Webster J R., Nutrient dynamics in streams and the role of J-NABS[J]. J. N. Am. Benthol. Soc.,2010,29(1):100-117
    [35]俞盈等.水体中三氮转化规律及影响因素研究[J].地球化学,2008(6):565-571
    [36]邓贤山,周恭明.硝化反应及其控制因素[J].能源环境保护,2003.17(2):46-52.
    [37]马勇,王淑莹,曾薇,等.A/O生物脱氮工艺处理生活污水中试(一):短程硝化反硝化的研究[J].环境科学学报.2006,26(5):703-709.
    [38]陈卫,武迪,朱宁伟,郑晓英. A/A/O-MBR组合工艺强化去除氨氮及其硝化速率[J].土木建筑与环境工程,2010.32(4):90-96.
    [39]Nowicki B L, Requintina E, Van K D, et al. Nitrogen losses through sediment denitrification in Boston Harbour and Massachusetts Bay [J]. Estraries.1997,20:626-639
    [40]Polak, J., Nitrification in the surface water of the wloclawek dam reservoir. The process contribution to biochemical oxygen demand (N-BOD) [J]. Polish Journal of Environmental Studies.2004,13(4): 415-424.
    [411土建龙,吴立波,齐星,钱易,用氧吸收速率OUR表征活性污泥硝化活性的研究[J].环境科学学报.1999,19(3):225-234.
    [42]吕艳华,白洁,姜艳,于江华.黄河三角洲湿地硝化作用强度及影响因素研究[J].海洋湖沼通报.2008(2):61-67.
    [43]Meincke M, Krieg E, Bock E. Nitrosovibrio spp., the dominant ammonia-oxidizing bacteria in building sandstone[J]. Appl. Environ. Microbiol.1989,55(8):2108-2110.
    [44]Sorokin D Y. On the possibility of nitrification in extremely alkaline soda biotopes[J]. Microbiology.1998, 67:335-339.
    [45]Arrigo K R, Dieckmann G, Gosselin M, Robinson D H, Fritsen C H, Sullivan C W. High resolution study of the platelet ice ecosystem in McMurdo Sound, Antarctica: biomass, nutrient, and production profiles within a dense microalgal bloom[J]. Mar. Ecol. Prog. Ser 1995,127(1-3):1-3
    [46]Wbese C R, Stackebrandt E, Weisburg W G, Paster B J, et al. The phylogeny of purple baeteria: the alpha subdivision[J]. Syst. Appl. Microbiol.1984,5:327-336
    [47]陈岭.氨单加氧酶基因(amoA)在氨氧化细菌种群分析和定量检测中的应用研究[D].浙江大学,2003:45
    [48]Head 1 M, Hiorns W D, Embley T M, McCarthy A J, Saunders J R. The phylogeny of autotrophic ammonia-oxidizing bacteria as determined by analysis of 16S ribosomal RNA gene sequences[J]. J. Gen. Microbiol.1993.139(6):1147-1153
    [49]Belser L. W. POPULATION ECOLOGY OF NITRIFYING BACTERIA[J]. Ann. Rev. Microbiol.1979, 33:309-333
    [50]Hiorns W D, Hastings R C, Head L M, McCarthy A.J. et al. Amplification of 16S ribosomal RNA genes of autotrophic ammonia-oxidizing bacteria demonstrates the ubiquity of nitrosospiras in the environment[J]. Microbiology.1995,141(11):2793-2800
    [51]Stephen J R, McCaig A E, Smith Z, Prosser J I, Embley T M. Molecular diversity of soil and marine 16S rRNA sequences related to β-subgroup ammonia-oxidizing bacteria[J]. Appl. Environ. Microbiol.1996, 62(11):4147-4154
    [52]Phillips C J, Smith Z, Embley T M, Prosser J I. Phylogenetic differences between particle-associated and planktonic ammonia-oxidizing bacteria of the β subdivision of the class Proteobacteria in the northwestern Mediterranean Sea[J]. Appl. Environ. Microbiol.1999,65(2):779-786.
    [53]Abeliovich A. Nitrifying bacteria in wastewater reservoirs[J]. Appl. Environ. Microbiol.1987,53(4): 754-760
    [54]Schmidt I, Bock E. Anaerobic ammonia oxidation with nitrogen dioxide by Nitrosomonas eutropha[J]. Arch. Microbiol.1997,167(2-3):106-111.
    [55]宋琴,许雷.异养硝化作用酶学研究进展[J].生物技术通报.2008.5:60-64
    [56]Bock E, Schmidt I, Stuven R, Zart D. Nitrogen loss caused by denitrifying Nitrosomonas cells using ammonium or hydrogen as electron donors and nitrite as electron acceptor[J]. Arch. Microbiol.1995, 163(1):16-20
    [57]Diab S, Shilo M. Effect of adhesion to particles on the survival and activity of Nitrosomonas sp. and Nitrobacter sp[J]. Arch. Microbiol.1988,150(4):377-393.
    [58]Kowalchuk G A, Bodelier P L E, Heilig G H J, Stephen J R, Laanbroek H J. Community analysis of ammonia-oxidising bacteria, in relation to oxygen availability in soils and rootoxygenated sediments, using PCR, DGGE and oligonucleotide probe hybridization[J]. FEMS Microbiol. Ecol.1998.27(4): 339-350.
    [59]Bodelier P L E, Libochant J A, Blom C W P M, and Laanbroek H J. Dynamics of nitrification and denitrification in root-oxygenated sediments and adaptation of ammonia-oxidizing bacteria to low-oxygen or anoxic habitats[J]. Appl. Environ. Microbiol.1996,62(11):4100-4107
    [60]Bothe H, Jost G, Schloter M, Ward B B, et al. Molecular analysis of ammonia oxidation and denitrification in natural environments[J]. FEMS Microbiology Review.2000,24(5):673-690
    [61]Stehr G, Z (?)rner S, Bottcher B, and Koops H P. Exopolymers:an ecological characteristic of a floc-attached, ammonia-oxidizing bacterium[J]. Microb. Ecol.1995,30(2):115-126
    [62]McCaig A E, Phillips C J, Stephen J R, Kowalchuk G A, Harvey S M, Herbert R A, Embley T M. and Prosser J I. Nitrogen cycling and community structure of proteobacterial L-subgroup ammonia-oxidizing bacteria within polluted marine fish farm sediments[J]. Appl. Environ. Microbiol.1999,65(1):213-220.
    [63]McCaig A E, Embley T M. and Prosser J I. Molecular analysis of enrichment cultures of marine ammonia oxidizers[J]. FEMS Microbiol. Lett.1994,120,363-368.
    [64]刘志培,刘双江.硝化作用微生物的分子生物学研究进展[J].应用与环境生物学报.2004,10(4):521-525
    [65]McTavish, H., Fuchs, J.A. and Hooper, A.B. Sequence of the gene coding for ammonia monooxygenase in Nitrosomonas europaea[J]. J. Bacteriol.1993,175:2436-2444.
    [66]Rotthauwe J H, Deboer W, Liesack W. Comparative analysis of gene sequences encoding ammonia monooxygenase of Nitrosospira sp. AHB1 and Nitrosolobus multiformis C-71[J]. FEMS Microbiol. Lett. 1995,133:131-135
    [67]Alzerreca J J, Norton J M, Klotz M G. The amo operon in marine, ammonia-oxidizing gamma-proteobacteria[J]. FEMS Microbiol. Lett.1999,180:21-29.
    [68]郝永俊,吴松维,吴伟祥,陈英旭.好氧氨氧化菌的种群生态学研究进展[J].生态学报.2007,27(3):1573-1583
    [69]Moir J W B, Crossman L C, Spiro S, Richardson D J. The purification of ammonia monooxygenase from Paracoccus denitrificans[J]. FEBS Lett.1996,387:71-74.
    [70]Daum M, Zimmer W, Papen H, Kloos K, Nawrath K, Bothe H. Physiological and molecular biological characterization of ammonia oxidation of the heterotrophic nitrifier Pseudomonas putida[J]. Curr. Microbiol.1998,37:281-288.
    [71]Alzerreca J J, Norton J M, Klotz M G. The amo operon in marine, ammonia-oxidizing gamma-proteobacteria[J]. FEMS Microbiol. Lett.1999,180:21-29.
    [72]Bergmann D J, Zahn J A, DiSpirito A A. Primary structure of cytochrome cP of Methylococcus capsulatus Bath:evidence of a phylogenetic link between P460 and cP-type cytochromes[J]. Arch. Microbiol.2000, 173:29-34.
    [73]Hoppert M, Mahony T J, Mayer F, Miller D J. Quaternary structure of the hydroxylamine oxidoreductase from Nitrosomonas europaea[J]. Arch. Microbiol.1995,163:300-306.
    [74]Sayavedra-Soto L A, Hommes N G, Arp D J. Characterization of the gene encoding hydroxylamine oxidoreductase in Nitrosomonas europaea[J]. J Bacteriol,1994.176:504-510
    [75]Bergmann D J, Hooper A B. Sequence of the gene, amoB, for the 43-kDa polypeptide of ammonia monooxygenase of Nitrosomonas europaea. Biochem. Biophys[J]. Res. Commun.1994,204:759-762
    [76]Moir J W, Wehrfritz J M, Spiro S, Richardson D J. The biochemical characterization of a novel non-haem iron hydroxylamine oxidase from Paracoccus denitrificans GB17[J]. Biochem. J.1996,319:823-827
    [77]Sayavedra-Soto L A, Hommes N G, Alzerreca J J, Arp D J, Norton J M, Klotz M G. Transcription of the amoC, amoA and amoB genes in Nitrosomonas europaea and Nitrosospira sp. NpAV[J]. FEMS Microbiol. Lett.1998,167:81-88
    [78]Sayavedra-Soto L A, Hommes N G, Russell S A, Arp D J. Induction of ammonia monooxygenase and hydroxylamine oxidoreductase mRNAs by ammonium in Nitrosomonas europaea[J]. Mol. Microbiol. 1996,20:541-548
    [79]Stein L Y, Arp D J. Ammonium limitation results in the loss of ammonia-oxidizing activity in Nitrosomonas europaea[J]. Appl. Environ. Microbiol.1998,64:1514-1521.
    [80]Wilhelm R., Abeliovich A. and Nejidat A. Effect of longterm ammonia starvation on the oxidation of ammonia and hydroxylamine by Nitrosomonas europaea[J]. J. Biochem. Tokyo.1998,124:811-815
    [81]Andersson Maria G I, Natacha B, Middelburg J J. Comparison of nitrifier activity versus growth in the Scheldt estuary-a turbid, tidal estuary in northern Europe [J]. Aquatic Microbial Ecology.2006,42(2): 149-158
    [82]Benthum van W. A. J, Loosdrecht van M. D. M, Heijnen J. J. Control of heterotrophic layer formation on nitrifying biofilms in a biofilm airlift suspension reactor[J]. Biothchnology and Bioengineering.1997, 53(4):397-405
    [83]Tappin A D, Harris J R W, Uncles. R J. The fluxes and transformations of suspended particles, carbon and nitrogen in the Humber estuarine system (UK) from 1994-1996:results from an integrated observation observation and modeling study [J]. The Science of the Environment,2003,10(1):665-713
    [84]Anthonson A C. Inhibition of nitrification by ammonia and nitrous acid[J]. Water Pollution Control Federation.1976,48(5):835-852
    [85]Villaverde S, Fdz-Polanco F, Garcia P A. Nitrifying biofilm acclimation to free ammonia in submerged biofilters:Start-up influence[J]. Water Research,2000,34(2):602-610
    [86]Vadivelu V M,Keller J, Yuan Z. Effect of free ammonia and free nitrous acid concentration on the anabolic and catabolic processes of an enriched Nitrosomonas culture[J]. Biotechnology and Bioengineering.2006a,95(5):830-83918.
    [87]Saraswat N, Alleman JE, Smith TJ et al. Enzyme immunoassay detection of Nitrosomonas europaea[J]. Appl.Environ.Microbiol.1994,60:1969-1973
    [88]张伟.硝化细菌的富集培养及氨单加氧酶基因片段的PCR扩增[D].浙江大学
    [89]Hadas A S, Feigenbaum A F, Portnoy K.Nitrification rates in profiles of differently managed soil types[J].Soil Sci.Soc.Am.J.1986,50:633-639
    [90]Anderson Q E.The effect of low temperatures on nitrification of ammonia in cecil sandy loam[J].Soil Sci.Soc.Am.Proc.1960,24:286-289
    [91]张树兰,杨学云,吕殿青等.几种土壤剖面的硝化作用及其动力学特征[J].上壤学报.2000,37(3):372-379
    [92]Brion N, Billen G, Guezennec L, Ficht A. Distribution of Nitrifying Activity in the Seine River (France) from Paris to the Estuary[J]. Earth and Environmental Science.2000,23(5):p.669-682.
    [93]Abril G, Frankignoulle M. Nitrogen-alkalinity Interactions in the highly polluted Scheldt Basin(Belgium)[J]. Water Research,2001,35(3):844-850
    [94]Herbert R A. Nitrogen cycling in coastal marine ecosystems[J]. FEMS Microbiol.Rew.,1999,23:563~590
    [95]方士,李筱焕.高氨氮味精废水的亚硝化/反亚硝化脱氮研究[J].环境科学学报,2001,21(1):79-83
    [96]贺锋,吴振斌,陶著等.复合垂直流人工湿地污水处理系统硝化与反硝化作用[J].环境科学.2005,26(1):47-50.
    [97]李素珍.沉积物-水界而含氮化合物的释放行为及若干影响因素研究[D].北京师范大学.2007
    [98]Munro P E. Inhibition of nitrifers by grass root xtracts[J]. J. appl. Ecol.,1996,3:231-238
    [99]刘学端,海底及污染环境中微生物群落分子多样性研究[D].2003,湖南农业大学.
    [100]Sinigalliano C D, Kuhn D N. Jones R D. Amplification of the amoA gene form diverse species of ammonium-oxidizing bacteria and from an indigenous bacterial population from seawater[J]. Applied and Environmental Microbiology.1995.61(7):2702-2706
    [101]Ward B B, Voytek M A, Witzel K P. Phylogenetic diversity of natural populations of ammonia oxidizers investigated by specific PCR amplification[J]. Microb. Ecol.1997,33:87-96.
    [102]Whitby C B, Saunders J R, Rodriguez J, Pickup R W, McCarthy A. Phylogenetic diierentiation of two closely related Nitrosomonas spp. that inhabit different sediment environments in an oligotrophic freshwater lake[J]. Appl. Environ. Microbiol.1999,65:4855-4862.
    [103]曾润颖,太平洋暖池区深海沉积物中微生物分子生态学研究[D].2003,厦门大学.
    [104]贾俊涛,宋林生,李筠,T-RFLP技术及其在微生物群落结构研究中的应用[J].海洋科学.2004,28(3):64-69
    [105]Liu W T, Marsh T L, Cheng H, et al. Characterization of microbial diversity by determining terminal restriction fragment length polymorphisms of genes encoding 16S Rrna[J]. Appl Environ Microbiol, 1997,63(11):4516-4522
    [106]Saikaly P E, Stroot P G, Oerther D B. Use of 16S rRNA gene terminal restriction fragment analysis to assess the impact of solids retention time on the bacterial diversity of activated sludge[J]. Appl Environ Microbiol.2005,71(10):5814-5822
    [107]Horz H P, Rotthauwe J H, Lukow T, et al. Identification of major subgroups of ammonia-oxidizing bacteria in environmental samples by T-RFLP analysis of amoA PCR products[J]. Journal of Microbiological Methods.2000,39(3):197-204.
    [108]Muyzer G, Waal E C, Uitterlinden A G. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S Rrna[J]. Appl. Environ. Microbiol.1993.59(3):695-700.
    [109]Araya R, Yamaguchi N, Tani K, Nasu M. Change in the Bacterial Community of Natural River Biofilm during Biodegradation of Aniline-Derived Compounds Determined by Denaturing Gradient Gel Electrophoresis[J]. Journal of Health Science,2003:49(5):379-385
    [110]吴鑫DGGE指纹图谱分析太湖富营养化水体中细菌群落结构的变化[D].上海交通大学,2007
    [lll]Wakelin S A, Colloff M J, Kookana R S. Effect of Wastewater Treatment Plant Effluent on Microbial Function and Community Structure in the Sediment of a Freshwater Stream with Variable Seasonal Flow[J]. Applied and Environmental Microbiology.2008,74(9):2659-2668
    [112]Freitag T E, Chang L, Prosser J I. Changes in the community structure and activity of betaproteobacterial ammonia-oxidizing sediment bacteria along a freshwater-marine gradient[J]. Environmental Microbiology.2006,8(4):684-696
    [113]张喆.山东近岸海域浮游细菌-病毒生态学调查及沉积物细菌多样性研究[D].2008,中国海洋大学
    [114]Wagner M, Rath G, Amann R, Koops H P, Schleifer K H. In situ identi¢cation of ammonia-oxidizing bacteria[J]. Syst. Appl. Microbiol.1995,18:251-264
    [115]Voytek, M.A., Priscu, J.C. and Ward, B.B. The distribution and relative abundance of ammonia-oxidizing bacteria in lakes of the McMurdo Dry Valley, Antarctica[J]. Hydrobiologia.1999,401:113-130.
    [116]Altmann D, Stlel P, Amann R, Beer D D. Distribution and activity of nitrifying bacteria in natural stream sediment versus laboratory sediment microcosms[J]. Aquatic Microbial Ecology.2004.36:73-81
    [117]Sykes P J, Neoh S H. et al. Quantification of for PCR by use of limiting targets dilution[J]. Bio Techniques 1992.13:444-449
    [118]Siebert P D and Larriek J W. Competitive PCR[J].Nature.1992,359:557-558
    [119]Gilliland G, Perrin S Blanchard K, Bunn H F. Analysis of cytokine mRNA and DNA:detection and quantitation by competitive polymerase chain reaction[J]. Proc. Natl. Acad. Sci. USA.1990,87: 2725-2729
    [120]赵晓祥,庞晓倩,庄惠生.荧光定量PCR技术在环境监测中的应用研究[J].环境科学与技术.2009,32(12):126-128
    [121]王廷华,景强.PCR理论与技术[M].北京:科学出版社.1995
    [122]李庆义,刘小真.PCR技术在环境监测中的应用态势[J].江西科学.2008,26(3):339-444
    [123]Mendum T A, Sockett R, Hirsch P R. Use of molecular and isotopic techniques to monitor the response of autotrophic ammonia-oxidizing populations of the beta subdivision of the class Proteobacteria in arable soils to nitrogen fertilizer [J]. Appl. Environ. Microbiol.1999.6:4155-4162.
    [124]Garnier J A, Emmanuelle M. Anniet M L, Billen G F. Potential Denitrification and Nitrous Oxide Production in the Sediments of the Seine River Drainage Network[J]. Environ. Qual.2010,39(2): 449-459
    [125]董莲华,杨金水,袁红莉.氨氧化细菌的分子生态学研究进展[J].应用生态学报.2008,19(6):1381-1388
    [126]Hermansson A, Lindgren P E. Quantification of ammonia-oxidizing bacteria in arable soil by real-time PCR[J]. Applied and Environmental Microbiology.2001,67(2):972-976
    [127]Okano Y, Krassimira R H, Christian M L, et al. Application of real-time PCR to study effects of Ammonium on population size of ammonia-oxidizing Bacteria in soil[J]. Applied and Environmental Microbiology,2004,70(2):1008~1016
    [128]Jordan F L, Cantera J L, Fenn M E, et al. Autotrophic ammonia-oxidizing bacteria contribute minimally to nitrification in a nitrogen-impacted forested ecosystem[J]. Applied and Environmental Microbiology. 2005.71(1):197-206
    [129]Urakawa H, Maki H, Kawabata S, Fujiwara T, et al. Abundance and Population Structure of Ammonia-Oxidizing Bacteria That Inhabit Canal Sediments Receiving Effluents from Municipal Wastewater Treatment Plants[J]. Applied and Environmental Microbiology,2006,72(10):6845-6850
    [130]Beman J M, Popp B N, Francis C A. Molecular and biogeochemical evidence for ammonia oxidation by marine crenarchaeota in the Gulf of California[J]. Evidence for archaeal ammonia oxidation in the ocean. International Society for Microbial Ecology,2008:1-13
    [131]Meybeck M. Global analysis of river systems: from Earth system controls to Anthropocene syndromes[J]. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences 2003,358(1440):1935-1955
    [132]陈静生.河流水质管理及中国河流水质[M].北京:科学出版社.2006:84
    [133]中国环境状况公报,2010
    [134]Geldreich E. Pathogens in freshwaters. In Global freshwater quality, a first assessment[M]. (ed. M. Meybeck, D. Chapman & R. Helmer) Oxford:Blackwell.1989:58-78
    [135]Meybeck M, Helmer R. The quality of rivers:from pristine stage to global pollution[J]. Global and Planetary Change.1989,4(1):283-309
    [136]Kimstach V, Meybeck M, Baroudy E. A water quality assessment of the former Soviet Union. London:E & F N Spon.1998
    [137]童保铭,陈添,徐谦,等.北京市北运河系水质有机污染时空变化特征[J].首都师范大学学报:自然科学版.2009,3(30):56-60
    [138]杨丽蓉,孙然好,陈立顶.流域地表水污染过程的时空变异及其影响机制分析:以温榆河中上游地区为例[J].环境科学.2011,32(1):73-79
    [139]王俊安等.论北运河复航与可持续发展[J].中国水运2007.3
    [140]北运河洪水调度规程(暂行).北京市水务网,2001.http://www.bjwater.gov.cn/tabid/134/InfoID/8298/frtid/149/Default.aspx
    [141]郭金燕.北京市北运河流域洪水调度系统研究技术方案设计[J].北京水务.2006(增2)24-27
    [142]Smith V H. Low nitrogen to phosphorus ratios favor dominance by blue-green algae in lake [J]. phytoplankton. Science.1983,221:669-671
    [143]唐汇娟.武汉东湖浮游植物生态学.武汉:中国科学院水生生物研究所博士学位论文,2002:1-99
    [144]秦伯强,杨柳燕,陈非洲等.湖泊富营养化发生机制与控制技术及其应用[J].科学通报,2006,51(16):1857-1867
    [145]朱向东,郝二成,周军等.ASM2d模型在北京高碑店污水处理厂的应用[J].给水排水.2007,33(4):101-104
    [146]Liu C W, Lin K H, Kuo Y M. Application of factor analysis in the assessment of groundwater quality in a blackfoot disease area in Taiwan[J]. The Science of the Total Environment.2003,313:77-89
    [147]李磊,夏培艳,唐峰华等.舟山附近海域富营养化的时空分布及其与环境因子的关系[J1.生态学杂志.2011,30(4):771-777
    [148]张传松,王修林,石晓勇.东海赤潮高发区营养盐时空分布特征及其与赤潮的关系[J].环境科学.2007,28(11):2416-2425
    [149]李莲芳,曾希柏,李国学等.北京市温榆河沉积物的重金属污染风险评价[J].环境科学学报,2007,27(2):289-297
    [150]CHAPMAN D. Water quality assements:A guide to the use of Bioca, sediments and water in environmental monitoring[M] London, New York, Tokyo, M elbourne M adras:Chapman & Hall. 1992
    [151]李云,李道季.长江口邻近海域浮游细菌分布于环境因子的关系[J].海洋通报.2007,26(6):9-19
    [152]Melissa A R, Laura G L. Nutrients and other Abiothic Factors Affecting Bacterial Communities in an Ohio River (USA)[J]. Microbial Ecology.2007,54(2):374-383
    [153]Joo S, Lee S R, Park S. Monitoring of phytoplankton community structure using terminal restriction fragment length polymorphism (T-RFLP)[J]. Journal of Microbiological Methods.2010,81(1:61-68
    [154]Marsh T L, Saxman P, Cole J, Tiedje J. Terminal restriction fragment length polymorphism analysis program, a web-based research tool for microbial community analysis[J]. Applied and Environmental Microbiology.2000,66(8):3616-3620
    [155]Kent A D, Smith D J, Benson B J, Triplett E W. Web-Based Phylogenetic Assignment Tool for Analysis of Terminal Restriction Fragment Length Polymorphism Profiles of Microbial Communities[J]. Applied and Environmental Microbiology.2003,69(11):6768-6776
    [156]周谐,郑坚,黄书铭等.三峡库区重庆段浮游藻类调查及水质评价[J].中国环境监测,2006,22(4):70-73.
    [157]文航,蔡佳亮,苏玉,王东伟,黄艺.滇池流域入湖河流丰水期着生藻类群落特征及其与水环境因子的关系[J].湖泊科学.2011,23(1):40-48
    [158]Jan Leps, Petr Smilauer编著,赖江山译.基于CANOCO的生态学数据的多元统计分析[M].第十章:6
    [159]吕明姬,汪杰,范铮等.滇池浮游细菌群落组成的空间分布特征及其与环境因子的关系[J].环境科学学报.2011,31(2):299-306
    [160]Urakawa H, Maki H, Kawabata S, et al. Abundance and population structure of ammonia-oxidizing bacteria that inhabit canal sediments receiving effluents from municipal wastewater treatment plants [J]. Applied and Environmental Microbiology.2006,72(10):6845-6850
    [161]Koops H, Pommerening-Roser A. The Lithoautotrophic Ammonia-Oxidizing Bacteria[M]. In:Brenner DJ et al (eds) Bergey's Manual of Systematic Bacteriology. Springer, New York,2005:141-147
    [162]Lim J, Lee S, Hwang S. Use of quantitative real-time PCR to monitor population dynamics of ammonia-oxidizing bacteria in batch process[J]. J Ind Microbiol Biotechnol,2008,35:1339-1344
    [163]Koops H, Pommerening-Roser A. Distribution and ecophysiology of the nitrifying bacteria emphasizing cultured species[J]. FEMS Microbiol Ecol.2001,37:1-9
    [164]Pommerening-Roser A, Rath G, Koops H. Phylogenetic diversity within the genus Nitrosomonas[J]. Syst Appl Microbiol.1996,19:344-351
    [165]赵大勇,燕文明,冯景伟.实时荧光定量PCR技术对氨氧化细菌的研究[J].环境科学与技术.2010,33(12):8-13
    [166]陈岭.氨单加氧酶amoA在氨氧化细菌种群分析和定量检测中的应用研究[D].浙江大学,2003
    [167]Norton J M, Alzerreca J J, Suwa Y, et al. Diversity of ammonia monooxygenase operon in autotrophic ammonia-oxidizing bacteria[J]. Archives of Microbiology.2002,177:139-149
    [168]刘晶静,吴伟祥,丁颖,石德智,陈英旭.氨氧化古菌及其在氮循环中的重要作用[J].应用生态学报.2010,21(8):2154-2160
    [169]Cebron A, Berthe T, Garnier J. Nitrification and Nitrifying Bacteria in the Lower Seine River and Estuary[J]. Applied and Environmental Microbiology.2003,69(12):7091-7100
    [170]Zhang J, Li D P, et al. Nitrification and nitrifying bacteria in the Chengdu section of middle Min River(China)[J]. African Journal of Biotechnology.2011,10(29):5835-5847
    [171]Liu Z H, Huang S B, Sun G P, Xu Z C, Xu M Y. Diversity and abundance of ammonia-oxidizing archaea in the Dongjiang River, China[J]. Microbiological Research,2011,166:337-345
    [172]Schmid M U. Twachtmann M, Klein M, Strous S, et al. Molecular evidence for genus level diversity of bacteria capable of catalyzing anaerobic ammonium oxidation[J]. Syst. Appl. Microbiol.2000,23: 93-106
    [173]Goni-Urriza M., Capdepuy M, Arpin C, Raymond N, et al. Impact of an urban effluent on antibiotic resistance of riverine Enterobacteriaceae and Aeromonas spp[J]. Appl. Environ. Microbiol.2000,66: 125-132
    [174]Teira E, Martinez-Garcia S, Lonborg C, Alvarez-Salgado X A.2011. Betaproteobacteria growth and nitrification rates during long-term natural dissolved organic matter decomposition experiments[J]. Aquatic Microbial Ecology.2011,63(1):19-27
    [175]国家环保局.水和废水监测分析方法[D].北京:中国环境科学出版社.1989:366
    [176]KONIG A, BACHMANN T T, METZGER J W, SCHMID R D. Disposable sensor for measuring the biochemical oxygen demand for nitrification and inhibition of nitrification in wastewater. Springer-Verlag[J]. Appl. Microbiol. Biotechnol.1999,51:112
    [177]Brion N, Bilien G. Wastewater as a source of nitrifying bacteria in river systems:the case of the river Seine downstream from Paris[J]. Wat. Res.2000,34 (12):3213
    [178]Yoshioka T, Takahashi M, Saijo Y. Active nitrification in the hypolimnion of Lake Kizaki in early summer.1. Nitryfying activity of rapidly sinking particles[J]. Arch. Hydrobiol.1985,104 (4):557
    [179]Gelda R K, Brooks C M, Effler S W, Auer M T. Interannual variations in nitrification in a hypereutrophic urban lake:occurences and implications[J]. Wat. Res.2000,34 (4):1107
    [180]Polak J. Nitrification in the surface water of the Wloclawek dam reservoir. The process contribution to biochemical oxygen demand(N-BOD)[J]. Polish Journal of Environmental Studies.2004,13(4): 415-424
    [181]Wood L B, Hurley B J, Matthews P J. Some observations on the biochemistry and inhibition of nitrification[J]. Wat. Res.1981,15:543
    [182]杜英豪,陈碧芸.BOD5测定中硝化作用干扰和消除[J].中国给水排水.2002,18(1):88-89
    [183]Mueller D, Kirchesch V. Nitrification in the rivers Moselle and Danube[J]. Arch. Hydrobiol. Suppl.1983, 68(1):63-76
    [184]Goosen N K, Van Rijswijk P, Brockmann, U. Comparison of heterotrophic bacterial production rates in early spring in the turbid estuaries of the Scheldt and the Elbe[J]. Hydrobiologia.1995,311:31-42
    [185]Brion N, Billen G, Guezennec L, Ficht A. Distribution of Nitrifying Activity in the Seine River (France) from Paris to the Estuary[J]. Estuaries.2000,23(5):669-682
    [186]Brion N, Billen G. Wastewater as a source of nitrifying bacteria in river systems:the case of the river Seine downstream from Paris[J]. Wat. Res.2000,34(12):-3213-3221
    [187]Dai M, Wang L F, Guo X H, Zhai W D, et al. Nitrification and inorganic nitrogen distribution in a large perturbed river/estuarine system:the Pearl River Estuary, China[J]. Biogeosciences Discuss.2008,5: 1545-1585
    [188]Andersson M G I, Brion N, Middelburg J J. Comparison of nitrifier activity versus growth in the Scheldt Estuary-a turbid, tidal estuary in northern Europe[J]. Aquat Microb Ecol.2006,42:149-158
    [189]方士,李筱焕.高氨氮味精废水的亚硝化/反亚硝化脱氮研究[J].环境科学学报.2001,21(1):79-83
    [190]王歆鹏,陈坚,华兆哲,伦世仪.硝化菌群在不同条件下的增殖速率和硝化活性[J].应用与环境生物学报.1999,5(1):64-68.
    [191]Coci M, Nicol G W, Pilloni G N, Schmid M, et al. Quantitative Assessment of Ammonia-oxidizing bacterial communities in the Epiphyton of submerged macrophytes in shallow lakes[J]. Applied and Environmental Microbiology.2010,76(6):1813-1821
    [192]刘晶静,吴伟祥,丁颖,石德智,陈英旭.氨氧化古菌及其在氮循环中的重要作用[J].应用生态学报.2010,21(8):2154-2160
    [193]陈静生.河流水质原理及中国河流水质[M].2006.北京:科学出版社
    [194]Berounsky VM & Nixon SWTemperature and the annual cycle of nitrification in waters of Narragansett Bay[J]. Limnol. Oceanogr.1990,35:1610-1617
    [195]Kholdebarin B, Oertli J J. Effect of suspended particles and their size on nitrification in surface water[J]. Wat. Pollut. Control. Fed.1977,49:1693
    [196]DE BIE M J M, STARINK M, BOSCHKER H T S, PEENE J J, LAANBROEK H J. Nitrification in the Schelde estuary:methodological aspects and factors influencing its activity[J]. FEMS Microb. Ecol. 2002,42:99
    [197]O'Mullan G D, Ward B B. Relationship of temporal and spatial variability of ammonia-oxidizing bacteria to nitrification rates in Monterey Bay, California[J]. Appl Environ Microbiol.2005,71: 697-705
    [198]Collos Y, Linley E A S, Frikha M G, Ravail B. Phytoplankton death and nitrification at low temperatures[J]. Estuarine, Coastal and Shelf Science.1988,27(3):341-347

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700