统一潮流控制器运行特性及其控制的仿真和实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在世界经济迅猛发展和不断融合的过程中,电力系统为了适应经济快速增长所带来的对用电需求的增加,全球主要国家和地区的电力系统目前都沿着高电压、大容量、大规模、远距离输电的方向发展。由于我国煤炭资源与用电主要负荷的分布不均现象,以及多条±500kV直流输电线路的建立,在我国实现西电东送和全国联网的呼声越来越高并且逐步成为可能。如何保证如此庞大而复杂的电力系统稳定可靠的运行已经成为目前电力工作者致力研究的一个主题。
     FACTS技术是将电力电子技术、现代控制技术及计算机技术与电力系统相结合的产物,它通过对输电系统的母线电压、输电线路电抗和相位角的控制,快速实现线路的有功和无功潮流调整,输送功率的合理分配,可以降低功率损耗和发电成本,提高交流系统的稳定性和传统交流输电系统的传输能力,充分利用输电线路的输电能力,满足电力系统安全、可靠和经济运行的目标。
     统一潮流控制器(UPFC)是FACTS家族中的一员,它以能同时对电力系统进行潮流调节、电压控制和振荡抑制的综合功能而倍受电力工作者的青睐。1998年世界第一台UPFC装置在美国Inez变电站的投入和成功运行不仅证明了UPFC在理论上的正确性和在实践上的可行性,也证明了UPFC能给电力系统带来巨大经济效益。但对如何实现UPFC可参考资料的透露却微乎其微。
     本文从各种参考文献入手,在总结前人所进行工作的基础上,进行了如下几项工作:
     首先,在分析UPFC工作原理的基础上,采用输电线路的热稳定电流和UPFC串联侧注入母线最大电压的乘积关系确定了UPFC的装置容量,考虑系统运行母线电压水平的限制和线路传输功率极限的限制,确定了UPFC的各项运行约束指标;使用电力系统暂态仿真软件PSCAD/EMTDC,结合所确定的UPFC各项运行约束指标,建立了包含基于IGBT的UPFC装置、基于SPWM电源逆变器的装置级控制系统、基于常规PI控制的系统级控制和以单机经双回线向无穷大系统送电的电力系统等详细动态仿真模型;分别进行了UPFC在电力系统稳态时对电力系统的有功功率调节、无功功率调节和系统母线电压控制等功能的仿真分析,UPFC装置直流母线电压的变动对UPFC性能影响的仿真分析,在无UPFC装置的输电线路上发生三相短路时UPFC对电力系统潮流、电压和振荡影响的仿真分析以及线路上发生不对称单相短路时UPFC对电力系统潮流、电压和振荡影响的仿真分析。
     论文建立了能完全反映UPFC各种运行约束条件和动静态运行特性的简化动态模型,采用两个等效的可控电压源表示UPFC的串并联变流器,考虑了串并联变流器与输电系统间的有功功率交换和两变流器间通过直流电容相耦合的有功功率平衡关系,推导了UPFC直流电容的动态等效模型;为保证模型的精确性,适当考虑了UPFC的线路和变流器功率管的电阻损耗,用一个与直流电容相并联的等效电阻表示。模型的建立为UPFC控制系统的研究工作提供了基础。
     充分利用模糊控制对控制对象依赖程度小和强鲁棒性的特点,结合常规PID控制器的优点,设计了一个以线路有功、无功功率的误差及误差变化率为输入的,以PI控制的比例系数和积分系数为输出的,可以对控制器参数进行自动调整的自适应模糊PI控制器;采用仿真分析的方法,确定了自适应模糊PI控制器的模糊控制规则和量化因子及比例因子参数;同时对控制器的性能进行了详细的仿真分析。
     运用PSS的基本原理,设计了一个以线路有功功率变化量为输入的比例式UPFC辅助控制器,将辅助控制器的输出同时使用于UPFC并联侧的母线电压控制器和串联侧的线路有功功率控制,可以有效抑制发生在输电线路上的低频振荡,还有利于控制受到大扰动时的电力系统。
     为了验证UPFC的工作原理和对实际UPFC装置性能的深入研究,研制了一套15kVA的UPFC装置及相应的控制系统;在单机无穷大动态模拟电力系统上分别进行了基于常规PI控制器和自适应模糊PI控制器的UPFC实验研究。该项工作的完成为今后对UPFC的深入研究提供了一个有用的实验平台。
With the fast development of the worldwide economy, to meet the increasing demand of the power energy, modern power systems are developed rapidly characterized by the high-voltage, the large quantitative capacity, the large-scale spreading of area and the long-distance transmission. In our country, most of the power recourse is located in the north-west area, but the main power energy consumer is massed in the south-east area. As a result, it is necessary to transmit large amount of electrical power over long distance from the north-west to the south-east. How to ensure the stability and to enhance the reliability of the power systems is the main challenging problem.
     FACTS(Flexible AC transmission systems) which combines the techniques of the power electronics, computer, modern control theory provides powerful capability of regulating the active and reactive power flow, depressing the power losses and generation costs of the transmission line, improving the stability of the AC transmission systems of power system by controlling the bus voltage, transmission reactance and power phases. Therefore, it attracts great attention in the recent years.
     UPFC (the unified power flow controller) as one of the most powerful FACTS devices, can regulate the power flow, maintain the bus voltage and damp the oscillation of the power systems becomes the focus of the current research. The first practically used UPFC was realized in the Inez power station of America in 1998. Its successful operation demonstrated the effectiveness of the UPFC. However, very few information can be found from the publications about the details of the UPFC.
     By reviewing the published literatures about the UPFC, this thesis aims to investigate the performance of the UPFC by both the digital simulation as well as the experimental tests. The main work done by this thesis is as follows:
     Firstly, based on the analysis of UPFC, the capacity of the UPFC is determined by use of the multiple restriction including the thermal limits of the transmission line and the limits of the voltage injection by the series converter, Also, details about the operation parameters of the UPFC are determined with the consideration of the limits of the bus voltage and the power transmissions. Using the PSCAD/EMTDC software and the above mentioned results, the operation limits of the UPFC are investigated and a detail dynamic model for the UPFC is obtained which includes IGBT based converters, SPWM based converter control systems, a traditional PI based controller and a single-machine infinite-bus power system By use of this model, power flow and voltage regulation characteristics as well as the transient stability recovering ability of the UPFC on the power system in the steady state and transient state are investigated by the simulations.
     For the purpose of the promising efficiency, this thesis taking the controllable voltage sources as the series and shunt converters, this model includes all of the UPFC operating limits and can describe in detail of the static and dynamic properties for the UPFC. With the consideration the power exchanging between the AC power system and the converters and the balances of the active power among the two converters and the DC capacitor, this paper deduces a dynamic equivalent model for the DC capacitor of the UPFC. In order to guarantee the accuracy of the equivalent model, the losses of the device circuits and the IGBT is modeled by a resistance connected to the DC capacitor in shunt equivalent circuit. This simplified dynamic equivalent model of UPFC will be used in the study of the control system in the following chapter.
     Fuzzy control algorithm has an advantage of less depending to the accuracy of the mathematical model for the controlled system. It is used together with the conventional PID in this thesis. Therefore, a self-adaptive fuzzy PI controller is obtained and used for the UPFC. In the proposed control, two kinds of feedback inputs are used. One of the inputs is the errors of the line active and reactive power and the other one is the variation of the errors. The outputs of the control are feed forward to the control system.. A set of the fuzzy rules are obtained using the simulation results given in chapter 2, which is used to determine the corresponding coefficients of the fuzzy-logic controller. The simulations of both the steady state and transient state are carried out to investigate the characteristics of UPFC with the proposed controller. Comparison is made by the simulation results between the UPFC controlled by proposed and the conventional PI controller.
     Based on the principle of PSS, a supplement controller, which uses the variation of the power flow in the transmission line as the input and the output is used to control the bus voltage and the active power transmission to damp out the low frequency oscillation of the power system and to enhance the power system transient stability after large disturbances. Satisfy results are obtained and given in the thesis.
     For the purpose of demonstrating the effectiveness of the UPFC and the proposed control, a 15kVa experiment prototype UPFC is developed and tested in a laboratory physical test environment. Theoretical result obtained in the above mentioned chapters are verified. Details of the prototype UPFC and the controller are all given in the thesis together with the test results. Also, the performance of the two kinds of PI control is compared.
引文
[1] P. Kurdur. Power System Stability and Control (影印版).第一版.北京.中国电力出版社,2001
    [2]何大愚.柔性交流输电技术和用户电力技术的新发展.电力系统自动化,1999,23(6):8~13
    [3]何大愚.柔性交流输电技术的定义、机遇及局限性.电网技术,1996,20(6):18~24
    [4] N. G. Hingorani Flexible AC Transmission Systems (FACTS)~Overview. IEEE Spectrum, 1993. 40~45
    [5] N. G. Hingorani, and L. Gyugyi. Understanding FACTS: Concepts and Technology of Flexible AC Transmission Systems. IEEE Press, 2000
    [6] Hingorani N G, Narain G. Power Electronics in Electric Utilities: Role of Power Electronics in Future Power Systems. In: Proceedings of the IEEE 1987. 76(4): 334~339
    [7] L. Gyugyi. A Unified Power Flow Control Concept for Flexible AC Transmissions Systems. In: IEE Proceedings~C, 1992. 44~45
    [8] L.Gyugyi, T.R.Rietman. THE UNIFIED POWER FLOW CONTROLLER: A NEW APPROACH TO POWER TRANSMISSION CONTROL. IEEE Transactions on Power Deliver, 1995, 10(2): P1085~1093
    [9] C.Schauder, E. STAey, M. Lund, L. Gyugyi, L. Kovalsky AEP UPFC PROJECT: INSTALLATION, COMMISSIONING AND POERATION OF THE±160MVA STATCOM (PHASE I), IEEE Transations on Power Delivery. 1998, 13(4): 1530~1535
    [10] A. S. Mehraban, A.Edris, C.D.Schander. INSTALLATION, COMMISSIONING, AND OPERATION OF THE WORLD’S FIRST UPFC ON THE AEP SYSTEM. In: IEEE proceedings 1998,.323~327
    [11] Ben Meharban, Len Kovalsky. UNIFIED POWER FLOW CONTROLLER ON THE AEP SYSTEM: COMMISSIONING AND OPERATION. In:IEEEproceeedings 1998. 1287~1292
    [12]徐叔梅.联合电力潮流控制器(UPFC)在美国电力公司投运.电网技术,1998,22(6): 78~79
    [13] B.A. Renz, A.Keri, C.Schauder, A.Edris. AEP UNIFIED POWER FLOW CONTROLLER PERFORMANCE. IEEE Transactions on Power Delivery, 1999, 14(4): 1374~1381
    [14] Kalyan K. Sen, Albert J. F. Keri. Comparison of Field Results and Digital Simulation Results of Voltage~Sourced Converter~Based FACTS Controllers. IEEE Transaction on Power delivery, 2003, 18(1): 300~306
    [15] Fuerte~Esqueivel C R, Acha E, Etal. A Comprehensive New Ton~Ropbon UPFC Model For The Qundratic Powwwer Flow Solution Of Practical Power Network. IEEE Trans On Power Systems, 2000, 15(1): 102~109
    [16] Lee S H, Chu C C, Chang D H. Comprehensive UPFC Models For Power Flow Calculation In Practical Power Systems. In: Power Engineering Society Summer Meeting. 2001. 27~32
    [17] Nomoziam M, Angquist L, Gbandbari M. Use Of UPFC For Optimal Power Flow Control. IEEE Trans On Power Delivery, 1997,12(4): 1629~1634
    [18] Xiao Ying, Song Y H, Sun Y Z Versatile Model For Power Flow Control Using FACTS Devices. In: Proceedings Of The 3th International Conference On Power Electronics And Motion Control, 2000. 868~874
    [19]段献忠,陈金富.潮流计算中FACTS元件模型选择研究.电工技术学报,1999,14(3):65~69
    [20] FANG Da~Zhong, DONG Liu~Ying, Chung T S. Development Of New Techniques For Power Flow Analysis Of Power System With Upfcs. In: Proceedings Of The 5th International Conference On Advances In Power System Control, Opemtion And Management. APSCOM. Hong Kong: 2000. 120~123
    [21]童强,彭建春.一种新的含UPFC的电力系统潮流算法.继电器,2006,34(2):20~23
    [22] A.J.Keri, X.Lombard, A.A.Edris. Unified Power Flow Controller(UPFC): Modeling and Analysis. IEEE Transactions on Power Delivery, 1999, 14(2): 648~654
    [23]章良栋,芩文辉. UPFC的模型及控制器研究.电力系统自动化,1998, 22(1): PP36~39
    [24] Robert J. Nwlson, Jianhua Bian. UPFC APPLICATION ON THE AEP SYSTEM: PLANNING CONSIDERATIONS. IEEE Transactions on Power Systems, 1997, 12(2) 1695~1701
    [25] R. Mhalic, D.Povh. IMPROVEMENT OF TRANSIENT STABILITY USING UNIFIED POWER FLOW CONTROLLER. IEEE Transactions on Power Delivery, 1996, 11(1): 485~492
    [26] A.Nabavi~Naxi, M.R.Lravarl. STEADY~STATE AND DYNAMIC MODEL OF UNIFIED POWER FLOW CONTROLLER(UPFC) FOR POWER SYSTEM STUDIES. IEEE Transactions on Power Systems, 1996, 11(4): 1937~1943
    [27]孙元章. ASVG动态建模与暂态仿真研究.电力系统自动化,1996,20(1):5~10
    [28]颜伟. UPFC的模型与控制器研究.电力系统自动化,1999,23(6):36~41
    [29]李岩松,刘君. UPFC暂态数学模型及其应用.电力系统自动化,2000, 11(2): 31~36
    [30]郝正航. UPFC装置的开关函数建模法.贵州工业大学学报(自然科学版),2000,29(3):39~43
    [31] J Y Liu, Y H Song. DIGITAL SIMULATIONS OF THE PWM UPFC USING EMTP. AC and DC Power Transmission IEE, 1996, 21(3): 351~356
    [32] X.Y.Zhou, H.F.Wang. Detail modeling and simulation of UPFC using EMTP. In: IEE proceedings. 1998. 551~560
    [33] Muwaffaq, I.Alomoush. Derivation of UPFC DC Load Flow Model With Examples of its Use in Restructured Power Systems. IEEE Transactions on Power Systems, 2003, 18(3): 1173~1180
    [34] A.Nabari~Niaki, M.R.Ieavanl. STEADY~STATE AND DYNAMIC MODELS OF UNIFIED POWER FLOW CONTROLLER(upfc) FOR POWER SYSTEM STUDIES. IEEE Transactions on Power systems, 1996, 11(4): 1937~1943
    [35] Nampetchp, S.N.singh. Modeling of UPFC and Its Parameters Selection. IEEE PLDS, 2001. 77~83
    [36] Nabavi~Niaki A., Iravani M.R.. Steady state and Dynamic Models of UnifiedPower Flow Controller (UPFC) for Power Systems Studies. IEEEE Transaction on Power System, 1996, 11(4): 45~49
    [37] K.R.Padiyar, A.M.Kulkarni. Control Design And Simulations Of Unified Power Flow Controller. IEEE Transacrions On Power Delivery, 1998, 13(4): 1348~1354
    [38] Y. Morioka, M.Kato, Y.Nakachi. Implementation Of Unified Power Flow Controller And Verification For Transmission Capability Improvement. IEEE Transactions On Power Systems, 1999, 14(2): 575~581
    [39] S. Limyingcharoen, U.D.Annakage, N.C.Pahalawaththa. Effects Of Unified Power Flow Controller. In: IEE Proceedings~Generation, Transmission And Distribution. 1998. 182~188
    [40] I.Papic, P.Zunko, D.Povh. Basic Control Of Unified Power Flow Controller. IEEE Transactions On Power Systems, 1997, 12(4): 1734~1739
    [41]王晶,陈学允. UPFC对动态电能质量影响的分析研究.电工技术学报,2004, 19(1): 44~48
    [42] Smith K s, Ran L,PenmanJ. Dynamic Modeling of a Unified Power Flow Controller. In IEE Proc. Gener. Transm. Distrib. 1997.144~155
    [43]王涛,李宵燕.统一潮流控制器动态特性的电磁暂态仿真研究.清华大学学报(自然科学版), 1997,37(S1): 79~83
    [44]黄振宇,赵亮.电力系统动态分析中统一潮流控制器的模型研究.清华大学学报(自然科学版), 1997,37(S1):74~78
    [45] Wu Shouyuan, Zhou Xiaoxin. Unified Power Flow Controller in Power System to Improve power system stability. In ICPST. 1994. 949~954
    [46]王海风,李敏,陈衍.统一潮流控制器的多变量控制设计.中国电机工程学报,2000,20(8):51~55
    [47] P K Dash, S Mishra, G.Panda. A radial basis function neural network controller for UPFC. IEEE Transaction on Power Systems, 2000, 15(4): 1293~1299
    [48] Y L Kang, G B Shrestha. Application of an NLPID controller on a UPFC to improve transient stability of a power system. In: IEE Proc~Gener Transm Distrib. 2001. 523~529.
    [49] D.Menniti, A. Pinnarelli, N.Sorrentino. A novel fuzzy logic controller for UPFC.IEEE proceedings. 2000: 691~696
    [50] T.K.mok, Yixin Ni. A study of fuzzy logic based damping controller for the UPFC. In: APSCOM 2000. 290~294
    [51] A.A.Eldamaty, S.O.Faried. DAMPING POWER SYSTEM OSCILLATIONS USING A FUZZY LOGIC BASED UNIFIED POWER FLOW CONTROLLER. In: ccece/ccgei. Saskatoon. 2005. 1950~1953
    [52] M.E.A.FARRAG, G.A.PUTRUS. Design of fuzzy based~rules control system for the unified power flow controller. In: IEEE proceedings 2002. 2102~2107
    [53] Robert J.Nelson, Jianhua Bian. UPFC APPLICATION ON THE AEP SYSTEM: PLANNING CONSERATIONS. IEEE Transactions on Power Systems, 1997, 12(4): 1695~1701
    [54] C.D.Schauder, D.M.Hamai. OPERATION OF THE UNIFIED POWER FLOW CONTROLLER(UPFC) UNDER PRACTICAL CONSTRAINTS. IEEE Transactions on Power Delivery, 1998, 13(2): 30~636
    [55] J.Bian, D.G.Ramey. A STUDY OF EQUIPMENT SIZES AND CONSTRAINTS FOR A UNIFIED POWER FLOW CONTROLLER. IEEE Trans on Power Delivery, 1997, 12(3): 1385~1391
    [56] C.D.Schauder, D.R.Rietman, A.Edris. OPERATION OF THE UNIFIED POWER FLOW CONTROLLER(UPFC) UNDER PRACTICAL CONSTRAINSTS. IEEE Transactions on Power Delivery, 1998, 13(2): 630~637
    [57] R.J.Nelson. TRANSMISSION POWER FLOW CONTROL:ELECTRONIC VS. ELECTROMAGNETIC ALTERNATIVES FOR STEADY~STATE OPERATION. IEEE Transactions on Power Delivery, 1994, 19(3): 1678~1684
    [58] Y.Ye, M.Kazerani. Operating Constrainsts of FACTS Devices. In: IEEE proceedings. 2000. 1579~1582
    [59] Jun~Yong Liu, Yong~Hua Song. strategies for Handling UPFC Conostraints in Steady~State Power Flow and Voltage Control. IEEE Transactions on Power Systems, 2000, 15(2): 566~571
    [60] N.Dizdarevic, S.Tesnjak. Converter Rating Powers of Unified Power Flow Controller. In: IEEE proceedings. 2002. 603~609
    [61] R.j.Nelson, S.L.Williams. TRANSMISSION SERIES POWER FLOW CONTROL.IEEE Transactions on Power Delivery, 1995, 10(1): 504~509
    [62] C.Schauder,E.Stacey. AEP UPFC Project: Installation, Commissioning and Operation of the±160 MVA ATATCOM (phase I). In: IEEE PES Winter Meeting. 1997. 671~675
    [63] K. K. Sen, and E. J. Stacey. UPFC~unified power flow controller: Theory, Modeling, and Applications. In: IEEE PES Winter Meeting. 1997. 44~51
    [64] X. Lombard, and P. G. Therond. control of unified power flow controller: comparison of methods on the basis of a detailed numerical model. In: IEEE PES Summer Meeting. 1996. 291~296
    [65]葛敏辉. UPFC控制器设计原理及方案.电网技术,2000, 24(5): 77~83
    [66] S.Limyingcharoen, U.D.Annakkage. Fuzzy logic based unified power flow controllers for transient stability improvement., In: IEE Pro~Gener. Ttransm. Distrib. 1998. 225~232
    [67] H.Kohno, a.Yokoyama. Control System Design of UPFC for Power System Damping enhancement taking into account rating of converter during oscillation. In: Proceedings of the 1999 IEEE Power Tech99 conference. 1999. 29~31
    [68] Yoke Lin Tan, Youyi Wang. Design of series and shunt FACTS controller using adaptive non~linear co~ordinated design techniques. IEEE Trans on Power System, 1997, 12(3): 1374~1379
    [69] S.Arabi, P.Kundur. A Versatile FACTS Device Model for Power Flow and Stability Simulations. In: IEEE Transactions on Power Systems. 1996. 258~262
    [70] C.A.Canizares, Z.t.Faur. Analysis of SVC and TCSC Controllers in Voltage Collapse . IEEE Transactions on Power Systems, 1998, 12(4):93~96
    [71]黄振宇,倪以信,陈寿孙. UPFC动态模型在电力系统动态分析中的实现.电力系统自动化, 1999,23(6):26~30
    [72] R.J.Nelson, J.Bian. Transmission Series Power Flow Control. IEEE Transactions on Power Delivery, 1995, 10(1): 504~510
    [73] H.Yonezawa, M.Tsukada. Study of a STATCOM Application for Voltage Stability Evaluated by Dynamic PV Curves and Time Simulations. IEEE Transactions on Power Systems, 2000, 12(4): 65~68
    [74] P.G.Therond, P.Cholley. FACTS Research and Development Program at EDF. In: IEE proceedings. 1995. 69~73
    [75] Tae~Hyun Kim,Jang~chcol Sco. A Decoupled Unified Power Flow Controller Model for Power Flow Considering Limit Resolution. IEEE Transactions on Power Systems, 1999, 12(5): 1190~1195
    [76] Muwaffaq, Alomoush. Derivation of UPFC DC Load Flow Model With Examples of its Use in Restructured Power Systems. IEEE Transactions on Power Systems, 2003, 18(3): 1173~1180
    [77] L.Y.Dong,L.Zhang,M.L.Crow. A New Control Strategy for the Unified Power Flow Controller. IEEE Transactions on Power Systems, 2002, 14(1): 562~566
    [78] Saeed Arabi, Prabhashankar Kundur. Innovative Techniques in Modeling UPFC for Power System Analysis. IEEE TRANSACRIONS ON POWER SYSTEMS, 2000, 15(1): 336~341
    [79]罗春雷,孙洪波,徐国禹. UPFC动态建模与最优控制研究.电力系统自动化,1997,21(11):4~6
    [80]李宵燕,李兰英,懂怀国. UPFC物理模型SPWM控制技术的研究与实现.哈尔滨理工大学学报,1998,3(3):49~52
    [81]李勋,杨荫福,陈坚.基于SPWM控制的UPFC开关函数数学模型.电力系统自动化,2003,27(9):37~40
    [82]王海风,李帆,房大中.基于电力系统非参数化模型设计统一潮流控制器.中国电机工程学报,2002,22(7):62~65
    [83]刘前进,孙元章.基于功率注入法的UPFC潮流控制研究.清华大学学报(自然科学版),2001,41(3):55~58
    [84]李摒文.美国INEZ变电站统一潮流控制器简介.电网技术,2002,26(8):84~87
    [85]颜伟,朱继忠,徐国禹. UPFC线性最优控制方式的研究及其对暂态稳定性的改善.中国电机工程学报,2000,20(1):45~49
    [86]卢强,孙元章,徐政.面向目标的FACTS设备智能预估控制方法(二).电网技术,1998,22(5):5~9
    [87]陈众,颜伟,徐国禹.统一潮流控制器的智能解耦与结构设计研究.电网技术,2004,28(2):24~27
    [88] D. Menniti, A. Pinnarelli, N. Sorrentino. A novel fuzzy logic controller for UPFC. In: IEEE proceedings2000. 2000. 691~696
    [89] U.YOLAC, T.YALCINOZ. COMPARISON OF FUZZY LOGIC AND PID CONTROLLERS FOR TCSC USING MATLAB. IEEE Transactions on Power Systems, 2001, 15(3): 173~180
    [90] A. A. Eldamaty, S. O. Faried, S. Aboreshaid. DAMPING POWER SYSTEM OSCILLATIONS USING A FUZZY LOGIC BASED UNIFIED POWER FLOW CONTROLLER. In: CCECE/CCGE 2005 IEEE. 2005. 1950~1953
    [91] M.E.A.FARRAG, G.A.PUTRUS, L.RAN. Design of Fuzzy Based~Rules Control System for the Unified Power Flow Controller. IEEE Transactions on Power Systems, 2000, 11(4): 173~180
    [92]房大中,包顺先.基于振荡能量下降原理的UPFC模糊控制器设计.电力系统及其自动化学报,2006,18(3):7~13
    [93]侯丽,鲁宝春.基于自调整变间距模糊控制的UPFC的研究.继电器,2006,34(7):24~26
    [94]黄振宇,刁勤华. UPFC的模糊调制控制研究.电力系统自动化,2000, 11(2): 36~41
    [95]何娜,刘瑞叶.模糊控制理论在UPFC控制器设计中的应用.哈尔滨工业大学学报,2005,37(11): 1479~1482
    [96]王超,舒乃秋,吕小静.统一潮流控制器的模糊控制策略设计.继电器,2003,31(10):13~17
    [97]吕小静,王超,黎文安.统一潮流控制器的模糊控制器设计.电力科学与工程,2003,11(3):19~22
    [98]侯北平.自适应模糊PID控制器的设计及基于MATLAB的计算机仿真.天津轻工业学院学报,2001,39(4):32~35
    [99]袁风莲. Fuzzy自整定PID控制器设计及其MATLAB仿真.沈阳航空工业学院学报,2006,23(1):71~73
    [100]向阳. Matlab在Fuzzy~PID控制器用于船舶操纵仿真中的应用.机电设备,2004, 12(3): 5~8
    [101]邵俊鹏,徐星辉,贾慧娟. MATLAB在模型参考模糊自适应控制系统仿真中的应用.计算机仿真,2003,20(1):59~61
    [102]郝加臣,余发山.参数自适应模糊PID控制器在自动励磁调节系统中的应用.贵州工业大学学报(自然科学版),2003,32(1):54~57
    [103]陈晓冲,王万平.常规PID控制和模糊自适应PID控制仿真研究.机床与液压,2004,18(12): 65~66
    [104]李萍,谢云敏.改进型单神经元自适应PID控制及其MATLAB仿真.中国农村水利水电,2005, 13(12): 91~97
    [105]方一鸣.基于MATLAB(SIMULINK)的模糊控制系统计算机仿真.自动化与仪器仪表,2000,88(2):19~21
    [106]储岳中,陶永华.基于MATLAB的自适应模糊PID控制系统计算机仿真.安徽工业大学学报,2004,21(1):49~52
    [107]顾生杰,刘春娟.基于模糊自整定PID控制器的非线性系统仿真.兰州交通大学学报(自然科学版),2004,27(7):62~64
    [108]刘国荣,阳宪忠.模糊自适应PID控制器.控制与决策, 1995,10(6):558~562
    [109]何继爱,田亚菲.模糊自适应整定PID控制及其仿真.甘肃科学学报,2004,16(1):63~66
    [110]田淑杭,姜丽娟.一种参数自整定模糊PID控制器的研究.电气传动自动化,2003,25(6):28~30
    [111]侯勇严,孙瑜,郭文强.一种自适应模糊PID控制器的仿真研究. 2004,22(2):48~52
    [112]诸静.《模糊控制原理与应用》.第一版.北京.机械工业出版社. 1995. 244~253
    [113] Wang H F, Lim, Wwift. FACTS~Based Stabilizer Designed by the Phase Compensation Method~Part1: Single~Machine Infinite~Bus Power Systems. In: Procees of 1997 4th international Confenrence on Advances in Power System Control, Operation and Management. Hong Kong: 1998. 79~84
    [114] NiY, Smider L. STATCOM Power Frequency Model with VSC Charging Dyanmics and Its Application in the Power System Stability Analysis. In: Procees of 1997 4th international Confenrence on Advances in Power System Control, Operation and Management. Hong Kong: 1998. 115~119
    [115] Huang Zhenyu, Ni Yikin, Chen Shousun, eta. Application of Unified Power Flow Controller in Ihterconnected Power Systems—Modeling, Interface, Control Strategy and Case Study. IEEE Trans on Power Systems, 1999, 14(3): 74~79
    [116]颜伟,朱继忠,孙洪波,徐国禹. UPFC的潮流控制与暂态稳定性研究.。电机工程学报,2000,20(12):57~61
    [117] Karl Schoder, Azra Hasanovic, Ali Feliachi. Enhancing Transient Stability using a Fuzzy Control Scheme for the Unified Power Flow Controller (UPFC). In: Proc.43nd IEEE Midwest Symp on Circuits and Systems, Lansing MI: 2000. 1382~1385
    [118] S.Limyingcharoen, U.D.Annakkage. Fuzzy logic based unified power flow controllers for transient stability improvement. In: IEE Proc.~Gener. Transm. Distrib. Singopo: 1998. 225~232
    [119]杜文娟,王海风. UPFC运行点变化对电力系统稳定和控制性能的影响.电力系统自动化, 2005,29(20):40~44
    [120] LIMYINGCHAROEN S, ANNAKAGE U D. Effects of Unified Power Flow Controllers on Transient Stability. In: IEE Proceedings C.1999. UK: 1999. 182~188
    [121] LARSEN E B, SANCHEZ~GASCA J J. Concepts for Ddsign of FACTS Contrllers to Damp Power Swings. IEEE Trans on Power Systems, 1995, 10(2): 948~955
    [122] T. K. Mok Yixin Ni Felix F. Wu. A Study of Fuzzy Logic Based Damping Controller for The UPFC. In: AF'SCOM 2000, Hong Kong: 2000. 290~294
    [123] P. K. Dash, S. Mishra, and G. Panda. Damping Multimodal Power System Oscillation Using a Hybrid Fuzzy Controller for Series Connected Facts Devices. IEEE TRANSACTIONS ON POWER SYSTEMS, 2000, 15(4): 1360~1366
    [124] A. A. Eldamaty S. O. Faried S. Aboreshaid. DAMPING POWER SYSTEM OSCILLATIONS USING A FUZZY LOGIC BASED UNIFIED POWER FLOW CONTROLLER .In: CCECE/CCGEI, Saskatoon: 2005. 1950~1953
    [125] T. K. Mok, Yixin Ni. Design of Fuzzy Damping Controller of UPFC through Genetic Algorithm. In: (DRPT2004). Hong Kong: 2000.1889~1894
    [126] T. S. Chung, Xiaodong Yang, D. Z. Fang. Development of Adaptive UPFC Supplementary Fuzzy Controller for Power Svstem Stabilitv Enhancement. In: DRPT2004. Hong Kong: 2004. 216~221
    [127] Ni Yixin Mak Lai On Huang Zhenyu Chen Shousun Zhang BaoIin. FUZZY LOGIC DAMPING CONTROLLER FOR FACTS DEVICES IN INTERCONNECTED POWER SYSTEMS. In: DRPT2004. Hong Kong: 1999. 591~594
    [128]刘皓明.基于遗传算法的UPFC模糊阻尼控制器参数优化及与梯度下降法的比较.电力自动化设备,2005,25(11):5~10
    [129]孙荣富,陈铁,杨振东.阻尼振荡的GNF统一潮流控制器设计.继电器,2004,32(24):50~53
    [130]颜伟.统一潮流控制器的模型及其在电力系统中的应用研究: [博士学位论文]。重庆大学图书馆,1999.
    [131]鞠儒生.统一潮流控制器智能控制方法研究: [硕士学位论文]。湖南大学图书馆,2002.
    [132] Edvina Uzunovic. EMTP, transient stability and power flow models and controls of VSC based FACTS controllers: [dissertation], Waterloo, Ontario, Canada, 2001.
    [133] Kannan Sreenivasach. Unified power flow controller Modeling, stability analysis, control strategy and control system design: [dissertation], Waterloo, Ontario, Canada, 2001.
    [134] Manish Thakur. Unified power flow controller (UPFC) development of the mathematical framework and design of a transient model: [dissrertation], The University of Manitoba Department of Electrical and Computer Engineering Winnipeg, Manitoba, Canada, 2004.
    [135]董雷,蒲天骄.基于本地可测量参数的UPFC暂态能量控制.电网技术,2003,27(2):50~53
    [136]谭伟璞,贺仁睦.数字信号处理器在统一潮流控制器实验装置中的应用.电网技术,1999,23(8):17~20
    [137]王建,吴捷.统一潮流控制器的建模与控制研究综述.电力自动化设备,2000,20(6):41~45
    [138]谭伟璞,贺仁睦.统一潮流控制器主电路结构的研究.华北电力大学学报,2000,27(2):11~15

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700