基于二元金属氧化物阻变存储器的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着诸如手机、MP3、MP4、笔记本电脑等便携式个人设备的逐渐流行,以及近年来计算机技术、互联网技术以及新型大众化电子产品的高速发展,非挥发性存储器在半导体行业中扮演越来越重要的角色。非挥发性存储器最大的优点在于在无电源供应时存储的数据仍能长时间保持下来。目前市场上的非挥发性存储器以闪存(Flash)为主流,占半导体存储器市场的绝大份额。但是随着半导体技术节点不断向前推进,基于传统浮栅结构的Flash技术正遭遇到严重的技术瓶颈,其中最主要的问题就是Flash在器件尺寸缩小化过程中存在操作电压大、操作速度慢、耐久力不够好、功耗高等缺点,这在很大程度上限制了其在市场以及高科技领域的广泛应用。因此,业界对下一代非挥发性存储器技术进行了大量的研究,目前已研制出多种有望取代Flash存储器的新兴非挥发性存储器,如铁电存储器(FRAM)、磁存储器(MRAM)、相变存储器(PRAM)以及阻变存储器(RRAM)。阻变存储器由于其具有高的读写速度、低的功耗、高集成度、多值存储能力、低成本等优势,因此引起了人们极大的兴趣并一度成为现阶段研究的热点。本文将研究RRAM的注意力集中在材料组分更加简单、制备过程更加容易、制造工艺与CMOS兼容的二元金属氧化物上,主要开展了基于ZrO2、WO3以及TiO2材料RRAM器件电阻转变特性以及电阻转变机理方面的研究工作。
     基于ZrO2材料制备了一种ZrO2:TiOx双层结构器件,实验结果发现,当在Zr02和上电极材料之间插入一薄层的TiOx缓冲层能够改善器件的电阻转变特性,尤其是器件由高阻态向低阻态转变所需要的Set电压明显降低。其次,选择Ag作为电极材料制备了一种简单的Au/ZrO2/Ag结构器件,该器件具有更低的操作电压(<1V)、较高的电阻比率(104)、较快的操作速度(50ns)、接近100%的器件产率,并且该器件在室温以及85℃都具有很好的保持特性。此外,我们对Cu/ZrO2:Cu/Pt器件中观测到的不稳定Reset现象的物理机制进行分析。
     研究了不同电极材料对WO3薄膜电阻转变特性的影响,发现Cu作为上电极的Cu/WO3/Pt结构器件具有更好的电阻转变特性,通过电学测试对导致这种优良电阻转变特性的原因作了分析。其次,对Cu/WO3/Pt结构器件的多级存储特性进行了研究,采用小步长的测试方法分析了引起这种多级存储的物理机制。
     在基于TiO2材料的RRAM器件方面,采用退火的方法改善器件的性能。其次,制备了一种与CMOS工艺完全兼容的具有Al/TiOx/Al简单结构的RRAM器件,并对这种器件的电阻转变特性进行了研究。
With the prevalent usage of portable equipments, such as mobile phone, MP3, MP4 player as well as notebook PC, the nonvolatile memory (NVM) plays an important role in the semiconductor industry. The advantage of NVM is that the stored data can be kept for a long time without power supply, and the current NVM mainstream for the semiconductor mass storage is based on the Flash technology. However, with the conventional memories approaching their scaling limits, Flash memory, which is based on the traditional floating gate concept, has encountered serious technical challenges due to the tradeoffs between the high speed, low power consumption and long retention time. It is therefore common practice to explore new memory to compensate these weaknesses. Requirements for a perfect memory would have a high capacity, fast speed, long retention time, low power consumption, and it would be also nonvolatile and scales better than existing technologies. In recent years, some emerging nonvolatile memories, such as ferroelectric random access memory (FRAM), magnetic random access memory (MRAM), phase-change random access memory (PRAM) and resistive random access memory (RRAM), are being enthusiastically studied to achieve these requirements. Among all these choices, RRAM device which shows resistive switching between a high resistance state and a low resistance state has overwhelming advantages of easy fabrication process, simple structure, excellent scalability, fast switching speed, and high integration density. Therefore, more and more research communities focus their attention on RRAM devices. This work focuses on the investigation of resistive switching characteristics in binary metal oxides-based RRAM deives due to the simple structure, easy fabrication process and compatibility with the current complementary metal oxide semiconductor (CMOS) technology. We focus our attention mainly on resistive switching characteristics and resistive switching mechanism of ZrO2、WO3 and TiO2-based RRAM deives.
     As for the ZrO2-based RRAM deives, we fabricated Cu/ZrO2/Pt and Cu/TiOx-ZrO2/Pt structure devices and investigated the resistive switching characteristics of these two devices. By embedding a thin TiOx layer between ZrO2 and Cu top electrode, stable and reproducible bipolar resistive switching characteristics could be observed. Especially, the set voltage obviously showed decrease compared to that in ZrO2-based RRAM device without TiOx layer. We also fabricated Au/ZrO2/Ag structure device which showed low operation voltages (<1V), high resistance ratio (about 104), fast switching speed (50ns), and reliable data retention (10 years extrapolation at both RT and 85℃). Moreover, the benefits of high yield and multilevel storage possibility made this device promising in the next generation nonvolatile memory applications. The instable reset behavior was observed in Cu/ZrO2:Cu/Pt device, and the mechanism of this instable reset behavior was investigated based on a physical model.
     We investigated the effect of different top electrodes on the resistive switching characteristics of WO3-based RRAM devices. Compared with the Al/WO3/Pt and Cr/WO3/Pt devices, the Cu/WO3/Pt device had much better resistive switching characteristics, such as good reproducibility, low power consumption and good data retention. In addition, the multilevel storage capability of the Cu/WO3/Pt RRAM deivce was demonstrated by setting different compliance currents during the Set process. A direct measurement by using a dc voltage sweeping mode with a smaller sweeping voltage incremental rate was employed to explore the plausible mechanism of the multilevel storage, which might be attributed to the combination of filaments radial growth and formation of more conductive filaments as applying a higher compliance current.
     As for the TiO2-based RRAM deives, we reported a simple method to improve uniformity of resistive switching parameters in atomic-layer-deposited titanium oxide film by nitrogen annealing. We also fabricated an Al/TiO/Al RRAM device which is fully compatible with CMOS technology.
引文
[1]D. Kahng and S. M. Sze, A floating gate and its application to memory devices [J], Bell System Technical Journal,1967,46(4):1288-1295.
    [2]F. Masuoka, M. Asano, H. Iwahashi, T. Komuro, and S. Tanaka, A new flash E2PROM cell using triple polysilicon technology [C], IEEE International Electron Devices Meeting. Technical Digest,1984,464-467.
    [3]管伟华,前瞻非挥发性半导体存储器研究,硕士论文,中国科学院微电子研究所,2008.
    [4]刘琦,高速、高密度、低功耗的阻变非挥发性存储器研究,博士论文,安徽大学,2010.
    [5]C. Gerardi, V. Ancarani, R. Portoghese, S. Giuffrida, M. Bileci, G. Bimbo, O. Brafa, D. Mello, G. Ammendola, E. Tripiciano, R. Puglisi, and S. A. Lombardo, Nanocrystal memory cell integration in a stand-alone 16-Mb NOR flash device [J], IEEE Trans. Electron Devices,2007 (54):1376-1385.
    [6]Y. H. Lin, C. H. Chien, C. T. Lin, C. W. Chen, C. Y. Chang, and T. F. Lei, High performance multi-bit nonvolatile HfiO2nanocrystal memory using spinodal phase separation of hafnium silicate [C], IEDM Tech. Dig.,2004:1080-1082.
    [7]C. W. Liao, S. C. Lai, H. T. Lue, M. J. Yang, C. Y. Shen, Y. H. Lue, Y. F. Huang, J. Y. Hsieh, S. Y. Wang, G. L. Luo, C. H. Chien, K. Y. Hsieh, R. Liu and C. Y. Lu, Reliability study of MANOS with and without a SiO2 buffer layer and BE-MANOS charge-trapping NAND flash devices [C], Symp. VLSI Tech.,2009: 152-153.
    [8]R. Bez, A. Pirovano, Non-volatile memory technologies:emerging concepts and new materials [C], Materials Science in Semiconductor Processing,2004:349-355.
    [9]J. F. Scott, and C. A. P. de Argujo, Ferroelectric memories [J], Science 1989 (246):1400-1405.
    [10]R E. Jones, P D. Maniar, R Moazzami, etc, Ferroelectric non-volatile memory for low-voltage, low-power applications [J], Thin Solid Films,1995 (270):584-588.
    [11]L. Geppert, The new indelible memories-It's a three-way race in the multibillion-dollar memory sweepstakes [J], IEEE Spectrum,2003,40(3):48-54.
    [12]N. Setter, D. Damjanovic, L. Eng, G. Fox, S. Gevorgian, S. Hong, A. Kingon, H. Kohlstedt, N. Y. Park, G. B. Stephenson, I. Stolitchnov, A. K. Taganstev, D. V. Taylor, T. Yamada, and S. Streiffer, Ferroelectric thin films:Review of materials, properties, and applications [J], Journal of Applied Physics,2006,100(5):051606.
    [13]付承菊,郭冬云,铁电存储器的研究进展[J],微纳电子技术,2006(9):414-418.
    [14]吴晓薇,郭子政,磁阻随机存取存储器(MRAM)的原理与研究进展[J],信息记录材料,2009(10):52-56.
    [15]M. N. Baibich, J. M. Broto, A. Fert, etc, Giant magnetoresistance of (001)Fe/(001)Cr magnetic superlatices [J], Physical Review Letters,1988 (61): 2472-2475.
    [16]S. Tehrani, B. Engel, J. M. Slaughter, E. Chen, M. DeHerrera, M. Durlam, P. Naji, R. Whig, J. Janesky, and J. Calder, Recent developments in magnetic tunnel junction MRAM [J], IEEE Trans. Magn.,2000 (36):2152-2157.
    [17]M. Buttiker, Coherent and sequential tunneling in series barrers [J], IBM J. Research & Development,1988 (32):63-75.
    [18]吕杭炳,电阻型存储器器件与工艺研究,博士论文,复旦大学,2008.
    [19]S. Ovshinsky, Reversible electrical switching phenomena in disordered structures [J], Physical Review Leters,1968,21(20):1450-1453.
    [20]B. K. F. Kao, C. M. Lee, M. J. Chen, M. J. Tsai, and T. S. Chin, Ga2Te3Sb5—A candidate for fast and ultralong retention phase-change memory [J], Adv. Mater. 2009(21):1695-1699.
    [21]R. Bez, Chalcogenide PCM:a memory technology for next decade [C], IEDM Tech. Dig.,2009:89-92.
    [22]R. E. Simpson, M. Krbal, P. Fons, A. V. Kolobov, J. Tominaga,T. Uruga, and H. Tanida, Toward the ultimate limit of phase change in Ge2Sb2Te5 [J], Nano lett.,2010 (10):414-419.
    [23]G. I. Meijer, Who wins the nonvolatile memory race [J], Science,2008 (319): 1625-1626.
    [24]S. Lai, and T. Lowrey, OUM-a 180 nm nonvolatile memory cell element technology for stand alone and embedded applications [C], IEDM Tech. Dig.,2001: 803-806.
    [25]W. W. Zhuang, W. Pan, B. D. Ulrich, J. J. Lee, L. Stecker, A. Burmaster, D. R. Evans, S. T. Hsu, M. Tajiri, A. Shimaoka, K. Inoue, T. Naka, N. Awaya, K. Sakiyama, Y. Wang, S. Q. Liu, N. J. Wu, and A. Ignatiev, Novell colossal magnetoresistive thin film nonvolatile resistance random access memory (RRAM) [C], IEDM Tech. Dig., 2002:193-196.
    [26]李颖弢,刘明,龙士兵,刘琦,张森,王艳,左青云,王琴,胡媛,刘肃,基于I-V特性的阻变存储器的阻变机制研究[J],微纳电子技术,2009,46(3):134-139.
    [27]Y. T. Li, S. B. Long, Q. Liu, Q. Wang, M. H. Zhang, H. B. Lv, L. B. Shao, Y. Wang, S. Zhang, Q. Y. Zuo, S. Liu, and M. Liu, Nonvolatile multilevel memory effect in Cu/WO3/Pt device structures [J], Phys. Status Solidi RRL,2010 (4):124-126.
    [28]R. Waser, R. Dittmann, G. Staikov, and K. Szot, Redox-based resistive switching memories-nanoionic mechanisms, prospects, and challenges [J], Adv. Mater.,2009 (21):2632-2663.
    [29]X. Wu, P. Zhou, J. Li, L. Y. Chen, H. B. Lv, Y. Y. Lin, and T. A. Tang, Reproducible unipolar resistance switching in stoichiometric ZrO2 films [J], Appl. Phys. Lett.,2007 (90):183507.
    [30]Y. T. Li, S. B. Long, M. H. Zhang, Q. Liu, L. B. Shao, S. Zhang, Y. Wang, Q. Y. Zuo, S. Liu and Ming Liu, Resistive Switching Properties of Au/ZrO2/Ag Structure for Low-Voltage Nonvolatile Memory [J], IEEE Electron Devices Lett.,2010 (31): 117-119.
    [31]W. H. Guan, S. B. Long, Q. Liu, M. Liu, and W. Wang, Nonpolar nonvolatile resistive switching in Cu doped ZrO2 [J], IEEE Electron Device Lett.,2008 (29): 434-437.
    [32]C. B. Lee, B. S. Kang, A. Benayad, M. J. Lee, S.-E. Ahn, K. H. Kim, G. Stefanovich, Y. Park, and I. K. Yoo, Effects of metal electrodes on the resistive memory switching property of NiO thin films [J], Appl. Phys. Lett.,2008 (93): 042115.
    [33]H. Y. Lee, P. S. Chen, T. Y. Wu, Y. S. Chen, C. C. Wang, P. J. Tzeng, C. H. Lin, F. Chen, C. H. Lien, and M.-J. Tsai, Low power and high speed bipolar switching with a thin reactive Ti buffer layer in robust HfO2 based RRAM [C], IEDM Tech. Dig.,2008:297-300.
    [34]I. G. Baek, M. S. Lee, S. Seo, M. J. Lee, D. H. Seo, D. S. Suh, J. C. Park, S. O. Park, H. S. Kim, I. K. Yoo, U. I. Chung, and J. T. Moon, Highly Scalable Non-volatile Resistive Memory using Simple Binary Oxide Driven by Asymmetric Unipolar Voltage Pulses [C], IEDM Tech. Dig.,2004.
    [35]R. Sezi, A. Walter, R. Engl, A. Maltenberger, J. Schumann, M. Kund, and C. Dehm, Organic Materials for High-Density Non-Volatile Memory Application [C], IEDM Tech. Dig.,2003:259-262.
    [1]A. Chen, S. Haddad, Y.-C. Wu, T. N. Fang, Z. Lan, S. Avanzino, S. Pangrle, M. Buynoski, M. Rathor, W. Cai, N. Tripsas, C. Bill, M. VanBuskirk, and M. Taguchi, Non-volatile resistive switching for advanced memory Applications [C], IEDM Tech. Dig.,2005:746-749.
    [2]C. Y. Liu, P. H. Wu, A. Wang, W. Y. Jang, J. C. Young, K. Y. Chiu, and T.-Y. Tseng, Bistable resistive switching of a sputter-deposited Cr-doped SrZrO3 memory film [J], IEEE Electron Device Lett.,2005 (26):351-353.
    [3]C. C. Lin, B. C. Tu, C. C. Lin, C. H. Lin, and T. Y. Tseng. Resistive switching mechanisms of V-doped SrZrO3 memory films, IEEE Electron Device Lett.,2006 (27): 725-727.
    [4]W. W. Zhuang, W. Pan, B. D. Ulrich, J. J. Lee, L. Stecker, A. Burmaster, D. R. Evans, S. T. Hsu, M. Tajiri, A. Shimaoka, K. Inoue, T. Naka, N. Awaya, K. Sakiyama, Y. Wang, S. Q. Liu, N. J. Wu, and A. Ignatiev, Novell colossal magnetoresistive thin film nonvolatile resistance random access memory (RRAM) [C], IEDM Tech. Dig., 2002:193-196.
    [5]R. Waser, R. Dittmann, G. Staikov, and K. Szot, Redox-based resistive switching memories- nanoionic mechanisms, prospects, and challenges [J], Adv. Mater.,2009 (21):2632-2663.
    [6]X. Wu, P. Zhou, J. Li, L. Y. Chen, H. B. Lv, Y Y. Lin, and T. A. Tang, Reproducible unipolar resistance switching in stoichiometric ZrO2 films [J], Appl. Phys. Lett.,2007 (90):183507.
    [7]H. Y. Lee, P. S. Chen, T. Y. Wu, Y. S. Chen, C. C. Wang, P. J. Tzeng, C. H. Lin, F. Chen, C. H. Lien, and M.-J. Tsai, Low power and high speed bipolar switching with a thin reactive Ti buffer layer in robust HfO2 based RRAM [C], IEDM Tech. Dig.,2008:297-300.
    [8]W. H. Guan, S. B. Long, Q. Liu, M. Liu, and W. Wang, Nonpolar nonvolatile resistive switching in Cu doped ZrO2 [J], IEEE Electron Device Lett.,2008 (29): 434-437.
    [9]S. Q. Liu, N. J. Wu, and A. Ignatiev. "Electric-pulse-induced reversible resistance change effect in magnetoresistive films". Appl. Phys. Lett.,2000 (76): 2749.
    [10]X. Chen, N. J. Wu, J. Strozier, and A. Ignatiev. "Direct resistance profile for an electrical pulse induced resistance change device" Appl. Phys. Lett.,2005 (87): 233506.
    [11]Z. W. Xing, N. J. Wu, and A. Ignatiev. Electric-pulse-induced resistive switching effect enhanced by a ferroelectric buffer on the Pr0.7Ca0.3MnO3 thin film. Appl. Phys. Lett.,2007 (91):052106.
    [12]D. S. Shang, Q. Wang, L. D. Chen, R. Dong, X. M. Li, and W. Q. Zhang. Effect of carrier trapping on the hysteretic current-voltage characteristics in Ag/La0.7Ca0.3MnO3/Pt heterostructures. PHYSICAL REVIEW B,2006(73):245427.
    [13]R. Dong, Q. Wang, L. D. Chen,a! D. S. Shang, T. L. Chen, X. M. Li, and W. Q. Zhang. Retention behavior of the electric-pulse-induced reversible resistance change effect in Ag-La0.7Ca0.3MnO3-Pt sandwiches. Appl. Phys. Lett.,2005 (86):172107.
    [14]A. Sawa, A. Yamamoto, H. Yamada,T. Fujii, M. Kawasaki, J. Matsuno, Y. Tokura. Colossal electroresistance effect at metal electrode/La1-xSr1+xMnO4 interfaces. Appl. Phys. Lett.,2006 (88):223507.
    [15]L. Huang, B. Qu, L. Liu, L. Zhang. Study on the resistive switching properties of epitaxial Lao.67Sro.33Mn03 films. Solid State Communications,2007 (143):382.
    [16]A. Sawa, A. Yamamoto, H. Yamada, T. Fujii, M. Kawasaki, J. Matsuno, Y. Tokura. Fermi level shift in La1-xSrxMO3 (M=Mn, Fe, Co, and Ni) probed by Schottky-like heteroepitaxial junctions with SrTi0.99Nb0.01O3. Appl. Phys. Lett.,2007 (90):252102.
    [17]D. Hsu, J. G. Lin, W. F. Wu, C. T. Wu, and C. H. Chen. Voltage-Current Hysteretic Characteristics in ME/Nd0.7Ca0.3MnO3 Thin Films with ME=Au, Pt, Ag, Cu. IEEE Transactions on Magnetics,2007 (43):3067.
    [18]A. Beck, G. J. Bednorz, C. Gerber, C. Rossel, and D. Widmer, Reproducible switching effect in thin oxide films for memory applications [J], Appl. Phys. Lett. 2000(77):139-141.
    [19]C. Rossel, G. I. Meijer, D. Bremaud, and D. Widmer, Electrical current distribution across a metal-insulator-metal structure during bistable switching [J], J. Appl. Phys.,2001 (90):2892-2898.
    [20]Chih-Yi Liu and Tseung-Yuen Tseng. Resistance switching properties of sol-gel derived SrZrO3 based memory thin films. J. Phys. D:Appl. Phys.,2007 (40): 2157.
    [21]Chun-Chieh Lin, Jung-Sheng Yu, Chih-Yang Lin, Chen-Hsi Lin and Tseung-Yuen Tseng. Stable resistive switching behaviors of sputter deposited V-doped SrZrO3 thin films. Thin solid films,2007 (516):402.
    [22]K. Szot, W. Speier, G. Bihlmayer and R. Waser. Switching the electrical resistance of individual dislocations in single-crystalline SrTiO3. Nature Materials, 2006(5):312.
    [23]R. Muenstermann, R. Dittmann, K. Szot, S. Mi, C.-L. Jia, P. Meuffels, and R. Waser, Realization of regular arrays of nanoscale resistive switching blocks in thin films of Nb-doped SrTiO3 [J], Appl. Phys. Lett.,2008 (93):023110.
    [24]A. Shkabko, M. H. Aguirre, I. Marozau, T. Lippert, and A. Weidenkaff, Measurements of current-voltage-induced heating in the Al/SrTiO3-xNy/Al memristor during electroformation and resistance switching [J], Appl. Phys. Lett., 2009(95):152109.
    [25]T. Menke,R. Dittmann, P. Meuffels, K. Szot, and R. Waser, Impact of the electroforming process on the device stability of epitaxial Fe-doped SrTiO3 resistive switching cells [J], J. Appl. Phys.,2009 (106):114507.
    [26]J. Y. Son, Y.-H. Shin, and C. S. Park, Bistable resistive states of amorphous SrRuO3 thin films [J], Appl. Phys. Lett.,2008 (92):
    [27]J. Billen, S. Steudel, R. Muller, J. Genoe, and P. Heremans, A comprehensive model for bipolar electrical switching of CuTCNQ memories [J], Appl. Phys. Lett., 2007 (91):263507.
    [28]L. P. Ma, J. Liu, and Y. Yang, Organic electrical bistable devices and rewritable memory cells [J], Appl. Phys. Lett.,2002 (80):2997-2999.
    [29]V. S. Reddy, S. Karak, and A. Dhar, Multilevel conductance switching in organic memory devices based on AlQ3 and Al/Al2O3 core-shell nanoparticles [J], Appl. Phys. Lett.,2009 (94):173304.
    [30]J. Ouyang, C. W. Chu, C. R. Szmanda, L. P. Ma, and Y. Yang, Programmable polymer thin film and non-volatile memory device [J], Nat. Mater.,2004 (3): 918-922.
    [31]R. J. Tseng, J. X. Huang, J. Y. Ouyang, R. B. Kaner, and Y. Yang, Polyaniline nanofiber/gold nanoparticle nonvolatile memory [J], Nano Lett.,2005 (5):1077-1080.
    [32]Y. Yang, J. Y. Ouyang, L. P. Ma, R. J.-H. Tseng and C.-W. Chu, Electrical switching and bistability in organic/polymeric thin films and memory devices [J], Adv. Func. Mater.,2006 (16):1001-1014.
    [33]H. B. Akkerman, P. W. M. Blom, D. M. De Leeuw, and B. De Boer, Towards molecular electronics with large-area molecular junctions [J], Nature,2006 (441): 69-72.
    [34]D. R. Stewart, D. A. A. Ohlberg, P. A. Beck, Y. Chen, R. S. Williams, J. O. Jeppesen, K. A. Nielsen, and J. F. Stoddart, Molecule-independent electrical switching in Pt/organic monolayer/Ti devices [J], Nano Lett.,2004 (4):133-136.
    [35]M. N. Kozicki, M. Balakrishnan, C. Gopalan, C. Ratnakumar, and M. Mitkova, Programmable metallization cell memory based on Ag-Ge-S and Cu-Ge-S solid electrolytes [C], Non-Volatile Memory Technology Symposium,2005:83-89.
    [36]R. Symanczyk, R. Bruchhaus, R. Dittrich, and M. Kund, Investigation of the reliability behavior of conductive-bridging memory cells [J], IEEE Electron Device Lett.2009 (30):876-878.
    [37]Z. Wang, P. B. Griffin, J. McVittie, S. Wong, P. C. McIntyre, and Y. Nishi, Resistive switching mechanism in ZnxCd1-xS nonvolatile memory devices [J], IEEE Electron Device Lett.2007 (28):14-16.
    [38]T. Sakamoto, H. Sunamura, H. Kawaura, T. Hasegawa, T. Nakayama, and M. Aonob, Nanometer-scale switches using copper sulfide [J], Appl. Phys. Lett.,2003 (82):3032-3034.
    [39]K.-H. Kim, S. H. Jo, S. Gaba, and W. Lu, Nanoscale resistive memory with intrinsic diode characteristics and long endurance [J], Appl. Phys. Lett.,2010 (96): 053106.
    [40]R. Waser, and M. Aono, Nanoionics-based resistive switching memories [J], Nat. Mater.,2007 (6):833-840.
    [41]U. Russo, D. Kamalanathan, D. Ielmini, A. L. Lacaita, and M. N. Kozicki, Study of Multilevel Programming in Programmable Metallization Cell (PMC) Memory, IEEE Trans. Electron Devices, vol.56, no.5, pp.1040-1047, May.2009.
    [42]M. Kund, G. Beitel, C.-U. Pinnow, T. Rohr, J. Schumann, R. Symanczyk, K. D. Ufert, and G. Muller, Conductive bridging RAM (CBRAM):an emerging non-volatile memory technology scalable to sub 20nm, in IEDM Tech. Dig.,2005, pp.754-757.
    [43]M. N. Kozicki, C. Gopalan, M. Balakrishnan, and M. Mitkova, A low-power nonvolatile switching element based on copper-tungsten oxide solid electrolyte [J], IEEE Trans. Nanotechnol.,2006 (5):535-544.
    [44]C. Schindler, S. C. P. Thermadam, R. Waser, and M. N. Kozicki, Bipolar and unipolar resistive switching in Cu-doped SiO2. IEEE Trans. Electron Device,2007 (54):2762-2768.
    [45]Y. Li, S. Long, M. Zhang, Q. Liu, L. Shao, S. Zhang, Y. Wang, Q. Zuo, S. Liu, and M. Liu, Resistive switching properties of Au/ZrO2/Ag structure for low-voltage nonvolatile memory applications [J], IEEE Electron Device Lett.,2010 (31):117-119.
    [46]J. Yoon, H. Choi, D. Lee, J.-B. Park, J. Lee, D.-J. Seong, Y. Ju, M. Chang, S. Jung, and H. Hwang, Excellent switching uniformity of Cu-doped MoOx/GdOx bilayer for nonvolatile memory application [J], IEEE Electron Device Lett.,2009 (30): 457-459.
    [47]Y. C. Yang, F. Pan, Q. Liu, M. Liu, and F. Zeng, Fully room-temperature fabricated nonvolatile resistive memory for ultrafast and high-density memory application [J], Nano lett.,2009 (9):1636-1643.
    [48]S. H. Jo, and W. Lu, CMOS compatible nanoscale nonvolatile resistance switching memory [J], Nano lett.,2008 (8):392-397.
    [49]S. H. Jo, K.-H. Kim, and W. Lu, High-density crossbar arrays based on a Si memristive system [J], Nano lett.,2009 (9):870-874.
    [50]C. Y. Lin, C. Y. Wu, T. C. Lee, F. L. Yang, C. Hu, and T. Y. Tseng, Effect of top electrode material on resistive switching properties of ZrO2 film memory devices, Ieee Electron Device Letters,2007,28(5):366-368.
    [51]S. Seo, M. J. Lee, D. H. Seo, E. J. Jeoung, D.-S. Suh, Y. S. Joung, I. K. Yoo, I. R. Hwang, S. H. Kim, I. S. Byun, J.-S. Kim, J. S. Choi, and B. H. Park, Reproducibleresistance switching in polycrystalline NiO films [J], Appl. Phys. Lett., 2004 (85):5655-5657.
    [52]C. B. Lee, B. S. Kang, M. J. Lee, S. E. Ahn, G. Stefanovich, W. X. Xianyu, K. H. Kim, J. H. Hur, H. X. Yin, Y. Park, and I. K. Yoo, J.-B. Park, B. H. Park, Electromigration effect of Ni electrodes on the resistive switching characteristics of NiO thin films [J], Appl. Phys. Lett.,2007 (91):082104.
    [53]M.-J. Lee, S. Han, S. H. Jeon, B. H. Park, B. S. Kang, S.-E. Ahn, K. H. Kim, C. B. Lee, C. J. Kim, I.-K. Yoo, D. H. Seo, X.-S. Li, J.-B. Park, J.-H. Lee, and Y. Park, Electrical manipulation of nanofilaments in transition-metal oxides for resistancebased memory [J], Nano lett.,2009 (9):1467-1481.
    [54]A. Chen, S. Haddad, Y. C. Wu, T. N. Fang, S. Kaza, and Z. Lan, Erasing characteristics of Cu2O metal-insulator-metal resistive switching memory [J], Appl. Phys. Lett.,2008 (92):013503.
    [55]H. B. Lv, M. Yin, X. F. Fu, Y. L. Song, L. Tang, P. Zhou, C. H. Zhao, T. A. Tang, B. A. Chen, and Y. Y. Lin, Resistive memory switching of CuxO films for a nonvolatile memory application [J], IEEE Electron Device Lett.,2008 (29):309-311.
    [56]P. Zhou, M. Yin, H. J. Wan, H. B. Lu, T. A. Tang, and Y. Y. Lin, Role of TaON interface for CuxO resistive switching memory based on a combined model [J], Appl. Phys. Lett.,2009 (94):053510.
    [57]H. Lv, M. Wang, H. Wan, Y. Song,W. Luo, P. Zhou, T. Tang,Y. Lin, R. Huang, S. Song, J. G. Wu, H. M. Wu, and M. H. Chi, Endurance enhancement of Cu-oxide based resistive switching memory with Al top electrode [J], Appl. Phys. Lett.,2009 (94):213502.
    [58]S. Kaeriyama, T. Sakamoto, H. Sunamura, M. Mizuno, H. Kawaura, T. Hasegawa, K. Terabe, T. Nakayama, and Ma. Aono, A nonvolatile programmable solid-electrolyte nanometer switch [J], IEEE J. Solid-State Circuits,2005 (40): 168-175.
    [59]T. Sakamoto, N. Banno, N. Iguchi, H. Kawaura, H. Sunamura, S. Fujieda, K. Terabe, T. Hasegawa, and M. Aono, A Ta2O5 solid-electrolyte switch with improved reliability [C], Symp. VLSI Tech.,2007:38-39.
    [60]M. Terai, Y. Sakotsubo, S. Kotsuji, and H. Hada, Resistance controllability of Ta2O5/TiO2 stack ReRAM for low-voltage and multilevel operation [J], IEEE Electron Device Lett.,2010 (31):204-206.
    [61]C. Ho, E. K. Lai, M. D. Lee, C. L. Pan, Y. D. Yao, K. Y. Hsieh, R. Liu, and C. Y. Lu, A highly reliable self-aligned graded oxide WOx resistance memory: conduction mechanisms and reliability [C], Symp. VLSI Tech.,2007:228-229.
    [62]W. C. Chien, Y. C. Chen, K. P. Chang, E. K. Lai, Y. D. Yao, P. Lin, J. Gong, S. C. Tsai, S. H. Hsieh, C. F. Chen, K. Y. Hsieh, R. Liu, and C.-Y. Lu, "Multi-level Operation of Fully CMOS Compatible WOx Resistive Random Access Memory (RRAM)," in IMW'09.,2009, pp.1-2.
    [63]Y. T. Li, S. B. Long,, H. B. Lv, Q. Liu, Q. Wang, Y. Wang, S. Zhang, S. Liu, and M. Liu, Investigation of resistive switching behaviors in WO3-based RRAM devices [J], Chinese Physics B,2011 (20):017305.
    [64]D. Lee, D. Seong, H. Choi, I. Jo, R. Dong, W. Xiang, S. Oh, M. Pyun, S. Seo, S. Heo, M. Jo, D.-K. Hwang, H. K. Park, M. Chang, M. Hasan, and H. Hwang, Excellent uniformity and reproducible resistance switching characteristics of doped binary metal oxides for non-volatile resistance memory applications[C], in IEDM Tech. Dig., 2006:797-800.
    [65]W. H. Guan, S. B. Long, R. Jia, and M. Liu, "Nonvolatile resistive switching memory utilizing gold nanocrystals embedded in zirconium oxide [J], Appl. Phys. Lett.,2007 (91):062111.
    [66]Y. T. Li, S. B. Long, Q. Liu, Q. Wang, M. H. Zhang, H. B. Lv, L. B. Shao, Y. Wang, S. Zhang, Q. Y. Zuo, S. Liu, and M. Liu, Nonvolatile multilevel memory effect in Cu/WO3/Pt device structures [J], Phys. Status Solidi RRL,2010 (4):124-126.
    [67]B. J. Choi, D. S. Jeong, S. K. Kim, C. Rohde, S. Choi, J. H. Oh, H. J. Kim, C. S. Hwang, K. Szot, R. Waser, B. Reichenberg, and S. Tiedke, Resistive switching mechanism of TiO2 thin films grown by atomic-layer deposition [J], Journal of Applied Physics,2005,98(3):033715.
    [68]R. Waser, Electrochemical and thermochemical memories [C], IEDM Tech. Dig., 2008:289-291.
    [69]M. A. Lampert, and P. Mark, Current injection in solids [M], Academic Press, Inc., New York,1970.
    [70]K. Kinoshita, T. Tamura, M. Aoki, Y. Sugiyama, and H. Tanaka, "Bias polarity dependent data retention of resistive random access memory consisting of binary transition metal oxide," Applied Physics Letters [J],2006,89(10):103509.
    [71]Q. Liu, W. H. Guan, S. B. Long, R. Jia, M. Liu, and J. N. Chen, Resistive switching memory effect of ZrO2 films with Zr+ implanted [J], Applied Physics Letters,2008,92(1):012117
    [72]D. Lee, H. Choi, H. Sim, D. Choi, H. Hwang, M. J. Lee, S. A. Seo, and I. K. Yoo, Resistance switching of the nonstoichiometric zirconium oxide for nonvolatile memory applications, IEEE Electron Device Letters [J],2005,26(10):719-721.
    [73]J. G. Simmons and R. R. Verderber, New Conduction and Reversible Memory Phenomena in Thin Insulating Films, Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences (1934-1990) [C],1967,301(1464): 77-102.
    [74]H. Shima, N. Zhong, and H. Akinaga, Switchable rectifier built with Pt/TiOx/Pt trilayer [J], Applied Physics Letters,2009,94(8):082905.
    [75]J. R. Jameson, Y. Fukuzumi, Z. Wang, P. Griffin, K. Tsunoda, G. I. Meijer, and Y. Nishi, Field-programmable rectification in rutile TiO2 crystals [J], Applied Physics Letters,2007,91:112101.
    [76]S. M. Sze. Physics of semiconductor devices [M]. New York:John Wiley,1981.
    [77]S. Seo, M. J. Lee, D. C. Kim, S. E. Ahn, B.-H Park, Y. S. Kim, I. K. Yoo, I. S. Byun, I. R. Hwang, S. H. Kim, J.-S. Kim, J. S. Choi, J. H. Lee, S. H. Jeon, S. H. Hong, and B. H. Park, Electrode dependence of resistance switching in polycrystalline NiO films [J], Appl. Phys. Lett.,2005 (87):263507.
    [78]W. Y. Yang and S. W. Rhee, "Effect of electrode material on the resistance switching of Cu2O film [J], Appl. Phys. Lett.,2007 (91):232907.
    [79]D. Lee, S. Baek, M. Ree, and O. Kim, "Effect of the Electrode Material on the Electrical-Switching Characteristics of Nonvolatile Memory Devices Based on Poly(o-anthranilic acid) Thin Films," IEEE Electron Device Letters,2008,29(7): 694-697.
    [80]刘琦,高速、高密度、低功耗的阻变非挥发性存储器研究,博士论文,安徽大学,2010.
    [81]D. Lee, D. J. Seong, I. Jo, F. Xiang, R. Dong, S. Oh, and H. Hwang, Resistance switching of copper doped MoOx films for nonvolatile memory applications [J], Appl.Phys. Lett.,2007 (90):122104.
    [82]W. Guan, M. Liu, S. Long, Q. Liu, and W. Wang, On the resistive switching mechanisms of Cu/ZrO2:Cu/Pt [J], Appl. Phys. Lett.,2008 (93):223506.
    [83]W. H. Guan, S. B. Long, Q. Liu, M. Liu, and W. Wang, Nonpolar nonvolatile resistive switching in Cu doped ZrO2 [J], IEEE Electron Device Lett.,2008 (29): 434-437.
    [84]Q. Liu, W. Guan, S. Long, M. Liu, S. Zhang, Q. Wang, and J. Chen, Resistance switching of Au-implanted-ZrO2 film for nonvolatile memory application [J], J. Appl. Phys.,2008(104):114514.
    [85]Q. Liu, S. Long, W. Wang, Q. Zuo, S. Zhang, J. Chen, and M. Liu, Improvement of resistive switching properties in ZrO2-based ReRAM with implanted Ti ions [J], IEEE Electron Device Lett.,2009 (30):1335-1337.
    [86]Y. Wang, Q. Liu, S. Long, W. Wang, Q. Wang, M. Zhang, S. Zhang, Y. Li, Q. Zuo, J. Yang, and M. Liu, Investigation of resistive switching in Cu-doped HfO2 thin film for multilevel non-volatile memory applications [J], Nanotechnol.,2010 (21): 045202.
    [87]Q. Zuo, S. Long, S. Yang, Q. Liu, L. Shao, Q. Wang, S. Zhang, Y. Li, Y. Wang, and M. Liu, ZrO2-based memory cell with a self-rectifying effect for crossbar WORM memory application [J], IEEE, Electron Device Lett.,2010 (31):344-346.
    [88]L. E. Yu, S. Kim, M. K. Ryu, S. Y. Choi, and Y. K. Choiet, Structure effects on resistive switching of Al/TiOx/Al devices for RRAM applications [J], IEEE Electron Dev. Lett.,2008 (29):331-333.
    [89]K. Kinoshita, K. Tsunoda, Y. Sato, H. Noshiro, S. Yagaki, M. Aoki, and Y. Sugiyama, Reduction in the reset current in a resistive random access memory consisting of NiOx brought about by reducing a parasitic capacitance [J], Appl. Phys. Lett.,2008 (93):033506.
    [1]A. Sawa, A. Yamamoto, H. Yamada,T. Fujii, M. Kawasaki, J. Matsuno, Y. Tokura. Colossal electroresistance effect at metal electrode/La1-xSr1+xMnO4 interfaces. Appl. Phys. Lett.,2006 (88):223507.
    [2]Chun-Chieh Lin, Jung-Sheng Yu, Chih-Yang Lin, Chen-Hsi Lin and Tseung-Yuen Tseng. Stable resistive switching behaviors of sputter deposited V-doped SrZrO3 thin films. Thin solid films,2007 (516):402.
    [3]A. Shkabko, M. H. Aguirre, I. Marozau, T. Lippert, and A. Weidenkaff, Measurements of current-voltage-induced heating in the Al/SrTiO3-xNy/Al memristor during electroformation and resistance switching [J], Appl. Phys. Lett., 2009(95):152109.
    [4]V. S. Reddy, S. Karak, and A. Dhar, Multilevel conductance switching in organic memory devices based on AlQ3 and Al/Al2O3 core-shell nanoparticles [J], Appl. Phys. Lett.,2009 (94):173304.
    [5]D. R. Stewart, D. A. A. Ohlberg, P. A. Beck, Y. Chen, R. S. Williams, J. O. Jeppesen, K. A. Nielsen, and J. F. Stoddart, Molecule-independent electrical switching in Pt/organic monolayer/Ti devices [J], Nano Lett.,2004 (4):133-136.
    [6]R. Symanczyk, R. Bruchhaus, R. Dittrich, and M. Kund, Investigation of the reliability behavior of conductive-bridging memory cells [J], IEEE Electron Device Lett.2009 (30):876-878.
    [7]K.-H. Kim, S. H. Jo, S. Gaba, and W. Lu, Nanoscale resistive memory with intrinsic diode characteristics and long endurance [J], Appl. Phys. Lett.,2010 (96): 053106.
    [8]R. Waser, and M. Aono, Nanoionics-based resistive switching memories [J], Nat. Mater.,2007 (6):833-840.
    [9]M.-J. Lee, S. Han, S. H. Jeon, B. H. Park, B. S. Kang, S.-E. Ahn, K. H. Kim, C. B. Lee, C. J. Kim, I.-K. Yoo, D. H. Seo, X.-S. Li, J.-B. Park, J.-H. Lee, and Y. Park, Electrical manipulation of nanofilaments in transition-metal oxides for resistancebased memory [J], Nano lett.,2009 (9):1467-1481.
    [10]H. B. Lv, M. Yin, X. F. Fu, Y. L. Song, L. Tang, P. Zhou, C. H. Zhao, T. A. Tang, B. A. Chen, and Y. Y. Lin, Resistive memory switching of CuxO films for a nonvolatile memory application [J], IEEE Electron Device Lett.,2008 (29):309-311.
    [11]S. Kaeriyama, T. Sakamoto, H.0Sunamura, M. Mizuno, H. Kawaura, T. Hasegawa, K. Terabe, T. Nakayama, and Ma. Aono, A nonvolatile programmable solid-electrolyte nanometer switch [J], IEEE J. Solid-State Circuits,2005 (40): 168-175.
    [12]M. Terai, Y. Sakotsubo, S. Kotsuji, and H. Hada, Resistance controllability of Ta2O5/TiO2 stack ReRAM for low-voltage and multilevel operation [J], IEEE Electron Device Lett.,2010 (31):204-206.
    [13]Y. T. Li, S. B. Long,, H. B. Lv, Q. Liu, Q. Wang, Y. Wang, S. Zhang, S. Liu, and M. Liu, Investigation of resistive switching behaviors in WO3-based RRAM devices [J], Chinese Physics B,2011 (20):017305.
    [14]R. Waser and M. Aono, Nanoionics-based resistive switching memories [J], Nat. Mater.,2007 (6):833-840.
    [15]K. Tsunoda, K. Kinoshita, H. Noshiro, Y. Yamazaki, T. Jizuka, Y. Ito, A. Takahashi, A. Okano, Y. Sato, T. Fukano, M. Aoki, and Y. Sugiyama, Low power and high speed switching of Ti-doped NiO ReRAM under the unipolar voltage source of less than 3 V [C], IEDM Tech. Dig.,2007:767-770.
    [16]D. Lee, H. Choi, H. Sim, D. Choi, H. Hwang, M. J. Lee, S. A. Seo, and I. K. Yoo, Resistance switching of the nonstoichiometric zirconium oxide for nonvolatile memory applications [J], IEEE Electron Device Lett.,2005 (26):719-721.
    [17]X. Wu, P. Zhou, J. Li, L. Y. Chen, H. B. Lv, Y. Y. Lin, and T. A. Tang, Reproducible unipolar resistance switching in stoichiometric ZrO2 films [J], Appl. Phys. Lett.,2007 (90):183507.
    [18]B. Sun, Y. X. Liu, L. F. Liu, N. Xu, Y. Wang, X. Y. Liu, R. Q. Han, and J. F. Kang, Highly uniform resistive switching characteristics of TiN/ZrO2/Pt memory devices [J], J. Appl. Phys.,2009 (105):061630.
    [19]Q. Liu, S. B. Long, W. Wang, Q. Y. Zuo, S. Zhang, J. N. Chen, and M. Liu, Improvement of resistive switching properties in ZrO2-based ReRAM with implanted Ti ions [J], IEEE Electron Device Lett.,2009 (30):1335-1337.
    [20]W. H. Guan, S. B. Long, Q. Liu, M. Liu, and W. Wang, Nonpolar nonvolatile resistive switching in Cu doped ZrO2 [J], IEEE Electron Device Lett.,2008 (29): 434-437.
    [21]C. Y. Lin, C. Y. Wu, C. Y. Wu, T. C. Lee, F. L. Yang, C. Hu, and T. Y. Tseng, Effect of top electrode material on resistive switching properties of ZrO2 film memory devices [J], IEEE Electron Device Lett.,2007 (28):366-368.
    [22]Y. T. Li, S. B. Long, M. H. Zhang, Q. Liu, L. B. Shao, S. Zhang, Y. Wang, Q. Y. Zuo, S. Liu, and M. Liu, Resistive switching properties of Au/ZrO2/Ag structure for low voltage nonvolatile memory applications [J], IEEE Electron Device Lett.,2010 (31):117-119.
    [23]J. J. Yang, M. D. Pickett, X. Li, D. A. A. Ohlberg, D. R. Stewart, and R. S. Williams, Memristive switching mechanism for metal/oxide/metal nanodevices [J], Nat. Nanotechnol.,2008 (3):429-433.
    [24]S. Seo, M. J. Lee, D. C. Kim, S. E. Ahn, B. H. Park, Y. S. Kim, I. K. Yoo, I. S. Byun, I. R. Hwang, S. H. Kim, J. S. Kim, J. S. Choi, J. H. Lee, S. H. Jeon, S. H. Hong, and B. H. Park, Electrode dependence of resistance switching in polycrystalline NiO films [J], Appl. Phys. Lett.,2005 (87):263507.
    [25]W. Y. Yang and S. W. Rhee, Effect of electrode material on the resistance switching of Cu2O film [J], Appl. Phys. Lett.,2007 (91):232907.
    [26]W. H. Guan, M. Liu, S. B. Long, Q. Liu, and W. Wang, On the resistive switching mechanisms of Cu/ZrO2:Cu/Pt [J], Appl. Phys. Lett.,2008 (93):223506.
    [27]Q. Liu, C. M. Dou, Y. Wang, S. B. Long, W. Wang, M. Liu, M. H. Zhang, and J. N. Chen, Formation of multiple conductive filaments in the Cu/ZrO2:Cu/Pt device [J], Appl. Phys. Lett.,2009 (95):023501.
    [28]M. Kund, G. Beitel, C.-U. Pinnow, T. Rohr, J. Schumann, R. Symanczyk, K.-D. Ufert, and G. Muller, Conductive bridging RAM (CBRAM):an emerging non-volatile memory technology scalable to sub 20nm [C], IEDM Tech. Dig.,2005: 754-757.
    [29]N. Banno, T. Sakamoto, N. Iguchi, H. Sunamura, K. Terabe, T. Hasegawa, and M. Aono, Diffusivity of Cu ions in solid electrolyte and its effect on the performance of nanometer-scale switch [J], IEEE Trans. Electron Devices,2008 (55):3283-3287.
    [30]U. Russo, D. Kamalanathan, D. Ielmini, A. L. Lacaita, and M. N. Kozicki, Study of multilevel programming in programmable metallization cell (PMC) memory [J], IEEE Trans. Electron Devices,2009 (56):1040-1047.
    [31]D. Lee, S. Baek, M. Ree, and O. Kim, Effect of the Electrode Material on the Electrical-Switching Characteristics of Nonvolatile Memory Devices Based on Poly(o-anthranilic acid) Thin Films [J], IEEE Electron Device Letters,2008,29(7): 694-697.
    [32]C. Y. Lin, C. Y. Wu, C. Y. Wu, C. C. Lin and T. Y. Tseng, Memory effect of RF sputtered ZrO2 thin films [J], Thin solid films,2007 (516):444-448.
    [33]M. Yin, P. Zhou, H. B. Lv, J. Xu, Y. L. Song, X. F. Fu, T. A. Tang, B. A. Chen, and Y. Y. Lin, Improvement of resistive switching in CuxO using new RESET mode [J], IEEE Electron Device Lett.,2008 (29):681-683.
    [34]M. N. Kozicki, C. Gopalan, M. Balakrishnan, and M. Mitkova, A low-power nonvolatile switching element based on copper-tungsten oxide solid electrolyte [J], IEEE Trans. Nanotechnology,2006 (5):535-44.
    [35]C. Pi, Y. Ren, and W. K. Chim, Investigation of bipolar resistive switching and the time-dependent SET process in silver sulfide/silver thin films and nanowire array structures [J], Nanotechnology,2010 (21):085709.
    [36]C. Schindler, G. Staikov, and R. Waser, Electrode kinetics of Cu-SiO2-based resistive switching cells:Overcoming the voltage-time dilemma of electrochemical metallization memories [J], Appl. Phys. Lett.,2009 (94):072109.
    [37]L. Chen, Q. C. Li, H. X. Guo, L. G. Gao, Y. D. Xia, J. Yin, and Z. G. Liu, Monte Carlo simulation of the percolation in Ag30Ge17Se53 amorphous electrolyte films [J], Appl. Phys. Lett.,2009 (95):242106.
    [38]B. J. Choi, D. S. Jeong, S. K. Kim, C. Rohde, S. Choi, J. H. Oh, H. J. Kim, C. S. Hwang, K. Szot, R. Waser, B. Reichenberg, and S. Tiedke, Resistive switching mechanism of TiO2 thin films grown by atomic-layer deposition [J], Journal of Applied Physics,2005,98(3):033715.
    [39]W. Y. Chang, K. J. Cheng, J. M. Tsai, H. J. Chen, F. Chen, M. J. Tsai, and T. B. Wu, Improvement of resistive switching characteristics in TiO2 thin films with embedded Pt nanocrystals [J], Appl. Phys. Lett.,2009 (95):042104.
    [40]K. M. Kim, and C. S. Hwang, The conical shape filament growth model in unipolar resistance switching of TiO2 thin film [J], Appl. Phys. Lett.,2009 (94): 122109.
    [1]T. Fukushima, Y. Yamada, H. Kikuchi, and M. Koyanagi, New three-dimensional integration technology using self-assembly technique [C], IEDM Tech. Dig.,2005:359-362.
    [2]J. Kim, A. J. Hong, M. Ogawa, S. Ma, E. B. Song, Y. S. Lin, J. Han, U. I. Chung, and K. L.Wang, Novel 3-D structure for ultra high density flash memory with VRAT (vertical-recess-array-rransistor) and PIPE (planarized integration on the same planE) [C], Symp. VLSI Tech.,2008:122-123.
    [3]S. P. Sim, K. S. Kim, H. K. Lee, J. I. Han, W. H. Kwon, J. H. Han, B. Y. Lee, C. Jung, J. H. Park, D. J. Kim, D. H. Jang, W. H. Lee, C. Park, and K. Kim, Fully 3-dimensional NOR flash cell with recessed channel and cylindrical floating gate-A scaling direction for 65nm and beyond [C], Symp. VLSI Tech.,2006:17-18.
    [4]T. Cho, Y. T. Lee, E. C. Kim, J. W. Lee, S. Choi, S. Lee, D.-H. Kim, W. G. Han, Y. H. Lim, J. D. Lee, J. D. Choi, and K. D. Suh, A dual-mode NAND flash memory: 1-Gb multilevel and high-performance 512-Mb single-level modes [J], IEEE J. Solid-State Circuits,2001 (36):1700-1706.
    [5]S. Lai, Non-Volatile Memory Technologies:The quest for ever lower cost [C], IEDM Tech. Dig.,2008:11-16.
    [6]刘琦,高速、高密度、低功耗的阻变非挥发性存储器研究,博士论文,安徽大学,2010.
    [7]M. Terai, Y. Sakotsubo, S. Kotsuji, and H. Hada, Resistance controllability of Ta2O5/TiO2 stack ReRAM for low-voltage and multilevel operation [J], IEEE Electron Device Lett.,2010 (31):204-206.
    [8]U. Russo, D. Kamalanathan, D. Ielmini, A. L. Lacaita, and M. N. Kozicki, Study of multilevel programming in programmable metallization cell (PMC) memory [J], IEEE Trans. Electron Devices,2009 (56):1040-1047.
    [9]M. Kund, G. Beitel, C. U. Pinnow, T. Rohr, J. Schumann, R. Symanczyk, K. D. Ufert, and G. Muller, Conductive bridging RAM (CBRAM):an emerging non-volatile memory technology scalable to sub 20nm [C], IEDM Tech. Dig.,2005:754-757.
    [10]H. Y. Lee, P. S. Chen, T. Y. Wu, Y. S. Chen, C. C. Wang, P. J. Tzeng, C. H. Lin, F. Chen, C. H. Lien, and M.-J. Tsai, Low power and high speed bipolar switching with a thin reactive Ti buffer layer in robust HfO2 based RRAM [C], IEDM Tech. Dig.,2008:297-300.
    [11]M. N. Kozicki, C. Gopalan, M. Balakrishnan, and M. Mitkova, A low-power nonvolatile switching element based on copper-tungsten oxide solid electrolyte [J], IEEE Trans. Nanotechnology,2006 (5):535-544.
    [12]Y. T. Li, S. B. Long, Q. Liu, Q. Wang, M. H. Zhang, H. B. Lv, L. B. Shao, Y. Wang, S. Zhang, Q. Y. Zuo, S. Liu, and M. Liu, Nonvolatile multilevel memory effect in Cu/WO3/Pt device structures [J], Phys. Status Solidi RRL,2010 (4):124-126.
    [13]Y. T. Li, S. B. Long,, H. B. Lv, Q. Liu, Q. Wang, Y. Wang, S. Zhang, S. Liu, and M. Liu, Investigation of resistive switching behaviors in WO3-based RRAM devices [J], Chinese Physics B,2011 (20):017305.
    [14]Y. Wang, Q. Liu, S. Long, W. Wang, Q. Wang, M. Zhang, S. Zhang, Y. Li, Q. Zuo, J. Yang, and M. Liu, Investigation of resistive switching in Cu-doped HfO2 thin film for multilevel non-volatile memory applications [J], Nanotechnol.,2010 (21): 045202.
    [15]K. Kinoshita, K. Tsunoda, Y. Sato, H. Noshiro, S. Yagaki, M. Aoki, and Y.Sugiyama, Reduction in the reset current in a resistive random access memory consisting of NiOx brought about by reducing a parasitic capacitance [J], Appl. Phys. Lett.,2008 (93):033506.
    [16]C. Y. Lin, C. Y. Wu, C. Y. Wu, C. C. Lin and T. Y. Tseng, Memory effect of RF sputtered ZrO2 thin films [J], Thin solid films,2007 (516):444-448.
    [17]W. C. Chien, Y. C. Chen, K. P. Chang, E. K. Lai, Y. D. Yao, P. Lin, J. Gong, S. C. Tsai, S. H. Hsieh, C. F. Chen, K. Y. Hsieh, R. Liu, and C. Y. Lu [C], Multi-level operation of fully CMOS compatible WOx resistive random access memory (RRAM), IMW'09.,2009:15-16.
    [18]S. Maikap, S. Z. Rahaman, T. Y. WU, F. Chen, M.-J. Kao and M.-J. Tsai, Low current (5 pA) resistive switching memory using high-κ Ta2O5 solid electrolyte[C], ESSDERC'09,2009:217-220.
    [19]Q. Liu, C. M. Dou, Y. Wang, S. B. Long, W. Wang, M. Liu, M. H. Zhang, and J. N. Chen [J], Formation of multiple conductive filaments in the Cu/ZrO2:Cu/Pt device, Appl. Phys. Lett.,2009 (95):023501.
    [20]K. Aratani, K. Ohba, T. Mizuguchi, S. Yasuda, T. Shiimoto, T. Tsushima, T. Sone, K. Endo, A. Kouchiyama, S. Sasaki, A. Maesaka, N. Yamada, and H. Narisawa [C], A novel resistance memory with high scalability and nanosecond switching, IEDM Tech. Dig.,2007:783-786.
    [21]Y. C. Yang, F. Pan, Q. Liu, M. Liu, and F. Zeng, Fully room-temperature fabricated nonvolatile resistive memory for ultrafast and high-density memory application [J], Nano lett.,2009 (9):1636-1643.
    [1]W. H. Guan, S. B. Long, Q. Liu, M. Liu, and W. Wang, Nonpolar nonvolatile resistive switching in Cu doped ZrO2 [J], IEEE Electron Device Lett.,2008 (29): 434-437.
    [2]W. H. Guan, M. Liu, S. B. Long, Q. Liu, and W. Wang, On the resistive switching mechanisms of Cu/ZrO2:Cu/Pt [J], Appl. Phys. Lett.,2008 (93):223506.
    [3]管伟华,前瞻非挥发性半导体存储器研究,硕士论文,中国科学院微电子研究所,2008.
    [4]Q. Liu, C. M. Dou, Y. Wang, S. B. Long, W. Wang, M. Liu, M. H. Zhang, and J. N. Chen, Formation of multiple conductive filaments in the Cu/ZrO2:Cu/Pt device [J], Appl. Phys. Lett.,2009 (95):023501.
    [5]Y. T. Li, S. B. Long, M. H. Zhang, Q. Liu, L. B. Shao, S. Zhang, Y. Wang, Q. Y. Zuo, S. Liu, and M. Liu, Resistive switching properties of Au/ZrO2/Ag structure for low voltage nonvolatile memory applications [J], IEEE Electron Device Lett.,2010 (31):117-119.
    [6]D. Lee, H. Choi, H. Sim, D. Choi, H. Hwang, M. J. Lee, S. A. Seo, and I. K. Yoo, Resistance switching of the nonstoichiometric zirconium oxide for nonvolatile memory applications [J], IEEE Electron Device Lett.,2005 (26):719-721.
    [7]X. Wu, P. Zhou, J. Li, L. Y. Chen, H. B. Lv, Y. Y. Lin, and T. A. Tang, Reproducible unipolar resistance switching in stoichiometric ZrO2 films [J], Appl. Phys. Lett.,2007 (90):183507.
    [8]B. Sun, Y. X. Liu, L. F. Liu, N. Xu, Y. Wang, X. Y. Liu, R. Q. Han, and J. F. Kang, Highly uniform resistive switching characteristics of TiN/ZrO2/Pt memory devices [J], J. Appl. Phys.,2009 (105):061630.
    [9]W. Wang, S. Fujita, and S. S. Wong, "Reset mechanism of TiOx resistance-change memory device [J], IEEE Electron Device Lett.,2009 (30): 733-735.
    [10]U. Russo, D. Kamalanathan, D. Ielmini, A. L. Lacaita, and M. N. Kozicki, Study of multilevel programming in programmable metallization cell (PMC) memory [J], IEEE Trans. Electron Devices,2009 (56):1040-1047.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700