气液联控柔顺力控制系统研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
气液联控伺服系统是将可压缩性小、粘度较大的液体介质引入到常规气压伺服系统中并进行控制而构成的一种新型的气、液介质复合控制系统。它将气体介质“柔”的特性与液体介质“刚”的特性融为一体,即保持了气动系统所具有的快速性的优点,又具有较好的刚度。此特点对于机器人的柔顺力控制非常有利,故此本课题针对气液联控伺服系统进行了柔顺力控制的研究。
     在查阅大量国内外相关文献的基础上,总结了气液联控伺服系统的发展背景及研究现状。对柔顺力控制的发展现状进行了分析,阐述了常用的柔顺力控制策略及其控制中的关键问题。通过对国内外相关研究的分析,确定了本文的主要研究方向。
     与其它气压伺服系统相比,PWM电-气开关/伺服系统具有更适用于连续控制及造价较低等优点,因此得到了广泛的应用。但PWM气压伺服系统具有严重非线性,建模困难,这就阻碍了它的发展。为此本文应用非线性PWM平均方法将原离散多输入模型转换为连续单输入模型,简化后的模型更有利于对系统的研究。
     阻抗控制能够实现位移与力的统一控制,是实现柔顺力控制的主要理论依据之一。论文将基于力和基于位置的阻抗控制方法分别应用于气液联控系统中,通过仿真分析两种阻抗控制性能及阻抗参数变化对系统控制性能的影响规律。由于基于位置的阻抗控制性能更好,更易于应用于柔顺力控制中,故此本文重点针对基于位置的阻抗控制进行研究。
     内环位置控制器的性能在一定程度上影响柔顺力控制的性能,为进一步提高系统性能,本文应用非线性控制理论对气液联控系统的状态方程进行了研究,提出了滑模变结构控制策略。根据相对阶的定义判断系统阶次,在此基础上设计了三阶滑模面变结构控制器,并对其进行了仿真研究。但该三阶滑模控制器所含参数复杂且相互之间耦合,控制效果并不理想。故此进行了滑模面的降阶,设计了二阶滑模面变结构控制器,并对其进行了仿真研究,仿真结果表明滑模变结构控制改善了系统的快速性,提高了系统的跟踪性能。
     柔顺力控制过程中,环境参数的已知与否对系统控制策略的选取有很大影响,并直接影响到控制的效果。本文将环境参数归纳为三种情况:环境参数已知时不变、环境参数未知时不变、环境参数未知时变。分别针对此三种情况提出了模糊阻抗控制方法、直接自适应控制方法、间接自适应控制等方法。实现了不同环境参数下的柔顺力控制。
     最后,搭建了气液联控柔顺力控制系统实验台,编制了计算机控制软件和完整的实验方案。通过对系统的仿真和实验研究证明,本文设计的实验系统和控制软件是成功的,阐述的理论和观点是正确的,设计的控制器是合理可行的。
     论文的研究为气液联控系统进一步应用到气动工业机器人的柔顺力控制中奠定了基础。
Pneumatic hydraulic combination control (PHCC) servo system is a new-style composite control system, in which the liquid medium with low compressibility and high viscosity is led into a normal pneumatic servo system and controlled in closed-loop simultaneously. The system compounds the characteristic of“flexibility”in pneumatic system and“rigidity”in hydraulic system, and possesses the excellence of speediness and rigidity, which is good to compliant control of robot. So the paper research compliant control of PHCC servo system.
     After synthesizing numerous related literatures and reference materials at home and abroad, the research and development situation of pneumatic servo system in recent years is summed up. Then the development situation of compliant control is analyzed. The common control strategy and the key problem in compliant control are detailed.
     Compared with the other pneumatic servo system, the PWM electricity-pneumatic on/off servo system is applied broadly for its excellence of more fit to continuous control and low cost. But the serious nonlinearity and hard modeling prevented its development. So applied nonlinear PWM average method, the paper changes the model from disperse multi-input to the single-input, which advantaged research of the system.
     The unionize control of position and force can be realized by impedance control, which is one of main compliant force control theory. The paper introduces the method of impedance control, and applied the force-based impedance control and position-based impedance control respectively to PHCC servo system. Then analysis control performance and impedance parameter by the simulation of two kind impedance. For the better performance and easy application to compliant control, the paper emphases the research on the position-base impedance control.
     The performance of inner position controller influences the performance of compliant control. To improve the performance of system, the paper applied nonlinear control theory to research the state equation and put forward the variable structure control strategy. Based on the rank of system, which judge by define of relative rank, the three rank variable structure controller is designed. Then computer simulation is carried out. But the performance is not ideal because of the coupling of complex parameters. So the work of lower rank of sliding surface is developed and the two rank variable structure controller is designed. Then computer simulation is carried out, too. Simulation results indicate the speediness and tracking ability of the controller.
     In the process of compliant force control, the chose of control strategy is affected by the knowability of environment parameters and influent the performance of control. The paper reduces the situation of environment to three case: environment knowable, environment non-knowable and time invariant, environment non-knowable and time variant. Then the control method of fuzzy impedance control, direct adaptive control, and indirect adaptive control is designed respectively to the three situations, which realized the compliant force control in differ environment parameter situations.
     Finally, the pneumatic-hydraulic compliant force control system is build. the computer control software and the whole experiment scheme is put forward. The simulation and experiment results of system proved the designed experiment system and control software in this paper are successful, and the theories and views set forth are right, and the controller designed are reasonable and feasible.
     The research of paper established foundation of further application to compliant force control of pneumatic industry robots.
引文
1高新绪.电动、气动和液压三类伺服机构快速性比较.航空兵器. 1995, (1): 17~20.
    2许宏.气液联控位置伺服系统理论分析及其控制策略的研究.哈尔滨工业大学博士学位论文. 2001: 26~57.
    3许宏,吴盛林,赵克定.气液联动与气液联控.机械工程学报. 2001, 37(7): 93~95.
    4殷跃红,尉忠信,朱剑英.机器人柔顺控制研究.机器人. 1998, 20(3): 232~240.
    5王祖温,詹长书,杨庆俊,等.气压伺服系统高性能鲁棒控制器的设计.机械工程学报. 2005, 41(11): 15~19.
    6田中裕久.液压与气动的数字控制及应用.阳正锡等译.重庆大学出版社,重庆. 1992: 48~60.
    7 J. L. Shearer. Nonlinear Analog Study of a High Pressure Pneumatic Servomechanism. Trans. American Society of Mechanical Engineers, 1957, (5): 143~148.
    8 K. Kawashima, T. Fujita, T. Kagawa. The Effect of Nonlinear on Pneumatic Servo System. Pro. 4th JHPS International Symposium, Tokyo, 1999: 137~142.
    9 W. Backe. Application of Servo-pneumatic Drives for Flexible Mechanical Handling Techniques. Robotics. 1986, 2(1): 45~56.
    10周洪.电气-比例/伺服系统及其控制策略研究.浙江大学博士学位论文. 1988: 45~57.
    11陈大军.电-气比例/伺服位置控制系统的研究.浙江大学博士学位论文. 1995: 25~58.
    12 Y. Xu, W. Song, B. Li. Study on a Novel Digital Electro Hydraulic Pressure Valve with a Capillary Dapming Tube Regulation Pressure. Journal of Harbin Institute of Technology. March, 1994, (1): 1~6.
    13 Li. Jinhua,Tanaka,Kanya. Intelligent Control for Pneumatic Servo System. JSME International Journal , Series C: Mechanical Systems , Machine Elements and Manufacturing. 2003,46(2): 699~704.
    14 T. Eun, Y. J. Cho, H. S. Cho. Stability and Positioning Accuracy of a Pneumatic On-Off Servomechanism. American Control Confercnce, Arlington, USA. 1982: 1189~1194.
    15 G. Belforte, N. D. Alfio, T. Raparelli. Experimental Analysis of Friction Forces in Pneumatic Cylinder. Journal of Fluid Control. 1989, 20(1): 42~60.
    16徐秀芬.气液联控伺服系统的控制及其实验研究.哈尔滨工业学博士学位论文. 2005: 25~50.
    17张河新,李建朝,韩建海,等.时间控制在脉宽调制气动调压阀中的应用.液压与气动. 2004, (9): 34~35.
    18 T. Noritsugu. PWM Mode Electro-Pneumatic Servo System for Position Control. Trans. Sco. Instrum. & Contol Eng. 1984, 20(4): 119~205.
    19 T. Noritsugu. The Development of PWM Mode Electro-Pneumatic Servomechanism Part II: Position Control of a Pneumatic Cylinder. Journal of Fluid Control. 1986, 17(2): 7~31.
    20 O. Oyama, M. Harada. Pneumatic Cylinder Servo-system by Using High Speed Solenoid Valves. Flucome '91, 1991: 365~372.
    21 Sano, Manabu, Fujita, et al. Improvement of An Electro-pneumatic On-off Valve With a Disk Flapper. Nippon Kikai Gakkai Ronbunshu, B Hen/Transactions of the Japan Society of Mechanical Engineers, Part B, 1988,54(508): 3457~3461.
    22 Hsia, K. Menq, C. Hsiang. Robust Pressure Control of a PWM Valve-chamber System Using Discrete-time Model Regulation Control. American Society of Mechanical Engineers, 1993, 93(8): 1~8.
    23 H. B. Wang, J. Mo, P.T. Chen, et al. On the Estimation of On-off Valve Parameters for Control of Programmable Pneumatic Actuators. Transactions of the Institute of Measurement and Control, 1998,20(5): 211~222.
    24邱志成,谈大龙.气压伺服及气液连动控制发展概况综述.液压与气动. 1999, (4): 3~6.
    25 J.Y. Lai. Pressure Control of a Pneumatic Chamber. The Journal of Fluid Control. 1989, 19(4): 7~31.
    26 S. G. Lao, S. H. Cho. On the Development of a PWM Control Based Pneumatic Servomechanism. The Journal of Fluid Control, 1983, 13(2): 42~48.
    27 S. Scowarda. Models of a Pneumatic PWM Solenoid Valve for Engineering Application. Transaction of the ASME, 1992, (114): 680~688.
    28 Sorli, M. Pastorelli. Performance of a Pneumatic Force Controlling Servo system. Influence of Valves Conductance. Robotics and Autonomous Systems, 2000,30(3): 283~300.
    29 Van Varseveld, B. Robert, Bone, et al. Accurate Position Control of a Pneumatic Actuator Using On/off Solenoid Valves. IEEE/ASME Transactions on Mechatronics, 1997,2(3): 195~204.
    30 Shih, C. Ming, Hwang, et al. Fuzzy PWM Control of The Positions of a Pneumatic Robot Cylinder Using High Speed Solenoid Valve. JSME International Journal, Series C, 1997, 40(3): 469~475.
    31姚晓光,李银友. PWM线性化气动系统品质特性分析及其相关因素讨论.液压工业. 1989, (3): 5~11.
    32杨树兴.高压PWM电-气伺服系统的研究.北京理工大学博士论文, 1991: 26~29.
    33王宣银,岳继光,王旭永,等. GPCM控制气动伺服系统的理论分析与实验研究.宇航学报. 1999, 20(2): 87~92.
    34于春阳.流体脉冲调制系统的拓广块脉冲函数分析与综合.哈尔滨工业大学博士学位论文. 1994: 1~13.
    35杨清海.气动位置伺服系统的基本特性及控制方法的研究.哈尔滨工业大学博士学位论文. 1995: 2~10.
    36段运波,许耀铭.气动脉宽调制位置伺服系统工作原理的改进.液压与气动. 1996, (1): 3~5.
    37 Wu Peirong. The Study of a Pneumatic PWM Position Control System. 3rd International Conference on Fluid Power Transmission and Control, 1993: 99~104.
    38 F. Asano, Z. Luo, K. Tahara. Modeling and Control for Whole Arm Dynamic Cooperative Manipulation. IEEE/RSJ International Conference on Intelligent Robots and Systems, Sendai, Japan, 2004: 3282~3267.
    39殷跃红,尉忠信,朱剑英.机器人柔顺控制研究.机器人. 1998, 20(3): 232~240.
    40王坤东,颜国正,鄢波.基于被动柔顺性的机器人位置/力控制.中国机械工程. 2006, 17(7): 661~665.
    41 M. Chien, A. Huang. Regressor-Free Adaptive Impedance Control of Flexible-Joint Robots Using FAT. American Control Conference, Minneapolis, Minnesota, USA, 2006: 3904~3909.
    42谢宗武. HIT-1机器人灵巧手柔顺控制的研究.哈尔滨工业大学博士论文. 2003: 7~9.
    43黄真,孔令富,方跃法.并联机器人机构学理论及控制.机械工业出版社,北京. 1997: 46~64.
    44张尚盈.液压驱动并联机器人力控制研究.哈尔滨工业大学博士论文. 2005: 11~15.
    45 D. E. Whitney. Historical Perspective and State of the Art in Robot Force Control. International Journal of Robotics Research. 1987, (6): 3~14.
    46陈峰,费燕琼,赵锡芳.机器人的阻抗控制.控制与检测. 2005, (12): 46~50.
    47 A. Takemoto, K. Yano, T. Miyoshi, et al. Operation Assist Control System of Rotary Crane Using Proposed Haptic Joystick As Man-Machine Interface. IEEE International Workshop on Robot and Human Interactive Communication, Kurashiki, Okayama, Japan. 2004: 533~538.
    48 G. Ferretti, G. Magnani, P. Rocco. Impedance Control for Elastic Joints Industrial Manipulators. IEEE Transactions on Robotics and Autionmation. 2004, 20(3): 488~498.
    49 M Shah, R. V. Patel. Inverse Jacobian Based Hybrid Impedance Control of Redundant Manipulators. IEEE International Conference on Mechatronics & Automation, Niagara Falls, Canada, 2005, 7: 55~60.
    50 N. Hogan. Impedance Control: An Approach to Manipulator: Part I, II, and III. Transactions of the ASME Journal of Dynamic Systems, Measurement, and Control. 1985, 107: 1~24.
    51 A. A. A. Khayyat. Force Tracking of Hydraulic Manipulators Within an Impedance Control Framework. PhD thesis, University of Manitoba. 2000: 1~15.
    52 M. Pelletier, L. K. Daneshmend. An Adaptive Compliant Motion Controller for Robot Manipulators Based on Damping Control. IEEE International Conference on Robotics and Automation, Cincinnati, OH, USA, 1990: 78~83.
    53 L. Chan, P. Su-Il, J. Ju. Impedance Analysis of Hydrogen Adsorption onPalladium in 0.1 M NaOH Solution. Journal of Alloys and Compounds. 1991, 176(1): 97~103.
    54 W. Lu, Q. Meng. Impedance Control with Adaptation for Robotic Manipulations. Robotics and Automation. 1991, 7(3): 408~415.
    55 D. M. Dawson, F.L. Lewis, J.F. Dorsey. Robust Force Control of A Robot Manipulator. International Journal of Robotics Research. 1992, 11(4): 312~319.
    56 M. Pelletier, M. Doyon. On the Implementation and Performance of Impedance Control on Position Controlled Robots. IEEE International Conference on Robotics and Automation, San Diego, CA. 1994: 1228~1233.
    57 M. Nakashima, H. Yakabe, Y. Maruyama, et al. Application of Semi-automatic Robot Technology on Hot-line Maintenance Work. IEEE International Conference on Robotics and Automation, Nagoya, 1995: 843~850.
    58 G. Ferretti, G. Magnani, P. Rocco, et al. Impedance Control for Industrial Robots. IEEE International Conference on Robotics and Automation, San Francisco, CA. 2000: 4027~4032.
    59 S. Jung, S. Yim, T. C. Hsia. Experimental Studies of Neural Network Impedance Force Control for Robot Manipulators. IEEE International Conference on Robotics and Automation, Seoul, Korea, 2001: 3453~3458.
    60 H. P. Jong, K Ohung. Impedance Control for Running of Biped Robots. IEEE/ASME International Conference on Advanced Intelligent Mechatronics, Seoul, South Korea, 2003: 944~949.
    61黄心汉,杜克林,王敏,等.基于阻抗控制的动态装配过程仿真研究.自动化学报. 2000, 26(2): 169~175.
    62温淑焕.机器人模糊神经网络阻抗控制.系统仿真学报. 2004, 16(11): 2614~2617.
    63杨磊,高晓辉,刘宏,等.基于指尖力传感器的HIT机器人灵巧手笛卡尔阻抗控制.控制与决策; 2004, 19(11): 1256~1258.
    64 Y. Zhu, E. J. Barth. Impedance Control of a Pneumatic Actuator for Contact Tasks. IEEE International Conference on Robotics and Automation. Barcelona, Spain, 2005: 987~992.
    65 M. Jin, S. H. Kang, P. H. Chang, et al. Nonlinear Bang-Bang Impact Control: A Seamless Control in All Contact Modes. IEEE International Conference onRobotics and Automation Barcelona, Spain, 2005: 557~564.
    66庄开宇.变结构控制理论若干问题研究及其应用.浙江大学工学博士学位论文. 2002: 16~21.
    67 Kwan, Chi-Man. Sliding Mode Control of linear systems with mismatched uncertainties. Automatica, 1995, 31(2): 303~307.
    68 J. J. Slotine, S. S. Sastry. Tracking Control of Nonlinear Systems Using Sliding Surfaces with Application to Robot Manipulations. Proceedings of the American Control Conference, 1983, 1: 132~135.
    69高为炳,吴东南.柔性空间飞行器的变结构控制.北京航空航天大学学报. 1988, 1(1): 67~75.
    70 F. Gang, Y.A. Jiang. New Algorithm for Decentralized Adaptive Control. Proceedings of the American Control Conference, 1994,3: 3407~3408.
    71 A. G.. Loukianov, J. M. Canedo, O. Serrano, et al. Adaptive Sliding Mode Block Control of Induction Motors. Proceedings of the American Control Conference, 2001, 1: 149~154.
    72 S. K. Nguang. Comments on "Robust Stabilization of Uncertain Input-delay Systems By Sliding Mode Control with Delay Compensation". Automatica, 2001,37(10): 1677~1677.
    73 N. Luo, M. D. Sen. State Feedback Sliding Mode Control of a Class of Uncertain Time Delay Systems. IEEE Proceedings, Part D: Control Theory and Applications, 1993, 140(4): 261~274.
    74 M. S. Yang, P. L. Liu, H. C. Lu. Output Feedback Stabilization of Uncertain Dynamic Systems with Multiple State Delays Via Sliding Mode Control Strategy. IEEE International Symposium on Industrial Electronics, 1999, 3: 1147~1152.
    75胡剑波,苏宏业,褚健.不确定时滞控制系统的近似自适应变结构控制.信息与控制. 2000, 29(5): 407~413.
    76 J. Tang, G.. Walker. Variable Structure Control of a Pneumatic Actuator. Journal of Dynamic Systems, Measurement and Control, Transactions of the ASME, 1995, 117(1): 86~92.
    77 J. Gyeviki, A. Csiszar, K. Rozsahegyi. Sliding Modes Appliaction in Pneumatic Positioning. 2005 IEEE International Conference on Mechatronics, Taipei, Taiwan. 2005: 964~969.
    78 Paul, K. Arun, Mishra, et al. Reduced Order Sliding Mode Control for Pneumatic Actuator. IEEE Transactions on Control Systems Technology, 1994, 2(3): 271~276.
    79 S. Drakunov, Hanchin, Su, et al. Nonlinear Control of a Rodless Pneumatic Servo Actuator, or Sliding Modes Versus Coulomb Friction. Automatica. 1997, 33(7): 1401~1408.
    80 E. J. Barth, J. Zhang, Goldfarb, et al. Sliding Mode Approach to PWM-Controlled Pneumatic Systems. Proceedings of the American Control Conference, 2002, 3: 2362~2367.
    81 Shen, R. Xiang, J. Zhang, et al. Nonlinear Averaging Applied to the Control of Pulse Width Modulated (PWM) Pneumatic Systems. Proceedings of the 2004 American Control Conference (AAC), 2004, 5: 4444~4448.
    82鲍伟.气缸高速缓冲控制系统的研究.浙江大学硕士学位论文. 2003: 3~10.
    83金英,潘再平.脉宽调制控制方法研究.科技通报. 2005, 21(1): 30~33.
    84张河新,李建朝,韩建海,等.时间控制在脉宽调制气动调压阀中的应用.液压与气动. 2004, (9): 34~35.
    85张莉,王旭,刘宗富.电流型脉宽调制在异步电动机转速控制中的应用.控制与决策. 2005, 20(3): 349~352.
    86徐秀芬,赵克定,吴盛林,等.非对称式气液联控伺服系统动力机构及控制性能分析.流体传动与控制. 2005, 11(4): 6~10.
    87曹会发,陶国良,周洪.基于高速开关阀的气动执行器位置伺服控制.液压气动与密封. 2006, (1): 29~31.
    88张志义,孙蓓,黄元峰.高速开关阀位置控制方法.机床与液压. 2005, (5): 126~128.
    89 F. Lin, Y. Wang, X. Yao. Modeling and Measurement of the Electromagnet on Pneumatic High-speed On-off Solenoid Valve. Transaction of Beijing Institute of Technology. 2007, 27(5): 145~148.
    90 J. Xie, G. Tao, H. Zhou. Sliding Mode Tracking Control of Pneumatic Muscle Joint Actuated by High-speed On-off Solenoid Valve. China Mechanical Engineering. 2007, 18(5): 540~544.
    91林锐,胡俐娟,明仁雄,等. PWM高速开关阀的研制与应用.阀门. 2004, (6):9~11.
    92黄维刚,王显正,马培荪.气动脉宽调制位置伺服系统的研究.液压气动与密封. 1994, (7): 27~29.
    93刘忠.液压脉冲宽度调制技术的应用研究.机械与电子. 2006, (4): 38~40.
    94孙谊,张晓冬,杨延麟.基于智能功率模块的直流PWM调速系统设计.仪器仪表与分析监测. 2007, (4): 9~11.
    95许宏,赵克定,吴盛林.对称式气液联控伺服系统动力机构特性分析.中国机械工程. 2001,(10): 25~28.
    96徐秀芬,赵克定,柴国荣.一种新型气压位置伺服系统设计及模糊控制研究.大庆石油学院学报. 2004, 28(3): 71~73.
    97 Y. Lin. Analysis of PWM Boost Converters by Averaging Theory. WSEAS Transactions on Electronics. 2006, 3(5): 293~297.
    98 X. Sun, D. Liu, Y. Huang, et al. Quasi-PID Controller of Single-phase PWM Inverter Based on Source Period Averaging Model. Proceedings of the Chinese Society of Electrical Engineering. 2006, 26(24): 50~54.
    99 T. Somsawas, O. Kiyoshi, M. Toshimasa. Force Sensor-less Workspace Impedance Control Considering Resonant Vibration of Industrial Robot. 31st Annual Conference of IEEE Industrial Electronics Society, Raleigh, NC, United States. 2005: 1878~1883.
    100 T. Toru; Y. Ryuichi, H. Kei. Variable Impedance Control with Virtual Stiffness for Human-robot Cooperative Peg-in-hole Task. 2002 IEEE/RSJ International Conference on Intelligent Robots and Systems, Lausanne, Switzerland. 2002, 2: 1075~1081.
    101 W. Zhu, D. S. Joris. Virtual Decomposition Based Motion-force Control of Two Coordinated Industrial Manipulators KUKA361-KUKA160. 2002 IEEE International Conference on Robotics and Automation, Washington, DC, United States. 2002, 2: 1729~1734.
    102 A. Frisoli, E. Sotgiu, C. A. Avizzano, et al. Force-based Impedance Control of a Haptic Master System for Teleoperation. Sensor Review. 2004, 24(1): 42~51.
    103 H. Shao, K. Nonami, T. Wojtara. Position and Impedance Force Control of Tele-operated Master-slave Robot Hand System. Robotica. 2005, 23(6): 793~794.
    104 A. A. Goldenberg. Implementation of Force and Impedance Control in RobotManipulators. 1988 IEEE International Conference on Robotics and Automation, Philadelphia, PA, USA. 1988: 1626~1632.
    105 H. Wang, K.H. Low, M. Wang. Reference Trajectory Generation for Force Tracking Impedance Control by Using Neural Network-based Environment Estimation. 2006 IEEE Conference on Robotics, Automation and Mechatronics, Bangkok, Thailand. 2006: 4018~4027.
    106 S. Muraoka, K. Hashimoto, T. Kureha, et al. Detection of Mechanical Impedance Using a Quartz Resonator Force Sensor During a Grasping Process. SICE Annual Conference 2005, Okayama, Japan. 2005:1420~1425.
    107 L. Antonio, A. Fernando. A Force-impedance Controlled Industrial Robot Using an Active Robotic Auxiliary Device. Robotics and Computer-Integrated Manufacturing. 2008, 24(3): 299~309.
    108姜力,蔡鹤皋,刘宏.基于滑模位置控制的机器人灵巧手模糊自适应阻抗控制.控制与决策. 2001, 16(5): 613-616.
    109 X. Wang, P. X. Liu; D. Wang, et al. Design of Bilateral Teleoperators for Soft Environments with Adaptive Environmental Impedance Estimation. 2005 IEEE International Conference on Robotics and Automation, Barcelona, Spain. 2005: 1127~1132.
    110曾河华,李东海,姜学智,等.时滞对象的自抗扰PID控制.清华大学学报. 2007, 47(11): 2015~2018.
    111闫海波,郭科,王茂芝,等.基于反馈线性化和变结构控制的速度饱和伺服系统设计.宇航学报. 2006, 27(4): 616~619.
    112黄琳,耿志勇,王金枝,等.控制与本质非线性问题.自动化学报. 2007, 33(10): 1009~1013.
    113唐超颖,沈春林.非线性不确定系统的变结构控制.兵工自动化. 2003, 22(3): 35~37.
    114 G.. Bartolini, A. Ferrara, E. Usai.Chattering Avoidance by Second-order Sliding Mode Control.IEEE Transactions on Automatic Control, 1998, 43(2):241~246.
    115 G.. Bartolini, A. Ferrara, A. Pisano, et al. On the Convergence Properties of a 2-sliding Control Algorithm for Non-linear Uncertain Systems. International Journal of Control, 2001, 74(7): 718~731.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700