弹性支承干摩擦阻尼器减振研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
众所周知,阻尼器对于高速旋转机械(如航空发动机)的减振有着重要的意义。不同种类的阻尼器(如挤压油膜阻尼器、金属橡胶阻尼器、橡胶阻尼器等)在实际应用中有着很好的效果。
     本文提出了一种新型阻尼器—弹性支承干摩擦阻尼器,它可以用于带有弹性支承旋转机械的减振,其原理为通过两个摩擦片之间的干摩擦为转子提供阻尼。阻尼器的一个摩擦片(动摩擦片)安装在弹性支承的一端,另一个摩擦片(静摩擦片)安装在静子上。如果弹性支承由于转子的振动而产生运动,那么动、静摩擦片之间将产生相对位移,由此产生的干摩擦将消耗振动的能量,从而达到减振的效果。这就是弹支干摩擦阻尼器的工作机理。
     干摩擦力取决于作用在摩擦片上的压紧力和动、静摩擦片之间的摩擦系数,摩擦片的表面粗糙度和材料决定了摩擦系数,因此可以通过改变摩擦片压紧力的方法对弹支干摩擦阻尼器进行主动控制。
     本文的主要工作及结论如下:
     提出了弹性支承干摩擦阻尼器的结构方案,设计制造了弹支干摩擦阻尼器实验器。利用实验器进行了大量的稳态实验和暂态实验,以此研究了干摩擦阻尼器的可行性和有效性。
     对转子稳态数据、暂态实验的减速Bode图分析表明,弹支干摩擦阻尼器可以有效地抑制由转子不平衡而引起的振动。暂态实验数据还表明,干摩擦阻尼器能够大大降低转子通过临界转速时的振动峰值,这对于柔性转子的正常工作有着重要的意义。
     建立了转子—弹性支承—干摩擦阻尼器系统中转子的运动微分方程,采用库仑摩擦模型描述摩擦力。从理论上分析了弹支干摩擦阻尼器的减振机理,并证明了弹支干摩擦阻尼器可以用于转子系统的减振和镇定。运用能量平衡法确定了带有干摩擦阻尼器的转子的镇定边界。
     采用滞迟弹簧模型描述干摩擦力,运用Fourier级数展开法和谐波平衡法简化双折线本构关系,建立了转子—弹性支承—干摩擦阻尼器系统一自由度及二自由度力学简化模型,计算了系统的振动响应特性。
     采用Fourier级数展开法、增量谐波平衡法、精细积分法求解转子—弹性支承—干摩擦阻尼器系统一自由度、二自由度理论模型的振动响应,计算结果表明三种方法均可准确地得到系统的振动响应,其结果略有差异,可以忽略。
     通过与数值积分方法计算结果对比,验证了Fourier级数展开法的准确性。在二自由度模型求解中,运用拟牛顿法来求解非线性方程组,给出了相应的公式
It is well known, damper is an important component reducing vibrations in rotating machines running at high speed, for example in aero-engines. In different types of dampers such as squeeze oil film dampers, metal rubber dampers and rubber dampers have found successful applications.
    In this paper, a new type of damper-elastic support/dry friction is designed to suppress vibrations in rotating machines. It provides a rotor with damping by friction or two disks. One disk is fixed on the end cross section or elastic support and another one is placed in a fixed support. If the support moves, due to rotor vibration, then a relative motion between the support and the disk will occur. This will lead to a dry friction dissipating the vibration energy. The friction damper works in this principle.
    The dry friction force depends upon the force pressing the disk on the end cross section of the support and the friction coefficient associated with surface roughness and materials. Hence the damper can actively be controlled by changing the pressing force.
    The main works and conclusions are the following:
    The structural of elastic support/dry friction damper is introduced. A test rig is designed and set up to examine the feasibility and effectiveness of elastic support dry friction damper. The experiments include the steady state and the transient condition.
    The data of steady state and Bode diagram of transient condition show elastic support dry friction damper can reduce the vibration from rotating unbalance. The data of Bode diagram prove the dry friction damper can reduce the peak amplitude of vibration at critical speed.
    Coulomb dry friction model is used. The differential equations of rotor- elastic support-dry friction damper system are given. The results show that elastic support/dry friction damper can stabilize and reduce the vibration of rotor system. It is shown in theoretical analysis that elastic support dry friction damper can stabilize the free vibration of rotor. A boundary limit of the stabilization provided by the dry friction damper is obtained.
    In the hysteretic dry friction model, the hysteresis curve is simplified by Fourier method and harmonic balance method. The vibration responses are calculated to single degree of freedom model and two degree of freedom model of rotor- elastic support- dry friction damper system.
引文
[1] 陈燕生,沈心敏,闻英梅,孙希桐,摩擦学基础,北京:北京航空航天大学出版社,1991
    [2] 温诗铸,摩擦学原理,北京:清华大学出版社,1990
    [3] 宋兆泓,航空燃气涡轮发动机强度设计,北京:北京航空学院出版社,1988
    [4] 季文美,方同,陈松淇,机械振动,北京:科学出版社,1985
    [5] 闻邦椿,顾家柳,夏松波,王正,高等转子动力学,北京:机械工业出版社,2000
    [6] 晏砺堂,航空燃气轮机振动和减振,北京:国防工业出版社,1991
    [7] 周纪卿,朱因远,非线性振动,西安:西安交通大学出版社,1998
    [8] 陈予恕,非线性振动,北京:高等教育出版社,2002
    [9] 顾家柳等著,转子动力学,北京:国防工业出版社,1985
    [10] 钟一谔等著,转子动力学,北京:清华大学出版社,1987
    [11] 吕文林,航空发动机强度计算,北京:国防工业出版社,1988
    [12] 方同,薛璞,振动理论及应用,西安:西北工业大学出版社,1998
    [13] William T. Thomson, Theory of Vibration with Applications, Fourth Edition, UK: published by Chapman & Hall, London, 1993.
    [14] Leonard Meirovitch, Fundamentals of Vibrations, USA: Published by McGraw-Hill Higher Education, 2001.
    [15] A. Toufine, J. J. Barrau, M. Berthillier, Dynamic study of a simplified mechanical system with presence of dry friction, Journal of Sound and Vibration, 1999 Vol. 225 No. 1: 95~109
    [16] S. Chatterjee, T. K. Singha, S. K. Karmakar, Effect of high-frequency excitation on a class of mechanical systems with dynamic friction, Journal of Sound and Vibration, 2004 Vol. 269: 61~89
    [17] I. Lopeza, J. M. Busturiab, H. Nijmeijera, Energy dissipation of a friction damper. Journal of Sound and Vibration, 2004 Vol. 278: 539~561
    [18] X. Tan, R. J. Rogers, Equivalent viscous damping models of coulomb friction inMulti-Degree-of-Freedom vibration systems, Journal of Sound and Vibration, 1995 Vol. 185 No. 1: 33~50
    [19] Joon-Hyun Lee, Ed Berger, Jay H. Kim, Feasibility study of a tunable friction damper, Journal of Sound and Vibration
    [20] G. Csaba, Forced response analysis in time and frequency domains of a tuned bladed disk with friction dampers, Journal of Sound and Vibration, 1998 Vol. 214 No. 3: 395~412
    [21] C. S. Liu, W. T. Chang, Frictional behavior of a belt-driven and periodically excited oscillator, Journal of Sound and Vibration, 2002 Vol. 258 No. 2: 247~268
    [22] H. Ouyang, J. E. Mottershead, M. P. Cartmell, M. I. Friswell, Friction-induced parametric resonances in discs: effect of a negative friction-velocity relationship,Journal of Sound and Vibration, 1998 Vol.209 No.2: 251-264
    
    [23] W.-J. Kim, N.C. Perkins, Harmonic balance/Galerkin method for non-smooth dynamic systems, Journal of Sound and Vibration, 2003 Vol.261: 213-224
    
    [24]C. J. Begley, L. N. Virgin, Impact response and the influence of friction, Journal of Sound and Vibration, 1998 Vol.211 No.5: 801-818
    
    [25] V. G. Oancea, T. A. Laursen, Investigations of low frequency stick-slip motion:experiments and numerical modeling, Journal of Sound and Vibration, 1998 Vol.213 No.4: 577-600
    
    [26] F. Xia, Modelling of a two-dimensional Coulomb friction oscillator, Journal of Sound and Vibration, 2003 Vol.265: 1063-1074
    
    [27] K. Y. Sanliturk, D. J. Ewins, Modelling two-dimensional friction contact and its application using harmonic balance method, Journal of Sound and Vibration, 1996 Vol.193 No.2: 511-523
    
    [28] W. W. Whiteman, A. A. Ferri, Multi-mode analysis of beam-like structures subjected to displacement dependent dry friction damping, Journal of Sound and Vibration, 1997 Vol.207 No.3: 403-418
    
    [29] Gabor Csaba, Modelling Microslip Friction Damping and its Influence on Turbine Blade Vibrations, Dissertation. Linkoping University, 1998
    
    [30] B. R. Pontes, V. A. Oliveira, J. M. Balthazar, On stick slip homoclinic chaos and bifurcations in a mechanical system with dry friction, International Journal of Bifurcation and Chaos, 2001 Vol.11 No.7: 2019-2029
    
    [31] J. J. Chen, B. D. Yang, C. H. Menq, Periodic forced response of structures having three-dimensional frictional constraints, Journal of Sound and Vibration, 2000 Vol.229 No.4: 775-792
    
    [32] P. Dupont, P. Kasturi, A. Stokes, Semi-active control of friction dampers,Journal of Sound and Vibration, 1997 Vol.202 No.2: 203-218
    
    [33] Ugo Galvanetto, Sliding bifurcations in the dynamics of mechanical systems with dry friction—remarks for engineers and applied scientists, Journal of Sound and Vibration
    
    [34] B. D. Yang, M. L. Chu, C. H. Menq, Stick-slip-separation analysis and non-linear stiffness and damping characterization of friction contacts having variable normal load, Journal of Sound and Vibration, 1998 Vol.210 No.4: 461-481
    
    [35] Chengwu Duan, Rajendra Singh, Super-harmonics in a torsional system with dry friction path subject to harmonic excitation under a mean torque, Journal of Sound and Vibration, 2004
    
    [36] C. N. Bapat, The general motion of an inclined impact damper with friction,Journal of Sound and Vibration, 1995 Vol.184 No.3: 417-427
    [37] C. S. Liu, H. K. Hong, D. Y. Liou, Two-dimensional friction oscillator:group-preserving scheme and handy formulae, Journal of Sound and Vibration, 2003 Vol.266: 49-74
    
    [38] C. W. Stammers, T. Sireteanu, Vibration control of machines by use of semi-active dry friction damping, Journal of Sound and Vibration, 1998 Vol.209 No.4:671-684
    
    [39] Detelin Vasilev, Zdravka Tcherneva-Popova, Simulation modeling of an essentially non-linear dynamic system, Mechanical Engineering, 2000 Vol.1 No.7:765-768
    
    [40] B. F. Feeny, J. W. Liang, A decrement method for the simultaneous estimation of coulomb and viscous friction, Journal of Sound and Vibration, 1996 Vol.195 No.1:149-154
    
    [41] S. Nacivet, C. Pierre, F. Thouverez, L. Jezequel, A dynamic Lagrangian frequency - time method for the vibration of dry-friction-damped systems, Journal of Sound and Vibration, 2003 Vol.265: 201-219
    
    [42] A. J. Mcmillan, A non-linear friction model for self-excited vibrations, Journal of Sound and Vibration, 1997 Vol.205 No.3: 323-335
    
    [43] C. Breard, J.S. Green, M. Vahdati, M. Imregun, A non-linear integrated aero elasticity method for the prediction of turbine forced response with friction dampers, International Journal of Mechanical Sciences, 2001 Vol.43: 2715-2736
    
    [44] Y. Wang, An analytical solution for periodic response of elastic friction damped systems, Journal of Sound and Vibration, 1996 Vol.189 No.3: 299-313
    
    [45] N. Jaksic, M. Boltezar, An approach to parameter identification for a single-degree-of freedom dynamical system based on short free acceleration response,Journal of Sound and Vibration, 2002 Vol.250 No.3: 465-483
    
    [46] M. Vahdati, A.I. Sayma, M. Imregun, An integrated nonlinear approach for turbomachinery forced response prediction. Part II: case studies, Journal of Fluids and Structures, 2000 Vol.14: 103-125
    
    [47] U. Galvanetto, Bifurcations and chaos in a four dimensional mechanical system with dry friction, Journal of Sound and Vibration, 1997 Vol.204 No.4: 690-695
    
    [48] Stanislav Cipera, Frantisek Peterka, The approximation of correlation dimension of strange attractors of two-masses mechanical system with impacts, Colloquium DYNAMICS OF MACHINES 2000. Czech Committee of the European Mechanics Society, Institute of Thermomechanics ASCR, Prague, February 8-9,2000
    
    [49] K.Y. Sanliturk, M. Imregun, D. J. Ewins, Harmonic Balance Vibration Analysis of Turbine Blades With Friction Dampers, Transactions of the ASME, January 1997 Vol.119: 96-103
    
    [50] J. H. Griffin, C-H Menq, Friction Damping of Circular Motion and Its Implications to Vibration Control, Journal of Vibration and Acoustics, April 1991 Vol.113: 225-229
    [51] C-H Menq, P. Chidamparam, J. H. Griffin, Friction Damping of Two-Dimensional Motion and Its Application in Vibration Control, Journal of Sound and Vibration, 1991 Vol.144 No.3: 427-447
    [52]B. H. Ji, G. H. Zhang, L. T. Wang, Q. Yuan, Q. J. Meng, D. Y. Liu, Experimental investigation of the dynamic characteristics of the damped blade, Journal of Sound and Vibration, 1998 Vol.213 No.2: 223-234
    [53] F. H. Chu, W. D. Pilkey, A Direct Integration Technique for the Transient Analysis of Rotating shaft, Trans of the ASME, Journal of Mechanical Design, Jan 1981 Vol. 103:244-248.
    [54] J.S. Tang, C.Z. Qian, The asymptotic solution of the strongly non-linear Klein-Gordon equation, Journal of Sound and Vibration, 2003 Vol.268: 1036-1040
    [55] C-H Menq, J. H. Griffin, J. Bielak, The influence of a variable normal load on the forced vibration of a frictionally damped structure, Transactions of the ASME, April 1986 Vol.108: 300-305
    [56] C. Pierre, A. A. Ferri, E. H. Dowell, Multi-harmonic analysis of dry friction damped systems using an incremental harmonic balance method, Transactions of the ASME, December 1985 Vol.52: 958-964
    [57] S. L. Lau, Y. K. Cheung, Amplitude incremental variational principle for nonlinear vibration of elastic systems, Journal of Applied Mechanics, December 1981 Vol.48: 959-964
    [58] K. H. Haslinger, D. A. Steininger, EXPERIMENTAL CHARACTERIZATION OF SLIDING AND IMPACT FRICTION COEFFICIENTS BETWEEN STEAM GENERATOR TUBES AND AVB SUPPORTS, Journal of Sound and Vibration, 1995 Vol.181 No.5: 851-871
    [59] Mehmet Pakdemirli, Hakan Boyaci, Non-linear vibrations of a simple-simple beam with a non-ideal support in between, Journal of Sound and Vibration, 2003 Vol.268: 331-341
    [60]Kapitaniak T., Wojewoda J, Oscillations of A Quasi-Periodically Forced System with Dry Friction, Journal of Sound and Vibration, 1993, Vol.163 No.2: 379-384
    [61] Mei Zhan, Yuli Liu, He Yang, Physical modeling of the forging of a zdamper platform using plasticine, Journal of Materials Processing Technology, 2001 Vol.117: 62-65
    [62] H. J. Klepp, INTERACTIVE ASPECTS IN THE NUMERICAL SIMULATION OF THE KINETIC STATE OF A MULTI-BODY SYSTEM WITH FRICTION, Journal of Sound and Vibration, 1998 Vol.211 No.4: 702-708
    [63] X. Dai, Z. Jin, X. Zhang, DYNAMIC BEHAVIOR OF THE FULL ROTOR/STOP RUBBING: NUMERICAL SIMULATION AND EXPERIMENTAL VERIFICATION, Journal of Sound and Vibration, 2002 Vol.251 No.5: 807-822
    [64] C. M. Jung, B. F. Feeny, FRICTION-INDUCED VIBRATION IN PERIODIC LINEAR ELASTIC MEDIA, Journal of Sound and Vibration, 2002 Vol. 252 No. 5: 945~954
    [65] X. Xu, W. Xu, J. Genin, ANON-LINEAR MOVING MASS PROBLEM, Journal of Sound and Vibration, 1997 Vol. 204 No. 3: 495~504
    [66] Chen Yushu, Leung A Y T, Bifurcation and Chaos in Engineering, London: Springer-Verlag, 1998: 312~315
    [67] Donald L. Kunz, Nonlinear analysis of helicopter ground resonance, Nonlinear Analysis: Real World Applications, 2002 No. 3: 383~395
    [68] Lau S L, Cheung Y K, Wu S Y, Incremental harmonic balance method with multiple time scales for a periodic vibration of nonlinear systems, ASME Journal of Applied Mechanics, 1983 Vol. 50: 871~876
    [69] 钟万勰,结构动力方程的精细时程积分法,大连理工大学学报,1994.4 Vol.34 No.2:131~136
    [70] 张石生,丁佐华,干摩擦问题的周期解,数学年刊,1994 15A 6:726~732
    [71] 陈纪鹏,干摩擦问题的概周期性,五邑大学学报(自然科学版),1995 Vol.9 No.4:7~17
    [72] 季葆华,王乐天,李辛毅,孟庆集,刘万琨,罗辑,阻尼连接叶片的动力特性研究,动力工程,1996.10 Vol.16 No.5:62~63
    [73] 季葆华,王乐天,李辛毅,孟庆集,带阻尼结构长叶片振动响应的研究,西安交通大学学报,1996.12 Vol.30 No.12:53~59
    [74] 季葆华,张改慧,袁奇,王乐天,孟庆集,刘东远,阻尼连接叶片的实验研究,汽轮机技术,1997.8 Vol.39 No.4:238~243,250
    [75] 季葆华,王乐天,袁奇,孟庆集,朱宝田,汽轮机叶片干摩擦阻尼机理及其数学描述,汽轮机技术,1997.12 Vol.39 No.6:345~349
    [76] 季葆华,李锋,谢永慧,袁奇,孟庆集,现代汽轮机叶片阻尼结构形式设计方法的研究,西安交通大学学报,1999.8 Vol.33 No.8:40~43
    [77] 季葆华,丁家峰,王乐天,袁奇,孟庆集,求解带阻尼围带或凸肩叶片动力特性的复模念方法,机械强度,1998.9 Vol.20 No.3:219~222
    [78] 徐自力,李辛毅,袁奇,孟庆集,用改进的摩擦模型计算带阻尼结构叶片的响应,西安交通大学学报,1998.1 Vol.32 No.1:42~44
    [79] 李锋,孟庆集,谢浩,季葆华,阻尼叶片振动特性的优化研究,西安交通大学学报,2001.1 Vol.35 No.1:33~36
    [80] 任勇生,朱德懋,带凸肩叶片的稳态响应计算及其阻尼减振分析,振动工程学报,1994.6 Vol.7 No.2:103~111
    [81] 任勇生,朱德懋,具有干摩擦阻尼的叶片组振动的理论与实验研究,航空学报,1994.11 Vol.15 No.11:1306~1314
    [82] 白鸿柏,黄协清,干摩擦非线性减振器构成的迟滞振动系统的响应计算,机械工程学报,1998.10 Vol.34 No.5:70~75
    [83] 白鸿柏,黄协清,干摩擦振动系统响应计算方法研究,振动工程学报, 1998.12 Vol.11 No.4:472~476
    [84] 白鸿柏,张培林,黄协清,摩擦系数随速度变化振动系统Fourier级数计算方法研究,机械科学与技术,2000.9 Vol.19 No.5:745~746,749
    [85] 白鸿柏,张培林,黄协清,干摩擦振动系统随机激励响应的Krybov-Bogoliubov计算方法,振动与冲击,2000 Vol.19 No.2:83~85
    [86] 白鸿柏,张培林,黄协清,干摩擦动力吸振器简谐激励响应计算的最优化方法研究,振动与冲击,2000 Vol.19 No.3:43~45
    [87] 白鸿柏,郑坚,张培林,黄协清,2自由度滞迟振动系统简谐激励响应的等效线性化计算方法研究,机械工程学报,2000.11:90~93
    [88] 白鸿柏,张培林,黄协清,滑动摩擦系数随速度变化振子随机激励Krylov-Bogoliubov计算方法研究,机械科学与技术,2001.5 Vol.20 No.3:346~347
    [89] 白鸿柏,黄协清,干摩擦振动系统响应计算方法研究综述,力学进展,2001.11 Vol.31 No.4:527~534
    [90] 白鸿柏,郑坚,张培林,黄协清,变滑动摩擦系数振动系统最优化计算方法研究,机械强度,2001 Vol.23 No.3:283~286
    [91] 白鸿柏,张培林,黄协清,变滑动摩擦系数振子简谐激励Krybov-Bogoliubov计算方法,机械强度,2002 Vol.24 No.1:056~058
    [92] 胡寻峰,王亲猛,张锦,刘晓平,带摩擦阻尼叶片与轮盘耦合系统的振动分析,航空动力学报,1998.10 Vol.13 No.4:375~379,457
    [93] 宋方臻,宋波,含立方非线性干摩擦滞迟弹簧支承转子系统的瞬态响应计算,山东建材学院学报,1999.9 Vol.13 No.3:227~229
    [94] 单颖春,郝燕平,朱梓根,晏砺堂,干摩擦阻尼块在叶片减振方面的应用与发展,航空动力学报,2001.7 Vol.16 No.3:218~223
    [95] 单颖春,郝燕平,朱梓根,平面二维接触摩擦力的轨迹跟踪计算方法,航空工程与维修,2002.3:48~50
    [96] 单颖春,朱梓根,平面接触圆运动摩擦力的解析与数值算法,航空动力学报,2002.10 Vol.17 No.4:447~450
    [97] 郝燕平,单颖春,朱梓根,缘板摩擦阻尼器的减振实验研究,航空动力学报,2001.1 Vol.16 No.1:55~58
    [98] 郝燕平,朱梓根,带摩擦阻尼的叶片响应求解方法,航空学报,2001.9 Vol.22 No.5:411~414
    [99] 郝燕平,朱梓根,叶片摩擦阻尼器的优化设计方法研究,航空动力学报,2002.7 Vol.17 No.4:349~356
    [100] 郝燕平,朱梓根,叶片摩擦阻尼器切向刚度研究,航空动力学报,2002.10 Vol.17 No.4:426~431
    [101] 马晓秋,王亲猛,张锦,程滔,带干摩擦阻尼结构叶/盘系统动力学分析,航空动力学报,2002.1 Vol.17 No.1:110~114
    [102] 林瑞霖,黄次浩,陈国钧.迟滞非线性弹性元件动力特性数学模型.海军 工程大学学报,2000.1:28~32
    [103] 李伟,王轲,朱德懋,吴菊林,基于遗传算法的非线性迟滞系统参数识别,振动与冲击,2000 Vol.19 No.1:8~11
    [104] 曾建平,杜永平,干摩擦动力吸振器的MATLAB仿真及其基于频谱分析的优化设计,振动与冲击,2002 Vol.21 No.2:76~77
    [105] 文明,邓子辰,张学峰,具有调谐质量阻尼器(TMD)的干摩擦隔振系统的研究,振动与冲击,2002 Vol.21 No.3:31~36
    [106] 漆文凯,高德平,陈伟,干摩擦阻尼及其应用,理化检验—物理分册,2002.4 Vol.38 No.4:160~163
    [107] 丁千,陈予恕,迟滞型材料阻尼转轴的分岔,应用数学和力学,2003.6:565~571
    [108] 姜洪源,敖宏瑞,夏宇宏,王树国,A.M.Ulanov,金属橡胶隔振器干摩擦阻尼特性的研究,机械设计,2002.11:11~14
    [109] 陈艳秋,郭宝亭,朱梓根,金属橡胶减振挚刚度特性及本构关系研究,航空动力学报,2002.10:416~420
    [110] 任勇生,李俊宝,熊诗波,朱德懋,干摩擦阻尼及其在工程结构被动减震设计中的应用研究,力学与实践,1997.2 Vol.19:12~17
    [111] 敖宏瑞,夏宇宏,姜洪源,王树国,A.M.Ulanov,二维载荷作用对金属橡胶干摩擦阻尼性能的影响,机械设计与制造,2002.10 Vol.5:72~74
    [112] 苏卫民,发动机涡轮泵转子新型阻尼挠性支承的性能,推进技术,2000.10 Vol.21 No.5:53~57
    [113] 姜洪源,董春芳,敖宏瑞,夏宇宏,A.M.Ulanov,航空发动机用金属橡胶隔振器动静态性能的研究,航空学报,2004.03 Vol.25 No.2:140~142
    [114] 姜洪源,夏宇宏,敖宏瑞,闫辉,航空发动机用特种金属橡胶构件的应用研究,燃气涡轮试验与研究,2003.8 Vol.16 No.3:1~5
    [115] 李宇明,郑坚,白鸿柏,金属橡胶材料的动态力学模型,材料研究学报,2003.10 Vol.17 No.5:499~504
    [116] 姜洪源,敖宏瑞,夏宇宏,孙瑜,金属橡胶单自由度干摩擦隔振系统的理论分析,机械工程师,2003.1:32~35
    [117] 宋波,梁永绯,张景春,金属橡胶支承转子系统的动力特性研究,济南大学学报(自然科学版),2002.6 Vol.16 No.2:124~127
    [118] 郭宝亭,朱梓根,金属橡胶阻尼器在转子系统中的应用,航空动力学报,2003.10 Vol.18 No.5:662~668
    [119] 敖宏瑞,姜洪源,夏宇宏,王树国,吕克法,金属橡胶阻尼元件减振性能的试验研究,机械工程师,2001.2:40~42
    [120] 王亲猛,带干摩擦结构的非线性动力学研究,北京航空航天大学博士学位论文,2000
    [121] 单颖春,叶轮机械叶片干摩擦减振研究,北京航空航天大学博士学位论文,2002
    [122] 郝燕平,带摩擦阻尼器叶片的动力响应和减振研究,北京航空航天大学博士学位论文,2001
    [123] 文明,干摩擦抗振系统性能及控制方法的研究,西北工业大学博士学位论文,2003
    [124] 敖宏瑞,金属橡胶干摩擦阻尼机理及应用研究,哈尔滨工业大学博士学位论文,2003
    [125] 林复生,简明摩擦学,重庆:重庆大学出版社,1987
    [126] 钟万勰,计算结构力学与最优控制,大连:大连理工大学出版社,1993
    [127] 王海期,非线性振动,北京:高等教育出版社,1992
    [128] 唐焕文,秦学志,实用最优化方法,大连:大连理工大学出版社,1994
    [129] 张可村,赵英良,数值计算的算法与分析,北京:科学出版社,2003
    [130] 黄象鼎,曾钟钢,马亚南,非线性数值分析的理论与方法,武汉:武汉大学出版社,2004
    [131] 林成森,数值计算方法,北京:科学出版社,1999
    [132] 徐灏,机械设计手册(第一卷),北京:机械工业出版社,1991
    [133] 白鸿柏,张培林,郑坚,吕建刚.滞迟振动系统及其工程应用,北京:科学出版社,2002
    [134] 胡海岩,应用非线性动力学,北京:航空工业出版社,2000
    [135] 李全通,廖明夫,缘板干摩擦阻尼器叶片振动计算的传递矩阵法,机械科学与技术,2005.05 Vol.24 No.5:584~587
    [136] 李全通,廖明夫,用传递矩阵法分析缘板干摩擦阻尼器叶片的减振,航空动力学报,2005.4 Vol.20 No.2:255~261
    [137] 李全通,缘板干摩擦阻尼器叶片减振研究,西北工业大学博士学位论文,2005

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700