利用宇宙线对高Z物质进行成像的技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
利用宇宙线对重核物质进行成像的技术是一种新型重核物质检测技术。本课题利用宇宙线μ子作为粒子射线源,采用新型高位置分辨阻性板室(Resistive Plate Chamber,简称RPC)气体探测器系统,研制成功了可实现宇宙线重核成像的系统,获得了具有较好分辨率的20cm×10cm×15cm铅块的宇宙线辐射成像实验结果。
     首先开展了利用宇宙线μ子对高Z物质成像的可行性研究。利用蒙特卡罗模拟工具Geant4模拟了μ子与不同原子序数物质的相互作用,分析μ子经过多次库仑散射后的散射角分布与物质原子序数的关系。通过对散射角分布的分析,提出了μ子径迹探测器亚毫米级的位置分辨要求,以及系统原型设计方案。
     PoCA算法(Point of Closest Approach algorithm)是一种利用μ子多次库仑散射角分布与物质原子序数的对应关系而建立的宇宙线辐射成像算法。本论文软件实现了PoCA成像算法,利用该算法对蒙特卡罗模拟实验数据进行图像重建,并研究了散射角测量误差对重建图像的分辨率的影响。
     阻性板室探测器探测效率能达到95%以上,可大面积使用、成本低、制造工艺相对简单,可作为μ子径迹探测器。理论研究了感应电荷在阻性膜上的扩散过程。从理论和实验两方面分别分析了信号采集时间窗口以及阻性膜的面电阻率大小对电荷扩散的影响。研制了具有亚毫米级位置分辨能力的一维信号读出RPC、二维信号读出RPC、大面积二维信号读出的高位置分辨RPC探测器。探测器的位置分辨能力、探测效率等重要指标达到国际同类探测器的领先水平。
     搭建了灵敏探测体积为40cm×40cm×80cm的宇宙线辐射成像系统,具有80%的探测效率。对系统中各探测器的空间定位方法进行了实验研究并确定了系统位置修正方法。对20cm×10cm×15cm的铅块进行了宇宙线辐射测量并重建图像,获得了分辨率较好的宇宙线辐射成像实验结果。
     本课题对宇宙线辐射成像技术中的高位置分辨探测器、成像算法等几项关键技术进行了深入研究,得到了高水平的研究结果。建立了利用宇宙线对重核物质的空间分布进行检测的原理性系统,取得了较好的宇宙线对重核材料的成像结果。
Radiography of high Z material with cosmic ray muon is a novel technology for heavy nuclear material detection. Using cosmic ray muon as particle source and a novel resistive plate chamber with high position resolution as muon tracking detector, a system is successfully developed to realize high Z material radiography with cosmic ray. The system achieved good experimental result on radiography of 20cm×10cm×15cm lead cube with cosmic ray.
     The possibility of radiography of high Z material with cosmic ray has been firstly discussed. Basing on the Monte-Carlo calculations for muon interaction with matters, the Multiple Coulomb scattering (MCS) is studied. MCS represents an information source that is almost as sensitive to material Z as energy loss. Materials with different Z can be discriminated by MCS angle distribution with cosmic ray muon. The research on scattering angle distribution shows that less than a millimeter position resolution and high efficiency is required for muon detector due to low muon rate on sea level.
     In this article, it has been introduced the principle of imaging of heavy nuclear material distribution with cosmic-ray muon. The method has been described in details for the judgment of existence of heavy nuclear materials in scanned space and the imaging algorithm of its distribution. This imaging method has some advantages for heavy nuclear material monitor when comparing with traditional X-ray imaging method. Our own endeavor for application of this new imaging method has also been given.
     Point of Closet Approach algorithm ( PoCA ) is formalism of cosmic ray muon radiography using MCS as information source. It is an extending of traditional tomographic methods for different z materials discrimination. A process based on PoCA algorithm is developed and tested with simulation data derived from Monte-Carlo calculation. Some random signal simulated real data error is added to simulation data for the research on resolution of imaging reconstruction result.
     RPC has been used widely for high energy charged particle detection, especially for muon detection in large scale spectrometer in the domain of high energy physics due to its superior time resolution, high efficiency above 95%, moderate position resolution, simple manufacture and more important low cost. The charge dispersion of induced signal on resistive plane affects position resolution. The influence of surface resistivity of high voltage provider which is usually carbon film and the selection of integrated FADC time window on the dispersion of induced charge is studied by theoretical calculation and experimental results. A new kind of resistive plate chamber with less than 1mm statistical position resolution is developed and then extended to large area with 2D readout structure. The position resolution and efficiency factors have been level ahead of the world in the same field.
     Finally, the system of radiography with cosmic ray muon is established. It has a 40cm×40cm×80cm effective detecting field and the efficiency is up to 80% . A research on muon tacking reconstruction and calibration for groups of detector displacements is carried out. The result of radiography of 20cm×10cm×15cm lead cube has high qualities in reconstructed image.
     This dissertation is to set up a radiography system with cosmic ray and get good reconstruction results of high Z material. Meanwhile, the main technology on high position resolution detector and radiography algorithm is developed.
引文
[1] Controlling Radioactive Sources, IAEA Bulletin, 2002.
    [2] http://www.IAEA.org.
    [3]徐景明.核燃料循环战.北京:清华大学核能与新能源技术研究院,2006.
    [4]王小兵,李荐民,李元景,程建平.特殊核材料及放射性物质门式监测系统.核电子学与探测技术, 2007, 27(4):634-637.
    [5]辐射防护概论.北京:清华大学工程物理系辐射防护与环境保护研究室, 2006.
    [6] King N.S.P, et al. An 800-MeV proton radiography facility for dynamic experiments. Nucl. Instr. and Meth. A, 1999, 424: 84-91.
    [7] George E. P. Cosmic rays measure overburden of tunnel. Commonwealth Engineer, 1955, 455-457.
    [8] Alvarez L.W., et al. Search for hidden chambers in the pyramids.”Science 1970, 167: 832-839.
    [9] Nagamine K., Geo-tomographic observation of inner-structure of volcano with cosmic-ray muons. Journal of Geography, 1995, 104(7):998-1007.
    [10] Tanaka. H. K. M., Izumi Yokoyama. Muon radiography and deformation analysis of the lava dome formed by the 1944 eruption of Usu, Hokkaido, Contact between high-energy physics and volcano physics. Proceedings of the Japan Academy, Series B, 2008, 84(4):107-116.
    [11] Hagiwara K., et al. Particle Data Group. Review of particle physics. Physical Review D 2002, 66(1)
    [12] Borozdin K., Hogan G. E., Morris C., et al. Radiographic imaging with cosmic ray muons. Nature, 2003, 422:277.
    [13] Schwarzschild B. Cosmic-ray muons might help thwart transport of concealed fissile material. Physics Today, 2003, 56(5):19-22.
    [14] Priedhorsky W., Borozdin K. Detection of high-Z objects using multiple scattering of cosmic ray muons. Review of Scientific Instruments, 2003, 74(10):4294-4297.
    [15] Schultz L. J., Borozdin K. N., Gomez J. J., et al. Image reconstruction and material Z discrimination via cosmic ray muon radiography. Nucl. Instr. and Meth. A, 2004, 519:687-694.
    [16] Schultz L.J., Blanpied G.S., et al. ML/EM Reconstruction Algorithm for Cosmic Ray Muon Tomography. Nuclear Science Symposium Conference Record, IEEE, 2006, 4:2574-2577.
    [17] Schultz L. J. Cosmic ray muon radiography, Ph.D. dissertation. Dept. Elec. and Comp. Eng., Portland State Univ., Portland, OR, 2003.
    [18]刘圆圆,赵自然,陈志强,张丽等.用于宇宙射线μ子成像的MLS-EM重建算法加速研究. CT理论与应用研究, 2007, 16(3).
    [19] Liu Y. Y., Zhao Z. R., Cheng Z. Q., et al. MLSD-OSEM reconstruction algorithm for cosmic ray muon radiography. Progress in SPIE, 2008, 6913:691331
    [20] Liu Y. Y., Zhao Z. R., Cheng Z. Q., et al. Picture comparison binarization method for cosmic ray muon radiography. Nuclear Science Symposium Conference Record, NSS '08. IEEE, 2008, 1261-1264.
    [21] Morris C. L., Thiessen H. A., Hoffman G. W. Position-Sensitive gas proportional chambers. IEEE Transactions on Nuclear Science, 1978, NS25(1):141.
    [22] Green J.A., Alexander C., et al. Optimizing the Tracking Efficiency for Cosmic Ray Muon Tomography. Nuclear Science Symposium Conference Record, IEEE, 2006, 1:285-288.
    [23] Schultz L.J., Blanpied G. S., Borozdin K. N. Statistical reconstruction for cosmic ray muon tomography. IEEE Transactions on Image Processing, 2007, 16(8):1985-1993.
    [24] Gnanvo K., Ford P., Helsby J., et al. Performance Expectations for a Tomography System Using Cosmic Ray Muons and Micro Pattern Gas Detectors for the Detection of Nuclear Contraband. Nuclear Science Symposium Conference Record, NSS '08. IEEE, 2008. http://arxiv.org/abs/0812.1007.
    [25] Bogolyubskiy M., Bojko N., et al. First test of cosmic ray muon tomograph prototype being constructed at IHEP (Protvino). Nuclear Science Symposium Conference Record, NSS '08. IEEE, 2008, 3381-3383.
    [26] Cox L., Adsley P., et al. Detector requirements for a cosmic ray muon scattering tomography system. Nuclear Science Symposium Conference Record, NSS '08. IEEE, 2008, 706-710.
    [27] Allkofer O.C., Grieder P.K.F. Cosmic Rays on Earth.”Fach-informations-zentrum Energie, Physik, Mathematik, 1984, Nr25-1.
    [28] Dar A. Atmospheric Neutrinos, Astrophysical Neutrons, and Proton-Decay Experiments.”Physical Review Letters, 1983, 51(3):227-230.
    [29] Jokisch H., et al.“Cosmic-ray Muon Spectrum up to 1 TeV at 75°Zenith Angle.”Physical Review D, 1979, 19(5):1368-1372.
    [30] Rastin B. An Accurate Measurement of the Sea-Level Muon Spectrum within the Range 4 to 3000 GeV/c. J. Phys. G, 1984, Nucl. Phys 10:1609-1628.
    [31] Motiki M., et al. Precise Measurement of Atmospheric Muon Fluxes at Sea Level. In Proceedings of the ICRC 2001, 927, Hamburg, Germany.
    [32] Sanuki T., et al. Atmospheric Muons at Various Altitudes. In Proceedings of the ICRC2001, 950, Hamburg, Germany.
    [33] Knoll G. F. Radiation Detection and Measurement Third Edition. New York: John Wiley & Sons, Inc., 2000.
    [34] Pekins D H. Introduction to High Energy Physics, 3rd Edit. 1988.
    [35] Bethe H A. Moliere theory of multiple scattering, Physic.Rev.,1953,89:1256.
    [36] Scott W T. The theory of small-angle multiple scattering of fast charged particals. Rev.Mod.Phys.,1963, 35:231-313.
    [37] Shen et al. Measurement of multiple scattering at 50 to 200 Gev/c. Phys. Rev., 1979, D20:1584-1588.
    [38] Motz J W et al. Electron scattering without atomic or nuclear excitation. Rev.Mod.Phys., 1964, 36:881.
    [39]谢一冈,陈昌等.粒子探测器与数据获取.北京:科学出版社, 2004.
    [40]毛泽普,王俊,叶诗章等. BES实验数据离线刻度.高能物理与核物理, 1996, 12:1073-1081.
    [41]刘圆圆,赵自然,陈志强,张丽等.一种用于μ子成像检测技术的探测器校正方法.核电子学与探测技, 2008, 28 (4):712-715.
    [42] Santonico R. and Cardarelli R. Development of Resistive Plate Counters. Nucl. Instr. and Meth. A, 1981, 377:187.
    [43] Bacci C. et al. Measurements of the efficiency and time resolution of double gap Resistive Plate Chambers. Nucl. Instr. and Meth. A, 1994, 345:474.
    [44] Zeballos E.C., Crotty I., et al. A new type of resistive date chamber: The multigap RPC. Nucl. Instr. and Meth. A, 1996, 374:132-135.
    [45]刘倩,张家文等. BESⅢRPC宇宙线测试系统.高能物理与核物理, 2006, 30(4): 327-330.
    [46] Sun Y. J., Li C. Development of MRPC technology for STAR-TOF. Nuclear Science and Techniques, 2005, 16(4): 231-237.
    [47] Bonner B., Eppley G. A multigap resistive plate chamber prototype for time-of-flight for the STAR experiment at RHIC. Nucl. Instr. and Meth. A, 2002, 478:176-179.
    [48]盛祥东,何会海等.羊八井ARGO实验RPC探测器性能研究.全国第五届核仪器及其应用学术会议论文集.
    [49]来永芳. MGWC与MRPC两种新型气体探测器研制及性能研究[博士学位论文],北京:军事医学科学院放射医学研究所, 2004
    [50]贾怀茂,来永芳等.多隙阻性板室(MRPC)的性能和工作气体关系的模拟研究.高能物理与核物理, 2006, 30(3):232-237.
    [51] Camarri P., et al. Streamer suppression with SF6 in RPCs operated in avalanche mode.Nucl. Instr. and Meth. A, 1998, 414:317-324.
    [52]马经国.大面积RPC气体探测器的研制和宇宙线测试[硕士学位论文].北京:北京大学技术物理系, 2001.
    [53] Zhang J. W., Zhao H. Q., et al. Research and Development of Large Area Resistive Plate Chamber. High Energy Physics and Nuclear Physics, 2003, 7:60-63.
    [54]李金.现代辐射与粒子探测学讲义,北京:清华大学工程物理系, 2005.
    [55]来永芳,李金等. MRPC物理机制研究.核科学与探测技术, 2006, 26(5):591:595.
    [56] Wu J., Bonner B., et al. The performance of the TOFr tray in STAR. Nucl. Instr. and Meth. A, 2005, 538:243-248.
    [57] Shao M., Ruan L. J., et al. Beam test results of two kinds of multi-gap resistive plate chambers. Nucl. Instr. and Meth. A, 2002, 492:344-350.
    [58] Wang Y., Cheng J. P., Li Y. J., et al. Methods for the manufacture and test of multi-gap resistive plate chambers. Nucl. Instr. and Meth. A, 537(3):698-702.
    [59] Wang Y., Li Y. J., Cheng J. P., et al. Study on the performance of multi-gap resistive plate chambers. Nucl. Instr. and Meth. A, 2005, 538:425-430.
    [60] Zeballos E.C., Choi J. et al. A very large multigap resistive plate chamber. Nuclear Instruments and Methods in Physics Research A, 1999, 434:362-372.
    [61] Riegler W. Induced signals in resistive plate chambers. Nucl. Instr. and Meth. A, 2002, 491:258-271.
    [62] Riegler W., Lippmann C., et al. Detector physics and simulation of resistive plate chambers. Nucl. Instr. and Meth. A, 2003, 500:144-162.
    [63] Riegler W, Lippmann C., et al. Space charge effects and induced signals in resistive plate chamber. Nucl. Instr. and Meth. A, 2003, 508:19-22.
    [64] Lippmann C., Riegler W. Space charge effects in Resistive Plate Chambers. Nucl. Instr. and Meth. A, 2004, 517:54-76.
    [65] Riegler W, Lippmann C. The physics of Resistive Plate Chambers. Nucl. Instr. and Meth. A, 2004, 518:86-90.
    [66] Williams M C S. Space-charge limitation of avalanche growth in narrow-gap resistive plate chambers. Nucl. Instr. and Meth. A, 2004, 525:168-172.
    [67] CERN/LHCC 2002-016 Addendum to ALICE TDR 8,2002
    [68] The STAR TOF Collaboration. Technical Design Update to Proposal for a Large Area Time of Flight System for STAR. Aug.16, 2005
    [69]王义,程建平,李元景等.宇宙线批量测试方法研究.高能物理与核物理2006, 30(7):655-659.
    [70] Heubrandtner T., Schnizer B., et al. A simple theory for signals induced by a point chargemoving in a resistive plate chamber. Nucl. Instr. and Meth. A, 1998, 419:721-725.
    [71] Dixit M.S., et al. Position sensing from charge dispersion in micro-pattern gas detectors with a resistive anode. Nucl. Instr. and Meth. A, 2004, 518:721-727.
    [72] Dixit M.S., et al. Simulating the charge dispersion phenomena in Micro Pattern Gas Detectors with a resistive anode. Nucl. Instr. and Meth. A, 2006, 566:281-285.
    [73] Ye J., Yue Q., Cheng J. P., et al. Studies on RPC position resolution with different surface resistivity of high voltage provider. Nuclear Science Symposium Conference Record, NSS '08. IEEE, 2008, 917-918.
    [74] Yue Q., Ye J., Li Y. J., et al. Study on the space dispersion of induced charge of resistive plate chamber. Nuclear Science Symposium Conference Record, NSS '08. IEEE, 2008, 925-926.
    [75] Ye J., Yue Q., Li Y. J., et al. The Effect of Integrated Time of Induced Current Signal on Position Resolution of RPC Detector. Chinese Physics C(Accepted:2008-0230).
    [76] Blanco A., Carolino N., Correia C.M.B.A. et al. An RPC-PET prototype with high spatial resolution. Nucl. Instr. and Meth. A, 2004, 533:139-143.
    [77] Blanco A., Carolino N., et al. RPC-PET: A New Very High Resolution PET Technology. IEEE Transactions of Nuclear Science, 2006, 53(5):2489-2494.
    [78] Blanco A., Carolinoa N., et al. Very high position resolution gamma imaging with resistive plate chambers. Nucl. Instr. and Meth. A, 2006, 567: 96–99.
    [79] Ye J., Cheng J. P., Yue Q., et al. Study on the position resolution of resistive plate chamber. Nucl. Instr. and Meth. A, 2008, 591(2): 411-416.
    [80] Ying J., Ban Y., Ye Y. L., et al. Beam Test Results of the First Full-Scale Prototype of CMS RE 1/2 Resistive Plate Chamber. High Energy Physics and Nuclear Physics, 2005, 2:74-78.
    [81]沈庭芳,方子文.数字图像处理及模式识别.北京:北京理工大学出版社, 1998.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700