金属环境中D(d,p)T反应的屏蔽效应及氘沉积行为研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
热核反应是核天体物理研究的关键课题,其反应截面的大小决定着恒星演化中的核素合成和核能产生进程。当前恒星演化理论的重大疑难问题之一为起关键作用的几个热核反应截面的超低能数据仍然没有能够得到准确测量。核天体物理学全面发展要求对超低能核反应进行深入研究,获取精确的超低能核反应数据。
     恒星中的热核反应发生在远低于库仑势垒的能区,该能区的核反应截面随能量的减小近似呈指数下降,通常的实验条件很难对其进行直接测量。为了获取该能区内的核反应截面数据,自上世纪80年代晚期以来,研究者们建立了-些特殊的装置、采用新的实验方法,使实验不断向低能区延伸,得到了一系列同位素靶轻核反应的截面。这些实验结果清楚地揭示了电子屏蔽效应的存在及其随能量变化的规律。德国柏林技术大学的学者们在研究中发现:由于真空条件的限制,靶材料会形成金属氧化物或者碳沉积物构成的表面层,进而影响到氘在靶材料中的密度分布,而且氘密度分布随深度的变化往往很大。所以实验得出的屏蔽势能是包括电子屏蔽和氘靶核密度变化等多种因素在内的综合效应。
     为了验证超低能区金属环境下D(d,p)T反应由电子屏蔽所带来的增强效应,分析氘靶核密度变化给实验结果带来的影响,推导出更接近于真实值的屏蔽势能,我们实验小组与日本东北大学合作,在该大学核科学实验室的低能强流加速器上对5keV至10keV(质心系能量)的能量范围内含氘Be,Al,Dy,Yb和Zr靶中的D(d,p)T反应的电子屏蔽效应进行了研究。对氘靶核密度在金属靶中的深度分布提出一个简单模型,利用该模型对实验所得到的归一化质子产额进行分析,得到了几种靶中D(d,p)T反应的屏蔽势能,依次分别是:116±46eV,156±40 eV,172±36 eV,211±61eV和175±53eV。分析结果表明金属环境下超低能区D(d,p)T反应截面较气体靶有明显的增强,而且增强效应与载体材料有很大的相关性;氘密度分布对屏蔽效应的推导产生影响,利用笔者所提出的密度分布模型计算所得结果均小于氘密度分布为常数时的计算结果。研究发现在Yb, Pd材料中D(d,p)T反应具有温度效应,即在相同弹核能量条件下,质子的产额随温度升高而降低。
     这项工作首次研究了氘密度深度分布对屏蔽势能推导带来的影响,提出有关氘分布模型并加以验证,运用模型重新计算了屏蔽势能。尽管如此,实验数据处理中还有不确定性:一是氘在相关介质中的阻止本领,在如此低的能区还没有阻止本领的实验数据,只能采用理论编评的结果(用SRIM计算);二是反应截面也是采用理论推导结果,需要有更高精度的计算;三是文中所提出的氘靶核密度分布模型较为粗糙,会给计算结果带来一定的误差,需要进一步完善。
A lasting topic in nuclear astrophysics is the screening of the nuclear Coulomb potential due to the atomic electrons in laboratory nuclear physics experiments which enhances the experimental reaction cross-sections at low energies relative to the bare nucleus. The cross sections of nuclear fusion reactionσ(E) in energy region far below the Coulomb barrier is roughly represented by the Gamow fac-tor, and drops exponentially with decreasing projectile energy, which are hard to be measured accurately and are extrapolated from the data at higher energies customarily. The Coulomb potential of the target nucleus and projectile theoret-ically calculated from bare nuclei states. However, the target nuclei studied in laboratory are usually in the form of atoms or molecules, so that the Coulomb barrier is effectively reduced both in height and radial extension. As a result, the corresponding cross sections are higher than would be the case for bare nuclei. The enhanced cross sectionσs(E) is expressed asσs(E)=σb(E+Ue) with an electron screening potential Ue, andσb(E) is the cross section for bare nucleus.
     The D(d,p)T reactions in different materials in sub-low energy region have been studied. Though analysis methods for the Ue of D(d,p)T reaction in metal environment were different, they were all based on an assumption of a stable and homogeneous deuteron density distribution. However, the deuteron atom is smaller than any metal atoms and its utmost high mobility makes the assump-tion doubtful. Therefore, one can suppose neither a stable nor a homogeneous deuteron density distribution which is required by the standard analysis method. So a rough model of deuterons density distribution is introduced.
     The experiment was performed at the Laboratory of Nuclear Science, To-hoku University. The deuterated thick targets used in this work are Be, Al, Dy, Yb and Zr metal, respectively. The projectile energy range is 5 keV~10 keV(CMS), and the temperature is 121 K,136 K,134 K,163 K and 140 K re-spectively. The screening potential are calculated using the model in different metal, and they are 116±46 eV,156±40 eV,172±36 eV,211±61 eV and 175±53 eV, respectively. The result of the experiment indicate that the D(d,p)T reaction in metal are assuredly enhanced, and the Ue is correlative to the metal material.
     The experiments of temperature (the thermal input power) effects to the proton yield were performed in Yb and Pd environment. The yield of proton is decreasing with the thermal input power increasing at the same projectile energy. At the same time, it is found that the effective target area shifts at different pro-jectile energy, and the changing range is estimated.
     In this work, for the first time, the deuteron density is taken as a variable during dealing with the experiment data. However, we would make notes that the simulation of SRIM in the low energy region could introduce considerable error, and the model of deuteron density should be improved and more detailed study for different metals are required.
引文
[1]白希祥.低能带电粒子聚变反应中的静电屏蔽效应.[J].原子核物理评论,2002,19(1):7.
    [2]Rolfs C. Nuclear reactions in stars far below the Coulomb barrier. [J]. Progress in Particle and Nuclear Physics,2007,59(1):43.
    [3]彭秋和.核天体物理学的某些重大疑难问题.[J].核物理动态,1995,12(2):52.
    [4]能源技术领域专委会.2050年中国能源需求预测.国家高技术计划领域战略目标汇报报告集.1990.
    [5]邱励俭.聚变能及其应用.[M].北京:科学出版社,2008:2.
    [6]李兴中,魏清明,刘斌.开发没有核污染的核能源.[J].核聚变与等离子体物理,2008,28(3):257.
    [7]Mckubre M C H, Tanzella F L. Using resistivity to measure H/Pd and D/Pd loading:method and significance [A]. Takahashi A, Ota K, Iwamura Y. In Condensed Matter Nuclear Science, Proceedings of the 12th International Conference on Cold Fusion, Yokohama, Japan,27 Nov.-2 Dec.2005 [C]. New Jersey:world Scientific,2006.392.
    [8]Hora H I. Screening in cold fusion derived from D-D reactions [J]. Phys. Letters,1993,175:138.
    [9]Raiola F. Electron screening in d(d, p)t for deuterated metals and the periodic table. [J]. Phys. Letters, B,2002,547:193.
    [10]卢希庭.原子核物理.[M].北京:原子能出版社,2000:227.
    [11]Gamow G. [J]. Z.Phys.1928,51:204
    [12]Rolfs C and Rodney W S. Cauldrons in the Cosmos. [M]. The University of Chicago Press,1988.
    [13]Assenbaum H J, Langanke K, Rolfs C. [J]. Z Phys. A.1987,327:461.
    [14]Salpeter E E. [J]. Aust. J. Phys.1954,7:373.
    [15]Ichimaru S. [J]. Rev. Mod. Phys,1993,65:255.
    [16]Cherubini S, Kondratyev V N, Lattuada M, Spitaleri C, Miljanic D, Zadro M, Baur G. Indirect Investigation of the d + 6Li Reaction at Low Energies Relevant for Nuclear Astrophysics. [J]. Astr. J.1996,457:855.
    [17]Spitaleri C, Lamia L, Tumino A, Pizzone R G, Cherubini S, et al.. The 1IB(P,α0)8Be reaction at sub-Coulomb energies via the Trojan-horse method.[J]. Physical Review C,2004,69:055806.
    [18]Oriani R A. The Physical and Metallurgical Aspets of Hydrogen in Metals. [C]. in ICCF4, Fourth International Conference on Cold Fusion. Lahaina, Maui.1993,(1):18
    [19]Fritsche H G, Muller H and OptizCh. "Metals-Hydrogen Systems". Olden-bourg Verlag, Miinchen,1989. p535
    [20]Wicke E and Brodowsky H. "Hydrogen in Metals". Springer-Verlag, Berlin, 1978,Ⅱ:73.
    [21]Friedel J. [J]. Berichte der Bunsengesellschaft fur Physikalische Chemie 1972,76:828
    [22]Drexel W, Murani A, Tocchetti D et al. [J]. J. Phys. Chem. Sol.1976,37: 1135.
    [23]Keher K W. "Hydrogen in Metals". Springer-Verlag, Berlin,1978, I:321.
    [24]Alefeld G and Volkl J. Hydrogen in Metals, Ⅰ & Ⅱ. Topics in Applied Physics. V.28-29,1978.
    [25]http://www. hudong. com/wiki/ %E9%87%91%E5%B1%9E%E4%B8%AD%E6%B0%A2.
    [26]黄继华.金属及合金中的扩散.[M].北京:冶金工业出版社.1996.
    [27]冯瑞.金属物理学.第一卷结构与缺陷,第五篇.[M].北京:科学出版社.1987.
    [28]潘金生,仝健民,田民波.材料科学基础.[M].北京:清华大学出版社.1998.
    [29]Rolfs C and Rodney W S. Cauldrons in the Cosmos. [M]. The University of Chicago Press,1988.
    [30]Rolfs C. Nuclear reaction in stars far below the Coulomb barrier. [J]. Progress in Particle and Nuclear Physics.2007,59(1):43.
    [31]Krauss A, Becker H W, Trautvetter H P, Rolfs C and Brand K. Low-Energy Fusion Cross Sections of D+D and D+3He. [J]. Nucl. Phys. A.1987,465: 150.
    [32]Krauss A, Becker H W, Trautvetter H P, and Rolfs C. Astrophysical S(E) Factor of 3He(3He,2p)4He at Solar Energies. [J]. Nucl. Phys. A.1987,467: 273.
    [33]Engstler S, Krauss A, Neldner K, Rolfs C, Schroder U et al.. Effects of Elec-tron Screening on the 3He(d,p)4He Low-Energy Cross Sections. [J]. Phys. Lett. B.1988,202:179.
    [34]Engstler, S, Raimann G, Angulo C, Greife, U, Rolfs C et al.. Isotopic De-pendence of Electron Screening in Fusion Reactions. [J]. Z. Phys. A.1992, 342:471.
    [35]Angulo C, Engstler S, Raimann G, Rolfs C, Schult W H et al. The Effects of Electron Screening and Resonances in (p,a) Reactions on 10B, and 11B at Thermal Energies. [J]. Z Phys. A.1993,345:231.
    [36]Prati P, Arpesella C, Bartolucci F, Becker H W, Bellotti E et al. Electron Screening in the d+3He Fusion Reaction. [J]. Z. Phys. A.1994,350:171.
    [37]Greife U, Gorris F, Junker M, Rolfs C and Zahnow D. Oppenheimer-Phillips Effect and Electron Screening in d+d Fusion Reactions. [J]. Z. Phys. A.1995, 351:107.
    [38]Rolfs C and Somorjai E. Status Report on Electron Screening. [J]. Nucl. Instrum. Meth. B.1995,99:297.
    [39]Junker M, Arpesella C, Bellotti E, Broggini C, Corvisiero P et al. the Cross Section of 3He(3He,2p)4He Measured at Solar Energies. [J]. nucl. Phys. B. 1990,70:382.
    [40]Junker M, Alessandro A D, Zavatarelli S, Arpesella C, Bellotti E et al.. Cross Section of 3He(3He,2p)4He Measured at Solar Energies. [J]. Phys. Rev. C. 1998,57:2700..
    [41]Bonetti R, Broggini C, Campajola L, Corvisiero P, D'Alessandro A et al.. First Measurement of the 3He(3He,2p)4He Cross Section down to the Lower Edge of the Solar Gamow Peak. [J]. Phys. Rev. Lett.1999,82:5205.
    [42]Zavatarelli S, Corvisiero P, Costantini H, Prada Moroni P G, Prati P et al.. The D(3He,p)4He Fusion Reaction:Electron Screening Effect and As-trophysical S(E) Factor at Low Energies. [J]. Nucl. Phys. A.2001,688: 514.
    [43]Aliotta M, Raiola F, Gyiirky G, Formicola A, Bonetti R et al.. Electron Screening Effect in the Reaction 3He(d,p)4He and d(3He,p)4He. [J]. Nucl. Phys. A.2001,690:790.
    [44]李成波,R.G.pizzone, C.Spitaleri, Lamia L,周书华等.试用特洛伊木马方法研究天体核反应9Be(p,α)6Li.[J].原子核物理评论.2005,22(3):248.
    [45]Assenbaum H J, Langanke K and Rolfs C. Effects of electron screening on low-energy fusion cross sections. [J]. Z Phys. A.1987,327:461.
    [46]Bencze Gy. Electron screening effects in low-energy fusion reactions. [J]. Nucl. Phys. A.1989,492:459.
    [47]Raiola F, Gang L, Bonomo C, Gyiirky G, Aliotta M et al.. Enhanced electron screening in d(d,p)t for deuterated metals. [J]. Eur. Phys. J A. 2004,19:283.
    [48]Raiola F. Enhanced d(d,p)t cross section in metallic environments. [D]. Bochum, Germany:Ruhr-Universitat Bochum,2005.
    [49]Zuttel A. Hydrogen storage methods. [J]. Naturwissenschaften.2004,91: 157.
    [50]Raiola F, Burchard B, Fulop Zs, GyAurky Gy, Zeng S, et al.. Enhanced d(d,p)t fusion reaction in metals.[J]. Eur. Phys. J A.2006,27, s01:79.
    [51]Bracci L, Fiorentini G, Melezhik V S, Mezzorani G and Quarati P. Atomic effects in the determination of nuclear cross sections of astrophysical interest. [J]. Nucl. Phys. A.1990,513:316.
    [52]Cruz J, Fulop Z, Gyurky G, Raiola F, Leva A Di, et al. Electron screening in 7Li(p,α)α and 6Li(p,α)3He for different environments. [J]. Physics Letters. B.2005,624:181.
    [53]Kasagi J, Yuki H, Baba T, Noda T, Taguchi J et al. Strongly Enhanced Li+D Reaction in Pd Observed in Deuteron Bombardment on PdLix with Energies between 30 and 75 keV. [J]. Journal of the Physical Society of Japan.2004,73(3):608.
    [54]Langanke K, Shoppa T D, Barnes C A and Rolfs C. Energy loss, electron screening and the astrophysical 3He(d, p)4He cross section. [J]. Phys. Lett. B.1996,369:211.
    [55]Liolios T E. Atomic effects in astrophysical nuclear reactions. [J]. Phys. Rev. C.2001,63:045801.
    [56]Czerski K, Huke A, Biller A, Heide P, Hoeft M. Enhancement of the electron screening effect for d + d fusion reactions in metallic environments. [J]. Europhys. Lett.2001 54(4):449.
    [57]吕会议,王铁山,陈建勇,杨振,刘盛进等.金属环境下D(d,p)T反应研究.[J].原子核物理评论.2008,25(3):240.
    [58]Huke A, Czerski K and Heide P. Measurement of the enhancement screening effect of the d+d reactions in metals. [J]. Nuclear Instruments and Methods in Physics Research. B.2007,256:599.
    [59]Brown R E, Jarmie N. Differential cross sections at low energies for 2H(d,p)3H and 2H(d, n)3He. [J]. Phys Rev. C.1990,41:1391.
    [60]Raiola F, Migliardi P, Gyurky G, et al.. Eur Phys J A.2002,13:377.
    [61]Raiola F, Burchard B, Fulop Z, et al. [J].. J Phys G:Nucl Part Phys. 2005,31:1141.
    [62]Bosch H S, Hale G M. Improved Formulas for Fusion Cross-sections and Thermal Reactivities. [J]. Nuclear Fusion.1992,32(4):611
    [63]Lewis F A and Aladjem A. Hydrogen Metal Systems. [M]. Zurich:Scitec Publ,1996,49-50.
    [64]Yuki H, Kasagi J, Lipson A G et al.. JETP Lett. [J].1998,68:823.
    [65]Jirohta Kasagi. Low energy nuclear cross-sections in metals. [J]. Surface (?) Coatings Technology.2007,201(19-20):8574.
    [66]陈建勇.在载体金属材料Ag, Be, Rh, Zr, Sm和Dy中低能区D(d,p)T反应的研究.[D].兰州:兰州大学,2008.
    [67]杨振.金属材料中低能D-D核反应的实验研究.[D].兰州:兰州大学,2009.
    [68]Yuki H, Sato T, Ohtsuki T, Yorita T, Aoki Y et al.. Measurements of the D(d,p)T Reaction in Ti for 2.5    [69]#12
    [70]石川嘉一.金属中D(d,p)t反応におけゐp/t收量比测定.[D].仙台,日本: 束北大学,2006.P18.
    [71]Zahnow D. Diplomarbeit. [D]. Ruhr-Universitat Bochum,1992.
    [72]Bonderup E. Penetration of Charged Particles Through Matter, (Lecture Notes). Institute of Physics. University of Aarhus, Denmark,1981.,
    [73]汤家镛,张祖华.离子在固体中的阻止本领、射程和沟道效应.[M].北京:原子能出版社,1988.
    [74]Lindhard J, Scharff M and Schiott H E. Range Concepts and Heavy Ion Ranges. [J]. Mat. Fys. Medd. Dan. Vid. Selsk.1963,33(14):1.
    [75]Lindhard J, Scharff M. Energy Dissipation by Ions in the keV Region. [J]. Phys. Rev.1961,124:128.
    [76]Anderson H H and Ziegler J F. Hydrogen Stopping Powers and Ranges in All Elements. [M]. New York:1997.
    [77]Rosenberg H M. Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Science.1955.247(933) 461.
    [78]Abramov E, Riehm M P, Thompson D A et al.. Deuterium permeation and diffusion Ⅲ high-purity beryllium. [J]. Journal of Nuclear Materials.1990. 175:90.
    [79](德)P.R.贝文顿著.仇维礼,徐根兴译.数据处理和误差分析.[M].北京:知识出版社.1986.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700