弹道导弹雷达跟踪与识别研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
弹道导弹是现代战争中极具威力的进攻性武器,导弹战将成为战争初期或关键时刻的主要作战方式。为了提高弹道导弹的突防能力,各种突防措施纷纷被提出,其中有源假目标欺骗干扰因其高“性价比”而越来越受到重视。雷达作为导弹防御系统中的核心探测器,其跟踪、识别性能的优劣对整个导弹防御系统的性能都有很大的影响。导弹目标跟踪是导弹防御雷达最基本、最核心任务,有源假目标欺骗干扰使导弹防御雷达面临严峻挑战,研究弹道导弹的雷达跟踪和识别技术,可为提高导弹防御雷达的跟踪能力和抗电子干扰能力提供技术支持,同时可为弹道导弹突防仿真实验软件提供核心算法支持,为有源欺骗干扰策略优化等提供参考依据,因此是迫切需要解决的军事前沿课题,具有重要的军事价值和现实意义。
     本文以导弹防御技术研究和发展的需求为背景,以雷达数据处理为内在主线,研究了弹道导弹的雷达跟踪和识别技术。具体包括:中段弹道目标跟踪、再入段弹道目标跟踪、单部雷达基于动力学特性的有源假目标识别、组网雷达下多目标跟踪和有源假目标识别。
     中段是弹道导弹飞行时间最长、飞行相对平稳的阶段,雷达在该阶段跟踪最为有利,精确的中段跟踪是雷达进行落点预报、宽带识别、制导拦截的基础。首先,对基础性的背景知识进行了介绍。接着,详细推导了四种典型坐标系下中段弹道目标的动力学模型,特别是对非笛卡尔的传感器坐标系下的目标动力学模型给出了独立的显式表达,使其可以直接套用EKF滤波(Extended Kalman Filter,EKF)结构。分析比较了不同跟踪坐标系下中段弹道目标跟踪性能的优劣。对基础性、共性的目标动力学模型和跟踪坐标系问题进行了系统整合归纳,为进一步从事该领域理论研究和实际应用提供了良好基础。最后,提出了一种改进的弹道中段目标跟踪算法,该算法比传统的EKF算法跟踪精度更高。
     当导弹再入大气层时,会受到两个主要的作用力:地球重力和空气阻力,如果发生机动,那么还必须考虑第三个力—空气升力。不执行机动的再入目标称之为弹道式再入飞行器,否则称之为机动再入飞行器。论文首先对空气动力进行了模型研究。接着,详细推导了四种典型坐标系下弹道式再入目标的动力学模型,比较了不同跟踪坐标系下再入段跟踪算法性能。最后,结合两种典型机动再入弹道,仿真分析了两类机动再入目标跟踪算法的性能。
     雷达系统前端和信号处理无法滤出、识别的高逼真有源假目标,会对雷达造成严重威胁。本文提出了利用动力学特性识别有源假目标的新思路和新方法。其原理是:有源假目标的运动特性与实体目标的运动特性存在本质差异;而滤波器动力学模型通常依据真目标运动模型而建立,那么假目标运动特性与滤波器动力学模型则必定不一致,这种不一致会导致雷达滤波器出现某种程度的“失配”,根据这种“失配”即可对有源假目标进行识别。如何把这种隐性的“失配”定量的表征出来,也即寻找能灵敏反映真假目标运动特性差异的识别特征量,是有源假目标识别技术的关键所在。根据识别特征量的不同,提出了三种有源假目标识别方法:基于弹道平面特性的识别;基于加速度模型匹配的识别;基于归一化误差的识别。利用目标动力学特性来识别高逼真有源假目标,其本质是在充分认识目标运动特性的基础上,对雷达滤波信息进行挖掘、再利用。利用动力学特性进行识别,是抗电子干扰理论和技术上的重要创新。
     针对高逼真有源假目标,组网雷达不仅可以利用动力学特性进行识别,还可以采用特有的同源检验技术进行识别。同源检验是指通过判断来自不同雷达分站的点迹或航迹在统一坐标系下是否一致进而识别目标真假。针对集中式组网雷达,可以采用量测点迹同源检验来识别有源假目标;针对分布式组网雷达,采用滤波航迹同源检验来识别有源假目标。有源假目标干扰下的组网雷达跟踪和识别是紧密耦合的过程。组网雷达下多目标跟踪和识别技术既是对目标跟踪技术的拓展,又是对抗电子干扰技术的丰富。
     论文最后对全文进行了总结,指出了论文的创新之处,对今后工作方向提出了一些参考意见和想法。
     本论文的研究工作来源于实际项目需求,其大多数研究结果和结论已经成功应用到实际工程项目中,并取得了良好的效果。
The ballistic missiles are great powerful attacking weapons in modern wars and will play an important role at the beginning or key moment in the wars. To improve the survival captibility of the ballistic missiles, many peneration measures are proposed. Among all these measures, the active decoys have obtained more and more attention because of the high efficiency. As the key sensors in ballistic missile defense (BMD) system, the quality of tracking and discrimination of the radars has a crucial impact on the whole system's performance. Tracking ballistic missiles is the basic and primary task for the radars in BMD, but active decoys bring serious challenges in this area. Researching on the ballistic missile tracking and discrimination can provid the technology support to improve the tracking and anti-deception capability of the radar. Simultaneously, the key algorithm in the platform of the ballistic missile penetration simulation and the theory of the deception jamming optimization can be provided by this researching. So, as an urgent project, deeply researching on this topic has a great military value and reality significance.
     Taking the request of the researching and development of the missle defence technology as the background, the tracking and discrimination technologies are investigated based on the radar data processing. The investigation includes the ballistic target tracking in midcourse and reentry regime of the trajectory and the discrimination of active decoys by the single radar or the radar network.
     The midcourse, as the longest and stablest phase in the track, is the most valuable phase for radar tracking. Precisely tracking is the basis for falling point prediction, target recognition, guiding and intercepting. First, necessary and rudimentary background information concerning ballistic tracking is provided. Then, the target dynamics models are derived in four typical coordinate systems (CS). Especially the decoupled explicit equation in non-Cartesian CS is given, which is suitable for EKF directly. The performances of tracking in different CS are compared and summarized, which provides a good basis for further theory and practice research. Finally, an improved algorithm is proposed for ballistic missile tracking in midcourse, which has a better performance than EKF.
     During the reentry phase, there are two major forces impact on the missile: the gravity and atmospheric drag. If maneuver is presented, a third force—aerodynamic lift force—must be considered. If the maneuver exists, the reentry vehicle (RV) is called ballistic RV (BRV). If the maneuver doesn't exist, it is called maneuvering RV (MaRV). First, aerodynamic forces are described with the concerning of the air density, drag and lift forces. Then, the target dynamics models are derived in four typical CS, and the performance of tracking in different CS are compared and summarized. Finally, with the background of two typical maneuvering reentry trajectories, two kinds of tracking algorithms are utilized and the performances are compared
     The high-fidelity active decoy is a great threat to radar, which can't be filtered or discriminated by radar receiver and signal processing. The theory and technique on active decoy discrimination are proposed based on the radar tracking. The motion model of the active decoy is different from the real target essentially. The dynamic model of the radar filter is generally built based on the real target, so it must be unfit for the active decoy. The unmatchable filter, which is produced by the unfitness, can be utilized to discriminate the active decoy. The quantitative expression of the recessive unfitness and the sensitive measurement of the motive character discrimination are the keys of the discrimination technology. Three methods are proposed based on different characteristics: the trajectory's planarity; the acceleration model; the normalized error. These methods are all based on the target's dynamics characteristic, and made the best use of the radar filtering data. The theory and technique on discriminating active decoy based the dynamics characteristic is great creativeness in the field of electronic counter-countermeasures (ECCM).
     Radar network can discriminate the high-fidelity active decoy not only based on the target dynamics characteristics but also based on the same-source-testing. The same-source-testing discriminates the active decoys by judging whether the points or filtered trajectories measured by the different radars can be matched or not in the same CS. In the same-source-testing, the measured points are utilized for the centralized radar network, and the filtered trajectories are adopted for the distributed radar network. For the discrimination technology of radar network, the discriminating is coupled with the tracking. Not only the tracking technique is expanded, but also the ECCM is enriched by the tracking and discrimination technologies of radar network.
     In the last part, the whole dissertation is summarized, the major creativite topices are pointed out and some suggestions for the future work are brought out.
     The research in the dissertation stems from the request of practical projects and its conclusion and methods are successfully applied in practice and fairly good effects are obtained.
引文
[1]袁俊.远程攻击导弹的发展特点及趋势.中国航天,1999,(8):38-43.
    [2]穆利军,蔡远文.国外战略导弹的现状及发展趋势.兵工自动化,2007,(4):109-110.
    [3]王凤山,李孝军.现代战争条件下的防空作战.http://www.chinamil.com.cn/sitel/jsslpdjs/2005-01/19/content_117640.htm
    [4]导弹威胁与导弹防御.http://cnread.net/cnreadl/jszl/y/yiming/Sjjs1/040.htm
    [5]俄罗斯将从2006年起部署机动式“白杨-M”导弹.http://news.xinhuanet.com/world/2005-05/05/content_2920078.htm
    [6]刘石泉.弹道导弹突防技术导论.北京:中国宇航出版社.2003.
    [7]进攻性导弹奇招百出.http://www.zaobao.com/special/newspapers/2001/10/dzkjb271001a.html
    [8]与NMD相对抗的弹道导弹突防新技术http://www.pladaily.com.cn/gb/pladaily/2001/07/18/20010718001224_it.htm
    [9]俄军7大招式破解美国反导系统.http://gb.cri.cn/2201/2004/12/13/107@389539.htm
    [10]齐艳丽.美、俄战略弹道导弹的装备现状.导弹与航天运载技术.2003,(1):53-58.
    [11]邱淮建,刘沛伟.地地战术弹道导弹发展历程.国防科技.2003,(8):93-94.
    [12]张光义,王德纯.弹道导弹防御系统中的预警探测雷达.系统工程与电子技术,1995,5:39-47.
    [13]沈剑波.加强弹道导弹防御系统的研究.导弹与航天运载技术,2000,(3):5-10.
    [14]吴展.反导条约与美国的反导计划.美国研究,2002,16(1):7-21
    [15]亚·戈尔什科夫,尤·达米诺地,熊友奇.“日出之国”的盾牌--日本着手建立导弹防御系统.世界安全丛书.2004,(4):8-11.
    [16]苗鹤青.南亚版NMD即将启动:印度NMD国家导弹防御系统构想出笼.国际展望,2004,(17):8-9.
    [17]史岩译.新兴导弹国家对抗NMD系统手段概述.863先进防御技术通讯(A卷),2001,(7):27-46.
    [18]舍曼.弗兰克尔.用有源假目标挫败战区导弹防御雷达(连载一).863先进防御技术通讯(A类),1997.11:25-35.
    [19]舍曼.弗兰克尔.用有源假目标挫败战区导弹防御雷达(连载二).863先进防御技术通讯(A类),1997.12:30-39.
    [20]王国玉.基于雷达对抗的战区导弹突防仿真研究.博士学位论文.长沙:国防科技大学研究生院,1999,9.
    [21] D Curtis Schleher. Electronic warfare in the information age. Boston, MA: Artech House, 2000.
    
    [22] A. H. Jawinski. Stochastic Processes and Filtering Theory. Academic Press, New York, 1970. p279-280, 349-351.
    
    [23] T. H. Kerr. Streamlining Measurement Iteration for EKF Target Tracking. IEEE Trans. Aerospace and Electronic Systems. 1991, 27(2):408-421.
    
    [24] J.A. Roecker. Track Monitoring When Tracking With Multiple 2-D Passive Sensors. IEEE Trans. Aerospace and Electronic Systems, 1991, 27(2):872-875.
    
    [25] P.F. Easthope and N. W. Heys. Multiple-Model Target-Oriented Tracking System.In Proc. SPIE Conf. on Signal and Data Processing of Small Targets 2000, vol. 2235,1994.
    
    [26] M. Yeddanapudi. Y. Bar-Shalom, Y. Pattipati, and S. Deb. Ballistic Missile Track Initiation from Satellite Observations. IEEE Trans. Aerospace and Electronic Systems,1995, 31(3): 1054-1071.
    
    [27] J.A. Lawton, R, J. Jesionowski, and P. Zarchan. Comparison of Four Filtering Options for a Radar Tracking Problem. AIAA Journal of Guidance, Control and Dynamics, 1998, 21(4):618-623.
    
    [28] Y. Bar-Shalom and X. R. Li. Multitarget-Multisensor Tracking: Principles and Techniques. YBS Publishing, Storrs, CT, 1995.
    
    [29] P. J. Costa. Adaptive Model Architecture and Extended Kalman-Bucy Filters. IEEE Trans. Aerospace and Electronic Systems, 1994, 30(2): 525-533.
    
    [30] P. F. Easthope. Using TOTS for More Accurate and Responsive Multi-Sensor,End-to-End Ballistic Missile Tracking. In Proc. SPIE Conf. on Signal and Data Processing of Small Targets 2000, vol. 4048, Apr. 2000.
    
    [31] J. R. Moore and W. D. Blair. Practical Aspects of Multisensor Tracking. In Y.Bar-Shalom and W.D.Blair, editors, Multitarget-Multisensor Tracking: Applications and Advances, vol. III, Artech House, 2000.
    
    [32] R. R. Bate, D. D. Mueller, and J. E. White. Fundamentals of Astrodynamics. Dover Publications, 1971.
    
    [33] A. Miele. Flight Mechanics, Volume 1: Theory of Flight Paths. Addison-Wesley,Reading, MA, 1962.
    
    [34] Athans, M.et al. A Suboptimal Estimation Algorithm with Probabilistic Editing for False Measurements with Application to Target Tracking With Wake Phenomena. IEEE Trans on Automatic Control, 1997, 22(3):372-384.
    
    [35] E. Brookner. Tracking and Kalman Filtering Made Easy. John Wiley & Sons, Inc.,New York, 1989.
    
    [36] G. M. Siouris, G Chen, and J.Wang. Tracking an Incoming Ballistic Missile Using an Extended Interval Kalman Filter. IEEE Trans. Aerospace and Electronic Systems,1997, 33(1):232-240.
    
    [37] C. B. Chang, R. H. Whiting, and M. Athans. On the State and Parameter Estimation for Maneuvering Reentry Vehicles.IEEE Trans.Automatic Control,1977,22(2):99-105.
    [38]A Farina,B Ristic,D Benvenuti.Tracking a Ballistic Target:Comparison of Several Nonlinear Filters.IEEE Transactions on Aerospace and Electronic Systems,2002,38(3):854-867.
    [39]R.K.Mehra.A Comparison of Several Nonlinear Filters for Reentry Vehicle Tracking.IEEE Trans.Automatic Control,1971,16:307-319.
    [40]G.P.Cardillo,A.V.Mrstik,and T.Plambeck.A Track Filter for Reentry Objects with Uncertain Drag.IEEE Trans.AES,1999,35(2):395-409.
    [41]R.P.Wishner,R.E.Larson,and M.Athans.Status of Radar Tracking Algorithms.In Proc.Symp.Nonlinear Estimation,San Diego,CA,Sept.1970.
    [42]A.Farina,B.Ristic,D.Benvenuti.Tracking a Ballistic Target:Comparison of Several Nonlinear Filters.IEEE Trans.Aerospace and Electronic Systems,2002,38(3):854-867.
    [43]Robert Jesionowski,Paul Zarchan.Comparison of Filtering Options For Ballistic Coefficient Estimation.Sparta INC Arlington VA,1998.
    [44]C.B.Chang and J.Tabaczynski.Application of State Estimation to Target Tracking.IEEE Trans.Automatic Control,1984,29(2):98-109.
    [45]F.J.Regan and S.M.Anandakrishnan.Dynamics of Atmospheric Re-Entry.AIAA,New York,1993.
    [46]S.-C.Lee and C.-Y.Liu.Trajectory Estimation of Reentry Vehicle by Use of on-Line Input Estimator.Journal of Guidance,Control,and Dynamics,1999,22(6):808-815.
    [47]Hiroshi KAMEDA,Shingo TSUJIMICHI,and Yoshio KOSUGE.Target Tracking for Maneuvering Reentry Vehicles Using Multiple Maneuverging Models.SICE'97 July,Tokushima.1031-1036.
    [48]Olivier Dubois-Matra,Robert H.Bishop.Tracking and Identification of a Maneuvering Reentry Vehicl.AIAA Guidance,Navigation,and Control Conference and Exhibit,11-14,August 2003,Austin,Texas.
    [49]X.R.Li and V.P.Jilkov.A Survey of Maneuvering Target Tracking-Part Ⅱ:Ballistic Target Models.In Proc.2001,SPIE Conf.on Signal and Data Processing of Small Targets,vol.4473,San Diego,CA,USA,2001.
    [50]刑书宏.再入测量弹道的Kalman滤波计算.国防科技报告.GF38092,1983.
    [51]刘绍球.目标弹道参数的确定与显示研究.航天部科技报告,1986.
    [52]郑在齐,刘占恒.应用Kalman滤波估算再入飞行器轨道.航天部科技报告,1987.
    [53]Zhang Shu-chun,HU Guang-da,LIU Si-hua.Suboptimal Nonlinear Filters for Traacking a Ballistic Target.Journal of System Simulation.2005,17(3):601-619.
    [54]蔡洪.Unscented Kalman滤波用于再入飞行器跟踪.飞行器测控学报.2003, 22(3):12-16.
    [55]雍恩米,唐国金,陈磊.助推-滑翔导弹中段弹道方案的初步分析.国防科技大学学报.2006,28(3):6-10.
    [56]李裕山,姚郁.再入飞行器的大机动轨迹实现.哈尔滨工业大学学报.1997,29(5).
    [57]唐伟,张鲁民.弯体机动再入飞行器气动特性研究.空气动力学学报.1996,14(1).86-91.
    [58]唐伟,张勇,李为吉,桂业伟.可变弯尾飞行器空间螺旋机动的实现.空气动力学学报,2006,24(3):375-379.
    [59]陈刚,徐敏,万自明,陈士橹.具有内点状态约束的机动再入弹道优化设计.固体火箭技术.2006,29(2):79-82.
    [60]雍恩米,陈磊,唐国金.助推-滑翔弹道的发展及新型制导武器方案设想.飞航导弹,2006(3):18-22.
    [61]贾沛璋,王祖荣.对机动再入目标的跟踪方法.系统科学与数学.1983,3(4):284-294.
    [62]崔乃刚,赵钧,林晓辉等.再入机动目标动力学方程及雷达测量方程的建立.哈尔滨工业大学学报.1997,29(2):107-109.
    [63]崔乃刚,林晓辉.雷达对再入机动目标跟踪算法研究.宇航学报,1998,19(1):21-27
    [64]王小虎,王铁军,陈定昌.弹道导弹的雷达测轨算法.系统仿真学报.2004,16(1):129-132.
    [65]毛涛.空间监视相控阵雷达数据处理建模与仿真.硕士学位论文.长沙:国防科大,2003,11.
    [66]王建国,何佩琨,龙腾.径向速度测量在Kalman滤波中的应用.北京理工大学学报,2002,22(2):225-227.
    [67]陈永光,李修和,沈阳.组网雷达作战能力分析与评估.北京:国防工业出版社,2006.
    [68]方青.雷达组网数据融合处理中的点迹融合技术.现代电子.2002,(4):5-12.
    [69]段战胜,韩崇昭,陶唐飞.多传感器异步线性测量系统的数据融合.传感器技术.2003,22(12):43-45.
    [70]郭明,许录平.集中式多雷达系统的数据融合.雷达与对抗.2003,(1):19-22.
    [71]何友,王国宏,等.多传感器信息融合及应用.北京:电子工业出版社,2000.
    [72]Y.Bar-Shalom.Tracking Methods in a Multitarget Enviroment.IEEE Transaction on Automatic Control,1978,24(4):15-28.
    [73]巴宏欣,赵宗贵,杨飞,曹雷.多传感器坐目标跟踪的JPDA算法.系统仿真学报.2004,16(7):1563-1566.
    [74]王宁,郭立,金大胜,朱嘉.遗传算法在多传感器多目标静态数据关联中的应用.数据采集与处理.1999,14(1):18-21.
    [75]徐毓,金以慧.多站多目标雷达数据融合.火力与指挥控制.2003,28(1):15-18.
    [76]Y.Bar-Shalom,T.E.Fortman,Tracking and Data Association.New York,Academic Press,1988,26-31.
    [77]S.D,O'Neil and L.Yo Pao.Multisensor Fusion Algorithm for Tracking.Proc.1993American Control.Conf.San Francisco,CA,June 1993:859-863.
    [78]L.Y.Pao,C.W.Frei.A Comparison of Parallel and Sequential Implementation of a Multisensor Multitarget Tracking Algorithm.Proc.1995 American Control Conf.Seattle,Washington,June 1995:1683-1687
    [79]L.Y.Pao.Centralized Multisensor Fusion Algorithms for Tracking Applications.Control Engineering Practice,1994,2(5):875-887
    [80]S.Deb,M.Yeddanapudi,K.Pattipati,Y.Bar-Shalom.A Generalized S-D Assignment Algorithm for Multisensor-Multitarget State Estimation.IEEE Trans on AES,1997,33(2):523-537.
    [81]A.J.Kanyuck and R.A.Singer.Correlation of Multiple-site Track Data.IEEE Trans.on AES,1970,6(2):180-187.
    [82]R.A.Singer and A.J.Kanyuck.Computer Control of Multiple Site Track Correlation.Automation,1971,7:455-463.
    [83]W.R.Ditzler.A Demonstration of Multisensor Tracking.In Proceedings of the 1987 Tri-Service Data Fusion Symposium,June 1987:303-311.
    [84]何友,彭应宁.多传感器数据融合模型评述.清华大学学报,1996,(9):14-20.
    [85]何友.多传感器数据融合中的两种新的航迹相关算法.电子学报,1997,9:10-14.
    [86]Y.Bar-Shalom,L.Campo.The effect of the Common Process Noise on the Two-Sensor Fused-Track Covariance.IEEE Trans.Aerospace and Electronic Systems,1986,22(6):803-805.
    [87]Y.Bar-Shalom.On the Track-to-track,Correlation Problem.IEEE Trans on AC,1981,26(2):571-572.
    [88]郭治等.野战高炮团情报指挥系统航迹处理.华东工学院研究报告,1987,南京.
    [89]C.B.Chang,L.C.Youens.Measurement Correlation for Multiple Sensor Tracking in a Dense Target Environment.IEEE Trans.on AC,1982,27(6):1250-1252.
    [90]何友,彭应宁.分布式多传感器数据融合系统中的双门限航迹相关算法.电子科学学刊,1997(6):721-728.
    [91]M.kosaka,S.Miyamoto and H.Ihara.A Track Correlation Algorithm for Multisensor Integration.Proceedings of IEEE/AIAA 5~(th) Digital Avionics Systems Conf.,1983:10.3/1-8.
    [92]何友,谭庆海,蒋蓉蓉.多传感器综合系统中的航迹相关算法.火力与指挥控制,1989,(1):1-12.
    [93]王国宏,何友.基于模糊综合和统计假设检验的雷达与ESM相关方法.系统工程与电子技术,1997,(4):13-6.
    [94]何友.多目标多传感器分布信息融合算法研究.博士论文,北京:清华大学,1996,11.
    [95]刘纲,王国宏,何友.多雷达航迹模糊相关中运算模型选择及仿真比较.火控雷达技术.1994,(3):12-16.
    [96]何友,等.多目标多传感器模糊双门限航迹相关算法.电子学报,1998,(3):15-19.
    [97]何友,黄晓冬.基于模糊综合决策的航迹相关算法.海军工程大学学报,1999,(4):1-11.
    [98]J.F.Wilson III.A Fuzzy Logic Multisensor Association Algorithm.SPIE Vol.3068,1997:76-87.
    [99]M.Tummala,I.Glem,S.A.Midwood.Multisensor Data Fusion for the Vessel Traffic System.NPS EC-96-055,1996,USA.
    [100]M.Tummala,S.A.Midwood.A Fuzzy Associative Data Fusion Algorithm for Vessel Traffic System.NPS-EC-98-004,1998,USA.
    [101]宋小全,孙仲康.组网雷达在干扰条件下的目标跟踪.现代雷达,1997(2):12-19.
    [102]陈永光,孙仲康.干扰条件下的双基地地位跟踪.系统工程与电子技术.1996,(7):49-57.
    [103]李修和,陈永光,沈阳,李昌锦.电子战环境下双基地雷达对隐身目标的跟踪技术研究.电子学报.2004,32(6):918-922.
    [104]LI NENG-JING,ZHANG YI-TING.A Survey of Radar ECM and ECCM.IEEE Trans.Aerospace and Electronic Systems,1995,31(3):1110-1120.
    [105]Philip D.West and Benjamin J.Slocumb.ECM Modeling for Assessment of Target Tracking Algorithms.Proceedings of the 29~(th) southeastern symposium on system theory(SSST'97),1997,500-504.
    [106]喻旭伟.高密度脉内假目标生成技术.电子对抗.2003(6):25-28.
    [107]施龙飞,周颖,李盾,王雪松,削顺平.LFM脉冲雷达恒虚警检测的有源假目标干扰研究.系统工程与电子技术.2005,27(5):818-222.
    [108]闵庆义.有源假目标干扰及其抗干扰.航天电子对抗,1996(1):1-5
    [109]顾尔顺.有源欺骗干扰的对抗技术 航天电子对抗,1998(3):13-16
    [110]倪汉昌.抗欺骗式干扰技术途径研究 航天电子对抗,1998(3):17-20
    [111]李建勋,秦江敏,马晓岩.运用模式分类的雷达抗转发式距离欺骗干扰方法.雷达与对抗,2004,(1):30-32,68
    [112]周颖,施龙飞,等.密集干扰环境下相控阵雷达资源管理优化研究.电子学报,2005,33(6):999-1003
    [113]周颖.电子战条件下导弹防御相控阵雷达仿真与评估研究.博士学位论文.长沙:国防科技大学研究生院.2005,6.
    [114]王雪松,刘建成,等.间歇采样转发干扰的数学原理.中国科学(E辑,信息科学),2006,36(8):891-901
    [115]李永祯,王雪松,肖顺平,庄钊文.基于IPPV的真假目标极化鉴别算法.现代雷达,2004,26(9):38-42
    [116]王涛,王雪松,削顺平.随机调制单极化有源假目标的极化鉴别研究.自然科学进展,2006,16(5):611-617.
    [117]李永祯,王雪松,王涛,肖顺平,庄钊文.有源诱饵的极化鉴别研究.国防科大学报,2004,26(3):83-88.
    [118]Bar-Shalom,Y.,and Li,X.,Estimation and Tracking:Principles,Techniques,and Software,Artech House,Inc.,Norwood,Massachusetts,1993.
    [119]何友,修建娟等.雷达数据处理及应用.北京:电子工业出版社,2006.
    [120]刘福声,罗鹏飞.统计信号处理.长沙:国防科技大学出版社.1999.125-127.
    [121]X.P.Li and V.P.Jilkov.A Survey of Maneuvering Target Tracking-Part Ⅲ:Measurement Models.In Proc.2001 SPIE Conf.on Signal and Data Processing of Small Targets,vol.4473,San Diego,CA,USA,2001.
    [122]W.G.Bath,F.R.Castella,and S.F.Haase.Techniques for Filtering Range and Angle Measurements from Colocated Surveillance Radars.In Proc.1980 IEEE International Radar Conference,pages 355-360,Apr.1980.
    [123]S.N.Balakrishnan and J.L.Speyer.Coordinate-Transformation-Based Filter for Improved Target Tracking.AIAA Journal of Guidance,1986,9(6):704-709.
    [124]C B Chang.Ballistic Trajectory Estimation with Angle-Only Measurements.IEEE Transaction on Automatic Control,1980,25(3):474-480
    [125]R.K.Mehra.A comparison of several nonlinear filters for re-entry vehicle tracking.IEEE Trans.Automatic Control,1971,16(4):307-319.
    [126]D.Lerro and Y.Bar-Shalom.Tracking with Debiased Consistent Converted Measurements vs.EKF.IEEE Trans.Aerospace and Electronic Systems,1993,29(3):1015-1022
    [127]S.J.Julier and J.K.Uhlmann.A Consistent,Debiased Method for Converting Between Polar and Cartesian Coordinate Systems.In Proceedings of SPIE:Acquisition,Tracking,and Pointing Ⅺ,1997,Vol.3086,110-121.
    [128]L.Mo,X.Song,Y.Zhou,and Z.Sun.A Alternative Unbiased Consistent Converted Measurements for Target Tracking.In Proceedings of SPIE:Acquisition,Tracking,and Pointing Ⅺ,1997.vol.3086,308-310.
    [129] L. Mo, X. Song, Y. Zhou, Z. Sun, and Y. Bar-Shalom. Unbiased Converted Measurements for Tracking. IEEE Trans.Aerospace and Electronic Systems, 1998,34(3): 1023-1026.
    
    [130] M. Miller and O. Drummond. Coordinate Transformation Bias in Target Tracking. In Proc. 1999 SPIE Conf. on Signal and Data Processing of Small Targets, vol.3809, pages 409-424, Denver, CO, July 1999.
    
    [131] M. D. Miller and O. E. Drummond. Comparison of Methodologies for Mitigating Coordinate Transformation Bias in Target Tracking. In Proc. 2000 SPIE Conf. on Signal and Data Processing of Small Targets, vol. 4048, pages 414—427.
    
    [132] Kerr, T. H. Use of idempotent matrices to validate linear systems software.IEEE Trans. Aerospace and Electronic Systems, 1990, 26(6): 935-952.
    
    [133] Kwakernaak, H., and Sivan, R. Linear Optimal Control Systems. New York:Wiley-Interscience, 1972.
    
    [134] Maybeck, P. S. Stochastic Models, Estimation, and Control, Vol. 1. New York:Academic Press, 1979.
    
    [135] Gelb, A. (Ed.).Applied Optimal Estimation. Cambridge, MA: M.I.T. Press,1974.p90-191.
    
    [136] Gura, L A. Extension of linear estimation techniques to nonlinear problems.The Journal of Astronomical Sciences, XV, 4 (July/Aug.1968), 194-205.
    
    [137] R.E.Larson. R.M. Dressier, and R.S.Ratner. Application of extended Kalman filter to ballistic trajectory estimation. Stanford Res. Inst.,Menlo Park,CA .Final Rep.,jan,1967.
    
    [138] Simon J.Julier, Jeffrey K.Uhlmann. A New Extension of the Kalman Filter to Nonlinear Systems. SPIE, Vol. 3068, 1997:182-193.
    
    [139] Simon J.Julier, Jeffrey K.Uhlmann. A New Method for the Nonlinear Transformation of Means and Covariances in Filters and Estimators. IEEE Trans.on AC,2000, 45(3):477-482.
    
    [140] N Bergman, A Doucet &N Gordon, Optimal Estimation and Cramer-Rao Bounds for Partial Non-Gaussian State Space Models. Ann. Inst. Statist. Math., 2001,53(1): 97-112.
    
    [141] B P Carlin, N G Poison & D S Stoffer, A Monte Carlo approach to nonnormal and nonlinear state-space modelling, Journal of the American Statistical Association,1992, 87(418), 493-500.
    
    [142] T Clapp & S Godsill, Improvement strategies for Monte Carlo particle filters.in Sequential Monte Carlo Methods in Practice, eds A Doucet, J F G de Freitas and N J Gordon, 2001, Springer-Verlag: New York.
    
    [143] P Del Moral, Measure Valued Processes and Interacting Particle Systems.Application to Nonlinear Filtering Problems. Annals of Applied Probability, 1998, 8(2):438-495.
    
    [144] D Crisan, P Del Moral & T J Lyons, Nonlinear Filtering Using Branching and Interacting Particle Systems. Markov Processes and Related Fields, 1999,5(3): 293-319.
    
    [145] P Del Moral, Nonlinear Filtering: Interacting Particle Solution, Markov Processes and Related Fields, 1996, 2(4): 555-580.
    
    [146] A Doucet, J F G de Freitas & N J Gordon, An introduction to sequential Monte Carlo methods, in Sequential Monte Carlo Methods in Practice, eds A Doucet, J F G de Freitas and N J Gordon, 2001, Springer-Verlag: New York.
    
    [147] A Doucet, N Gordon & V Krishnamurthy, Particle Filters for State Estimation of Jump Markov Linear Systems. IEEE Transactrions on Signal Processing, 2001, 49(3), 613-624.
    
    [148] N Gordon, D Salmond & A F M Smith, Novel Approach to Nonlinear and Non-Gaussian Bayesian State Estimation. IEE Proceedings-F, 1993, 140:107-113.
    
    [149] J S Liu & R Chen, Sequential Monte Carlo Methods for Dynamical Systems.Journal of the American Statistical Association, 1998, 93:1032-1044.
    
    [150] C. Hue, J-P.LE.CADRE, P.PEREZ. Tracking Multiple Objects with Particle Filtering. IEEE Trans. Aerospace and Electronic Systems, 2002, 38(3):791-812.
    
    [151] Marcelo G.S. Bruno, Anton Pavlov. Improved Particle Filters for Ballistic Target Tracking. IEEE ICASSP 2004, 705-708.
    
    [152] H.Driessen, Y.Boers. Efficient Particle filter for jump Markov nonlinear systems. IEE Proc.-Radar Sonar Navig., 2005, 152(5):323-326.
    
    [153] Y.Boers and J.N. Driessen. Interacting multiple model particle filter. IEE Proc.-Radar Sonar Navig., 2003,150(5):344-349.
    
    [154] Y.Boers and J.N. Driessen. Multitarget particle filter track before detect application. IEE Proc.-Radar Sonar Navig., 2004,151(6):351-357.
    
    [155] Marl R. Morelande, Subhash Challa and Neil Gordon. A Study of the application of particle filters to single target tracking problems. Signal and Data Processing of Small Targets 2003, SPIE Vol. 5204, 211-222.
    
    [156] R. K. Mehra. Approaches to Adaptive Filtering. IEEE Trans. Automatic Control,1972, 17(5):693-698.
    
    [157] X. R. Li and Y. Bar-Shalom. A Recursive Multiple Model Approach to Noise Identification. IEEE Trans. Aerospace and Electronic Systems, 1994, 30(3):671-684,.
    
    [158] M. E. Hough. Improved Performance of Recursive Tracking Filters Using Batch Initialization and Process Noise Adaptation. AIAA Journal of Guidance, Control,and Dynamics, 1999, 22(5):675-681.
    
    [159] R. R. Bate, D. D. Mueller, and J.E. White. Fundamental of Astrodynamics.Dover Publication, 1971.
    
    [160] 贾沛然,陈克俊,何力.远程火箭弹道学.长沙:国防科技大学出版社. 1993.
    
    [161] M Yeddanapudi, Y. Bar-Shalom, Y. Pattipati, and S. Deb. Ballistic Missile Track Initiation from Satelite Observations. IEEE Trans. Aerospace and Electronic Systems, 1995, 31(3): 1054-1071.
    [162]W.D.Blair and B.M.Keel.Radar Systems Modeling for Tracking.In Y.Bar-Shalom and W.D.Blair,editors,Multitarget-Multisensor Tracking:Applications and Advances,Vol.Ⅲ,pages 321-393.Artech House,2000.
    [163]张光义,赵玉洁.相控阵雷达技术.北京:电子工业出版社.2006.
    [164]向敬成,张明友.雷达系统.北京:电子工业出版社.2001.
    [165]Seong-Taek Park,Jang Gyu Lee.Improved Kalman Filter Design for Three-Dimensional Radar Tracking.IEEE Trans.Aerospace and Electronic Systems,2001,37(2):727-739.
    [166]Denham,W.F.,and Pines,S.Sequential estimation when measurement function nonlinearity is comparable to measurement error.AIAA Journal,1966,4(6):1071-1076.
    [167]周宏仁,敬忠良,王培德.机动目标跟踪.北京:国防工业出版社,1991.
    [168]X.RONG LI,ZHANLUE ZHAO.Evaluation of Estimation Algorithms Part Ⅰ:Incomprehensive Measures of Performance.IEEE Trans.Aerospace and Electronic Systems,2006,42(4):1340-1358.
    [169]B.M.Bell and F.W.Cathy.The Iterated Kalman Filter Update as a Guass-Newton Method.IEEE Trans.on Automatic Control,1993,38(2):294-297.
    [170]N.Morrison.Introduction to Sequential Smoothing and Prediction.McGraw-Hill,New York,1969.
    [171]P.Zarchan.Tactical and Strategic Missile Guidance.AIAA,Washington DC,Aug.1998.
    [172]L.N.Liiard.Post-flight trajectory reconstruction of a maneuvering reentry vehicle from radar measurements.MS Thesis.ADA124805,1982.
    [173]S.S.Blackman and R.F.Popoli.Design and Analysis of Modern Tracking Svstem.Artech House.Norwood.MA.1999.
    [174]冯德军.弹道中段目标雷达识别与评估研究.博士学位论文,长沙,国防科技大学,2006,04.
    [175]张毅,杨辉耀,李俊莉.弹道导弹弹道学.长沙:国防科技大学出版社.1999.
    [176]J.A.Roecker,Loral.A class of Near Optimal JPDA Algorithm.IEEE Trans.Aerospace and Electronic Systems,1994,30(2):504-510.
    [177]Tse E,Larson Re,Bar-Shalom Y.Application of optimum discrete nonlinear filter to target tracking with angle-only measurements.Proceedings of 4th Symposium on Nonlinear Estimation,San Diego:1973.
    [178]Chin L.Advances in adaptive filtering,In:Advances in Control and dynamic systems,New York:Academic Press,Inc.,1979
    [179]贾沛璋,朱征桃.最优估计及其应用.北京:科学出版社,1984.
    [180]王正明,易东云.测量数据建模与参数估计.长沙:国防科技大学出版 社,1996.
    [181]Blackman S S,Dempster R J.Busch M T,et al.IMM/MHT solution to radar benchmark tracking problem.IEEE Trans.Aerospace and Electronic Systems,1999,35(2):730-783
    [182]Blair W D,Watson G A,Kirubarajan T,et al.Benchmark for radar allocation and tracking in ECM.IEEE Trans.Aerospace and Electronic Systems,1998,34(4):1097-1114.
    [183]Kirubarajan T,Bar-shalom Y,Blair W D,et al.IMMPDA solution to benchmark for radar resource allocation and tracking in the presence of ECM.IEEE Trans.Aerospace and Electronic Systems,1998,34(4):1115-1134.
    [184]Li X R,Benjamin S,Phillip W.Tracking in the presence of range deception ECM and clutter by decomposition and fusion.Denver.Colorado,1999.SPIE vol 3809,198-210.
    [185]朱嘉,郭立.一种适于工程应用的多目标跟踪快速数据关联算法.中国科学技术大学学报,2000,30(5):586-592.
    [186]何友,唐劲松,王国宏.多雷达综合跟踪.电子科学学刊,1996,(3):225-229.
    [187]陆军.组网雷达的数据处理方式及其布网形式探讨.第六届全国雷达年会,1993年10月,北京:156-159.
    [188]Li X.R.,Bar-Shalom Y.Tracking in clutter with Nearest Neighbor filters:analysis and performance.IEEE Trans.Aerospace and Electronic Systems,1996,32(3):995-1009.
    [189]Qiang Gan,Chris J.Harris.Comparison of two measurement fusion methods for Kalman-filter-based multisensor data fusion.IEEE Trans.Aerospace and Electronic Systems,2001,37(1):273-280.
    [190]X.R.Li.Engineer's Guide to Variable-Structure Multiple-Model Estimation for Tracking.In Y.Bar-Shalom and D.W.Blair,editors,Multitarget-Multisensor Tracking:Applications and Advances,volume Ⅲ,chapter 10,pages 499-567.Artech House,Boston,MA,2000.
    [191]X.R.Li.Hybrid Estimation Techniques.In C.T.Leondes,editor,Control and Dynamic Systems:Advances in Theory and Applications,volume 76,pages 213-287.Academic Press,New York,1996.
    [192]E.Mazor,A.Averbuch,Y.Bar-Shalom,and J.Dayan.Interacting Multiple Model Methods in Target Tracking:A Survey.IEEE Trans.Aerospace and Electronic Systems,1996,34(1):103-123.
    [193]Gura,I.A.Extension of Linear Estimation Techniques to Nonlinear Problems.The Journal of Austronomical Sciences,XV,4(July/Aug.1968),194-205.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700