星用双极型器件带电粒子辐照效应及损伤机理
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文在分析轨道环境参数、地面模拟试验因素等影响的基础上,应用不同能量质子、电子、Br离子及Co-60 ?射线作为辐照源,研究了国产NPN型晶体管(3DG112D、3DG130D)、PNP晶体管(3CG130D)及TTL集成电路(54LS86)的辐照效应和性能退化规律。在此基础上,揭示了双极型晶体管的电离效应、位移效应及电离和位移协同效应的机制,给出了双极型晶体管电离损伤量化模型,并提出了基于器件敏感区NIEL的位移损伤等效模拟试验方法。
     研究结果表明,在相同的辐照源种类、粒子能量及通量条件下,不同双极型晶体管与集成电路的电性能参数退化趋势相类似,均随辐照注量的增加而加剧。不同双极型晶体管对辐照损伤的敏感性可通过相同性能参数(如电流增益)进行比较。辐照通量在所选择的范围内对双极型器件的电性能退化影响不大,而高通量1MeV电子辐照会加剧双极型集成电路的某些电性能参数(如54LS86器件的VOH)的退化。
     通过分析双极型晶体管辐照损伤的性能退化规律及单位注量入射粒子的电离吸收剂量Di和位移吸收剂量Dd,提出了Dd/(Dd+Di)作为判定辐照粒子产生位移损伤能力大小的参数。入射粒子在器件敏感区内产生的Dd/(Dd+Di)越大,造成的位移损伤越严重,器件的电性能退化越易呈现位移损伤的特征。在此基础上,基于敏感区NIEL的位移吸收剂量等效方法,可将多种辐照粒子造成的位移损伤进行归一化。
     通过70keV和110keV电子及70keV质子辐照试验结果表明,当晶体管受到电离损伤时,其电流增益的倒数随辐照注量的增加而增加且逐渐趋于饱和状态。在相同的辐照注量下,不同种类和能量的入射粒子对双极型晶体管产生不同的电离损伤程度,主要是由于入射粒子的电离损伤能力不同。通过理论计算与性能退化规律分析可知,单位注量入射粒子所导致的电离辐射吸收剂量越大,对双极型晶体管造成的电离损伤程度越小。
     基于辐照过程中双极型晶体管偏置条件的影响分析可见,偏置条件对电离损伤和位移损伤的影响程度不同。当发射结电压正偏时,耗尽层宽度变窄,受电离效应的影响变弱,导致电离损伤程度较小;反之,反偏会使电离损伤程度加大。偏置条件不会对位移损伤导致的体缺陷造成较大的影响,使位移损伤受偏置的影响较小。但在发射结正偏时,由于电荷的注入,会使基区内的体损伤发生退火效应。
     从质子和电子综合辐照试验及器件模拟分析两方面,揭示出双极型晶体管呈现电离和位移协同效应的机理。研究结果表明,170keV质子和110keV(或70keV)电子综合辐照时,位移损伤是决定双极型晶体管电性能退化的主导机制,而电离效应会对位移效应起到退火和加剧两种作用。电离效应可在Si体内产生光电流并钝化一部分位移效应导致的体缺陷,造成位移损伤的退火;电离效应在氧化物层内产生的正电荷及Si/SiO2界面处的界面态,会使表面复合电流峰向体内移动,导致对体复合电流的影响增强,加剧位移损伤效应。并且,NPN型和PNP型双极型器件的电离和位移协同效应变化趋势一致。
     基于空间辐射环境参数计算、地面模拟试验结果及辐照损伤效应分析,提出了用于评价双极型器件在轨性能退化的预测方法。该方法考虑了轨道环境中不同种类和能量带电粒子对电离效应和位移效应的贡献,具有实际应用的价值和可行性。
The degradation caused by protons, electrons, Br ions with various energies and Co-60 ??ray radiation are examined for the domestic NPN transistors (3DG112D, 3DG130D), PNP transistors (3CG130D) and TTL ICs (54LS86), based on the analyse of space environment factors and ground-based simulation experiments. The mechanisms of ionization damage, displacement damage and their synersistic function are investigated. The model of ionization damage for the bipolar transistors is given, and the NIEL (Non-Ionizing Energy Loss) method for displacement damage is improved.
     Experimental results show that with increasing irradiation fluence, the degradation trends of different bipolar transistor and bipolar ICs are similar, under a given condition for different particles, fluxes and energies. The susceptibility of various bipolar transistors to radiation damage can be assessed by using a given parameter of electric properties (e.g., the current gain). The effect of irradiation flux on the degradation in electric properties of bipolar devices is limited, in the chosen flux range. However, the 1MeV electron exposure with high fluxes aggravates the degradation of some electric property parameters (e.g., the VOH for the 54LS86 device).
     Based on the analyses of degradation in electric properties due to radiation damage for bipolar transistors and the calculation of ionization and displacement doses per unit fluence of incident particles (designated as Di and Dd, respectively), a parameter of Dd/(Dd+Di) is proposed to evaluate the displacement damage ability of an incident particles. The bigger the ratio of Dd/(Dd+Di), in the sensitive region caused by incident particles, the severer the displacement damage, and thus showing an obvious feature of displacement damage for bipolar devices. The displacement damage caused by various particles can be normalized by using a displacement dose equivalent method based on the NIEL in the sensitive region.
     It is shown that under the exposure of 70keV and 110keV electrons and 70keV protons, the change in the reciprocal of the current gain of bipolar transistors increases and is gradually saturated with increasing the fluence, the saturation is induced by ionization damage. Under a given fluence, due to their different abilities for ionization damage, the different type particles with various energies would lead to different ionization damage magnitudes. Based on the theoretical calculation and analyses on the electric property degradation, it is indicated that the larger the ionization dose per unit fluence of incident particle, the smaller the ionization damage magnitude for the bipolar transistors.
     During the exposure of charged particles, it is observed that the influence of bias condition on the ionization and displacement damage is different. If voltage on the base-emitter junction is forward, the exhausted region becomes narrow, resulting in weaker effect of ionization damage on the bipolar transistors. On the contrary, the ionization damage gives stronger effect on the transistors. The diffence in the bias condition gives little contribution to the bulk defects caused by displacement damage. However, when the the base-emitter voltage is forward, the electric charges will be injected into the base region, inducing an annealing effect on the displacement damage.
     Through the combined irradiation experiments of protons and electrons, it is revealed that the bipolar transistors show a synergistic effect of displacement damage with ionization damage. Under the combined exposure of 170keV protons and 110keV (or 70keV) electrons, the displacement damage dominates the current gain degradation for the transistors, and the ionization gives both annealing and aggravation effect on the displacement damage. The photocurrent induced by ionization damage in Si bulk will passivate a portion of the bulk defects, inducing the annealing effects. Meanwhile, the interface state and oxide charge caused by ionization damage in the Si/SiO2 interface and oxide layer will move the peak of the surface recombination current into Si bulk, leading to more server displacement damage. The trend of degradation of current gain, caused by the synergistic effect of displacement damage with ionization damage, for NPN and PNP transistors is the same.
     Based on the calculation of space environment parameters, the ground-based simulation experiments and the analyses of radiation effects and mechanisms, a prediction method is given for the electric degradation of bipolar devices in orbit, in which all the contributions can be considered for the ionization and displacement effects induced by different types of charged particles with various energies. This method could be used in practice.
引文
1 E. R. Benton, E. V. Benton. A Survey of Radiation Measurements Made Aboard Russian Spacecraft in Low-Earth Orbit. NASA/CR-1999-209256, 1999:6~50
    2张庆祥,及莉,王立.卫星空间辐射效应及防护技术飞行试验初步设想.航天器环境工程. 2008, 25(3):247~250
    3 G. Santin. Space Environments and Effects Analysis for ESA Missions. Nuclear Physics B - Proceedings Supplements. 2006,150:377~381
    4 D. J. Barnhart, T. Vladimirova, M. N. Sweeting and K. S. Stevens. Radiation Hardening by Design of Asynchronous Logic for Hostile Environments. IEEE Journal of Solid-State Circuits. 2009,44(5):1617~1627
    5 R. H. Maurer, M. E. Fraeman, M. N. Martin, D. R. Roth. Harsh Environments: Space Radiation Environment, Effects, and Mitigation. Johns Hopkins APL Technical Digest. 2008,28(1):17~29
    6 S. Duzellier. Radiation Effects on Electronic Devices in Space. Aerospace Science and Technology. 2005,9(1):93~99
    7 D. J. Hall, A. Holland. Space Radiation Environment Effects on X-ray CCD Background. Nuclear Instruments and Methods in Physics Research Section A. 2010,612(2):320~327
    8 N. V. Kuznetsov. The Rate of Single Event Upsets in Electronic Circuits onboard Spacecraft. Cosmic Research. 2005,43:423~431
    9 T. Berger. Radiation Dosimetry onboard the International Space Station ISS. Zeitschrift für Medizinische Physik. 2008,18(4):265~275
    10 B. D. Olson, O. A. Amusan, S. Dasgupta, L. W. Massengill, A. F. Witulski, B. L. Bhuva, M. L. Alles, K. M. Warren and D. R. Ball. Analysis of Parasitic PNP Bipolar Transistor Mitigation Using Well Contacts in 130 nm and 90 nm CMOS Technology. IEEE Trans. on Nuclear Science. 2007,54(4):894~897
    11 R. L. Pease. Total Ionizing Dose Effects in Bipolar Devices and Circuits. IEEE Trans. on Nuclear Science. 2003,50(3):539~551
    12 K. V. Madhu, R. Kumar, M. Ravindra and R. Damle. Investigation of Deep Level Defects in Copper Irradiated Bipolar Junction Transistor. Solid-StateElectronics. 2008,52:1237~1243
    13 S. R. Kulkarni, M. Ravindra, G. R. Joshi and R. Damle. High-Energy Electron Induced Gain Degradation in Bipolar Junction Transistors. Nuclear Instruments and Methods in Physics Research B. 2006,251:157~162
    14 A. P. Gnana Prakash, S. C. Ke and K. Siddappa. I-V and Deep Level Transient Spectroscopy Studies on 60 MeV Oxygen Ion Irradiated NPN Transistors. Nuclear Instruments and Methods in Physics Research B. 2004,215:457~470
    15 A. H. Johnston, B. G. Rax. Testing and Qualifying Linear Integrated Circuits for Radiation Degradation in Space. IEEE Trans. on Nuclear Science. 2006,53(4):1779~1786
    16 L. Ratti, M. Manghisoni, E. Oberti, V. Re, V. Speziali, G. Traversi, G. Fallica and R. Modica. Response of SOI Bipolar Transistors Exposed to ?-Rays under Different Dose Rate and Bias Conditions. IEEE Trans. on Nuclear Science. 2005,52(4):1040~1047
    17 C. Dyer. Radiation Effects on Spacecraft & Aircraft. QinetiQ, 2001:1~8
    18 S. L. Huston, D. Cantwell, P. Dorman and J. Carsten. Model for Estimating Directional Flux and Detector Response for Space Radiation Experiments. IEEE Trans. on Nuclear Science. 2007,54(6):1990~1996
    19 M. Walt. Introduction to Geomagnetically Trapped Radiation. Cambridge, 1994:11~14
    20 S. Bourdarie, M. Xapsos. The Near-Earth Space Radiation Environment. IEEE Trans. on Nuclear Science. 2008,55(4):1810~1830
    21刘振兴.太空物理学.哈尔滨工业大学出版社, 2005:95~173
    22 D. M. Sawyer, J. I. Vette. AP-8 Trapped Proton Environment for Solar Maximum and Solar Minimum. NSSDC/WDC-A-R&S 76-06, 1976:6
    23 J. D. Meffert, M. S. Gussenhoven. CRRESPRO Documentation. Phillips Laboratory PL-TR-94-2218, 1994:4
    24 S. L. Huston, K. A. Pfitzer. Space Environment Effects: Low-Altitude Trapped Radiation Model. NASA/CR-1998-208593, 1998:1-1~6-2
    25 S. L. Huston. Space Environments and Effects: Trapped Proton Model. NASA/CR-2002-211784, 2002:1~17
    26 D. Heynderickx, M. Kruglanski, V. Pierrard, J. Lemaire and M. D. Looper. A Low Altitude Trapped Proton Model for Solar Minimum Conditions Based on SAMPEX/PET Data. IEEE Trans. on Nuclear Science. 1999,46(6):1475~1480
    27 J. I Vette. The AE-8 Trapped Electron Model Environment. NSSDC Report 91-24, 1991:4
    28 D. H. Brautigam, J. T. Bell. CRRESELE Documentation, Phillips Laboratory PL-TR-95-2128, 1995:6
    29 D. J. Rodgers, K. A. Hunter and G. L. Wrenn. The FLUMIC Electron Environment Model. QinetiQ, 2003:1~12
    30 D. M. Boscher, S. A. Bourdarie, R. H. W. Friedel and R. D. Belian. Model for the Geostationary Electron Environment: POLE. IEEE Trans. on Nuclear Science. 2003,50(6):2278~2283
    31 T. W. Armstrong, B. L. Colborn. Trapped Radiation Model Uncertainties: Model-Data and Model-Model Cpmparisons. NASA/CR-2000-210071, 2000:1-1~7-13
    32 B. L. Giles. CRRES Combined Radiation and Release Effects Satellite Program. NASA Technical Memorandum 108494, 1995:1~151
    33 T. W. Armstrong, B. L. Colborn. Evaluation of Trapped Radiation Model Uncertainties for Spacecraft Design. NASA/CR-2000-210072, 2000:1~45
    34 T. W. Armstrong, B. L. Colborn. TRAP/SEE Code Users Manual for Predicting Trapped Radiation Environments. NASA/CR-2000-209879, 2000:1~19
    35 J. M. Lauenstein. Radiation Belt Modeling for Spacecraft Design: Model Comparisons for Common Orbits. NSREC 2005 Data Workshop Paper W-16, 2005:1~8
    36 E. J. Daly, J. Lemaire, D. Heynderickx and D. J. Rodgers. Problems with Models of the Radiation Belts. IEEE Trans. on Nuclear Science. 1996,43(2):403~415
    37 W. W. Vaughan, K. O. Niehuss and M. B. Alexander. Spacecraft Environments Interactions: Solar Activity and Effects on Spacecraft. NASA Reference Publication 1396, 1996:2~26
    38 L. D. Edmonds, C. E. Bames and L. Z. Scheick. An Introduction to Space Radiation Effects on Microelectonics. JPL Publication 00-06, 2000:3~80
    39 J. H. King. Solar Proton Fluences for 1977-1983 Space Missions. J. Spacecraft Rockets. 1974,11:401
    40 E. G. Stassinopoulos. Solpro: A Computer Code to Calculate Probabilistic Energetic Solar Proton Fluences. NSSDC 75-11, 1975:3~10
    41 J. Feynman, T. P. Armstrong, L. Dao-Gibner and S. Silverman. A NewInterplanetary Proton Fluence Model. J. Spacecraft and Rockets. 1990,27:403
    42 J. Feynman, G. Spitale, J. Wang and S. Gabriel. Interplanetary Proton Fluence Model: JPL 1991. J. Geophysical Research. 1993,98:13281~13294
    43 J. Feynman, A. Ruznaikin and V. Berdichevsky. The JPL Proton Fluence Model: an Update. J. Atmospheric and Solar-Terrestrial Physics. 2002,64:1679~1686
    44 A. J. Tylkal, J. H. Adams, P. R. Boberg and B. Brownstein. CREME96: A Revision of the Cosmic Ray Effects on Micro-Electronics Code. IEEE Trans. on Nuclear Science. 1997,44(6):2150~2160
    45 M. A. Xapsos, C. Stauffer, T. Jordan, J. L. Barth and R. A. Mewaldt. Model for Cumulative Solar Heavy Ion Energy and Linear Energy Transfer Spectra. IEEE Trans. on Nuclear Science. 2007,54(6):1985~1989
    46 R. A. Nymmik. Space Environment (Natural and Artifical) Probabilistic Model for Fluences and Peak Fluxes of Solar Energetic Particles Part I Protons. International Standardization Organization Technical Specification 15391, 2004:1~84
    47 H. Mavromichalaki, A. Papaioannou, G. Mariatos, M. Papailiou, A. Belov, E. Eroshenko, V. Yanke and E. G. Stassinopoulos. Cosmic Ray Radiation Effects on Space Environment Associated to Intense Solar and Geomagnetic Activity. IEEE Trans. on Nuclear Science. 2007,54(4):1089~1096
    48 R. A. Nymmik, M. I. Panasyuk, T. I. Pervaya and A. A. Suslov. A Model of Galactic Cosmic Ray Fluxes. Nuclear Tracks and Radiation Measurements. 1992,20(3):427~429
    49 R. A. Nymmik, M. I. Panasyuk and A. A. Suslov. Galactic Cosmic Ray Flux Simulation and Prediction. Advances in Space Research. 1995,17(2):19~30
    50 R. A. Nymmik, A. A. Suslov. Some Trends in Perfecting the Dynamic Models of Cosmic Ray Modulation. Radiation Measurements. 1996,26(3):477~480
    51 A. A. Beliaev, R. A. Nymmik, M. I. Panasyuk, T. I. Pervaya and A. A. Suslov. Generalization of the Data on Galactic Cosmic Ray Particle Fluxes in Terms of Dynamic Model. Radiation Measurements. 1996,26(3):481~486
    52 S. M. Sze, K. K. Ng. Physics of Semiconductor Devices. Third Edition. John Wiley and Sons, 2007:243~247
    53 R. F. Pierret.半导体器件基础.黄如,王漪,王金延等译.电子工业出版社, 2007:269
    54 B. L. Anderson, R. L. Anderson.半导体器件基础.邓宁,田立林,任敏译.清华大学出版社, 2008:428
    55 N. J. Carron. An Introduction to the Passage of Energetic Particles through Matter. CRC, 2007:25~301
    56 A. Sharma, A. Fettouhi, A. Schinner and P. Sigmund. Stopping of Swift Ions in Compounds. Nuclear Instruments and Methods in Physics Research B. 2004,218:19~28
    57 J. M. Killiany. Radiation Effects on Silicon Charge-Coupled Devices. IEEE Trans. on Components, Hybrids, and Manufacturing Technology. 1978,CHMT-1(4):353~364
    58 S. P. Ahlen. Theoretical and Experimental Aspects of the Energy Loss of Relativistic Heavily Ionizing Particles. Reviews of Modern Physics. 1980,52(1):121~152
    59 C. Leroy, P. Rancoita. Particle Interaction and Displacement Damage in Silicon Devices Operated in Radiation Environments. Reports on Progress in Physics. 2007,70:493~625
    60 D. L. Griscom, E. J. Friebele. Effects of Ionizing Radiation on Amorphous Insulators. 1982, (65):63
    61 T. P. Ma, P. V. Dressendorfer. Ionizing Radiation Effects in MOS Devices and Circuits. John Wiley and Sons, 1991:91
    62 H. P. Hjalmarson, R. L. Pease, C. E. Hembree, R. M. Van Ginhoven and P. A. Schultz. Dose-rate Dependence of Radiation-Induced Interface Trap Density in Silicon Bipolar Transistors. Nuclear Instruments and Methods in Physics Research B. 2006,250:269~273
    63 D. H. Ko, S. J. Kim, K. W. Min, J. Park and K. S. Ryu. Enhanced Low Dose Rate Effect of the Radiation-Sensitive Field Effect Transistors Developed by the National Microelectronics Research Centre. Nuclear Instruments and Methods in Physics Research A. 2008,584:440~443
    64 D. M. Fleetwood, S. L. Kosier, R. N. Nowlin, et al. Physical Mechanism Contributing to Enhanced Bipolar Gain Degradation at Low Dose Rates. IEEE Trans. on Nuclear Science. 1994,NS-41(6):1871
    65 K. Hayama, K. Takakura, H. Ohyama, S. Kuboyama, E. Simoen, A. Mercha and C. Claeys. Dose Rate Dependence of Radiation-induced Lattice Defects and Performance Degradation in NPN Si Bipolar Transistors by 2-MeVElectron Irradiation. Physica B. 2007,401-402: 469~472
    66 J. Beaucour, T. Carriere, A. Gach, et al. Total Dose Effects on Negative Voltage Regulator. IEEE Trans. on Nuclear Science. 1994,NS-41(6):2420
    67 S. M. Clure, R. L. Pease, W. Will, et al. Dependence of Total Dose Response of Bipolar Linear Microcircuits on Applied Dose Rate. IEEE Trans. on Nuclear Science. 1994,NS-41(6):2544
    68 A. H. Johnston, C. I. Lee, B. G. Rax, et al. Enhanced Damage in Bipolar Device at Low Dose Rate: Effect at very Low Dose Rate. IEEE Trans. on Nuclear Science. 1996,NS-43(6):3049
    69丁富荣,班勇,夏宗璜.辐射物理.北京出版社, 2004:17~22
    70郁金南.材料辐照效应.化学工业出版社, 2007:168
    71 H. N. Becker, T. Elliott and J. W. Alexander. Electron-Induced Displacement Damage Effects in CCDs. IEEE Trans. on Nuclear Science. 2006,53(6):3764
    72 J. R. Srour, J. W. Palko. A Framework for Understanding Displacement Damage Mechanisms in Irradiated Silicon Devices. IEEE Trans. on Nuclear Science. 2006,53(6):3610~3620
    73 S. Sato, M. Imaizumi and T. Ohshima. Radiation Degradation Modeling of Triple-Junction Space Solar Cells. Report of Research Center of Ion Beam Technology. 2009,27:37~42
    74 J. H. Warner, S. R. Messenger, R. J. Walters and G. P. Summers. Displacement Damage Correlation of Proton and Silicon Ion Radiation in GaAs. IEEE Trans. on Nuclear Science. 2005,52(6):2678
    75 S. R. Messenger, E. A. Burke, G. P. Summers and J. Walters. Application of Displacement Damage Dose Analysis to Low-Energy Protons on Silicon Devices. IEEE Trans. on Nuclear Science. 2002,49(6):2690~2694
    76 A. M. Chugg, R. Jones, M. J. Moutrie and P. R. Truscott. Analyses of Images of Neutron Interactions and Single Particle Displacement Damage in CCD Arrays. IEEE Trans. on Nuclear Science. 2004,51(6):3579
    77 S. R. Messenger, E. A. Burke, G. P. Summers and R. J. Walters. Limits to the Application of NIEL for Damage Correlation. IEEE Trans. on Nuclear Science. 2004,51(6):3201
    78 S. Sato, H. Miyamoto, M. Imaizumi, K. Shimazaki, C. Morioka, K. Kawano and T. Ohshima. NIEL Analysis of Radiation Degradation Parameters Derived from Quantum Efficiency of Triple-Junction Space Solar Cell. IEEE 33rdPhotovoltaic Specialists Conference, San Diego, CA, 2008. Inst Elect & Elect Engn, 2008:1435~1439
    79 X. X. Tang, W. Y. Luo, C. Z. Wang, X. F. He, Y. Z. Zha, S. Fan, X. L. Huang and C. S. Wang. Non-Ionizing Energy Loss of Low Energy Proton in Semiconductor Materials Si and GaAs. ACTA Physica Sinica. 2008,57(2):1266~1270
    80 I. Jun, M. A. Xapsos and S. R. Messenger, et al. Proton Nonionizing Energy Loss (NIEL) for Device Applications. IEEE Trans. on Nuclear Science. 2003,50(6):1924~1928
    81 I. Jun. Effects of Secondary Particles on the Total Dose and the Displacement Damage in Space Proton Environments. IEEE Trans. on Nuclear Science. 2001,48(1):162
    82 I. Jun, W. McAlpine. Displacement Damage in Silicon Due to Secondary Neutrons, Pions, Deuterons, and Alphas from Proton Interactions with Materials. IEEE Trans. on Nuclear Science. 2001,48(6):2034
    83 J. Bogaerts, B. Dierickx, G. Meynants and D. Uwaerts. Total Dose and Displacement Damage Effects in a Radiation-Hardened CMOS APS. IEEE Trans. on Nuclear Science. 2003,50(1):84
    84 M. A. Xapsos, G. P. Summers, C. C. Blatchley et al. Co60 Gamma Ray and Electron Displacement Damage Studies of Semiconductors. IEEE Trans. on Nuclear Science. 1994,41(6):1945~1948
    85 P. Garcia, J. R. Vaillé, D. Benoit, et al. Simultaneous Evaluation of TID and Displacement Damage Dose Using a Single OSL Sensor. IEEE Trans. on Nuclear Science. 2006,53(6):3713
    86 G. C. Messenger, M. S. Ash. The Effects of Radiation on Electronic Systems. Second Edition. Van Nostrand Reinhold, 1992:223~263
    87 A. H. Siedle, L. Adams. Handbook of Radiation effects. Second Edition. Oxford, 2004:209~213
    88 G. Messenger, J. Spratt. Displacement Damage in Silicon and Germanium Transistors. IEEE Trans. on Nuclear Science. 1965,12(2):53~74
    89 S. L. Kosier, R. D. Schrimpf, R. N. Nowlin, D. M. Fleetwood, M. DeLaus, R. L. Pease, W. E. Combs, A. Wei and F. Chai. Charge Separation for Bipolar Transistors. IEEE Trans. on Nuclear Science. 1993,40(6):1276
    90 A. H. Johnston, G. M. Swift and B. G. Rax. Total Dose Effects in ConventionalBipolar Transistors and Linear Integrated Circuits. IEEE Trans. on Nuclear Science. 1994,41(6):2427~2435
    91 R. F. Donovan, J. R. Hauser and M. Simons. A Survey of the Vulnerability of Contemporary Semiconductor Components to Nuclear Radiation. AFAL-TR-74-61. US Air Force Avionics Laboratory, Dayton, OH, 1976:12
    92 J. P. Raymond, R. L. Pease. A Comparative Evaluation of Integrated Injection Logic. IEEE Trans. on Nuclear Science. 1977,NS-24:2327~2336
    93 V. N. Van. Designing Hardened Bipolar Analog ICs. Proceedings of the IEEE. 1988,76:1496~1501
    94 R. Velazco, P. Fouillat and R. Reis. Radiation Effects on Embedded Systems. Springer, 2007:25~42
    95 D. S. Peck, R. R. Blair, W. L. Brown and F. M. Smits. Surface Effects of Radiation on Transistors. Bell System Technical Journal. 1963,42:95~129
    96 V. Vukic, P. Osmokrovic. Total Ionizing Dose Degradation of Power Bipolar Integrated Circuit. Journal of Optoelectronics and Advanced Materials. 2008,10(1):219~228
    97 X. J. Chen, H. J. Barnaby. The Effects of Radiation-induced Interface Traps on Base Current in Gated Bipolar Test Structures. Solid-State Electronics. 2008,52:683~687
    98 G. Vizkelethy, B. L. Doyle, D. K. Brice, P. E. Dodd, M. R. Shaneyfelt and J. R. Schwank. Radiation Effects Microscopy for Failure Analysis of Microelectronic Devices. Nuclear Instruments and Methods in Physics Research B. 2005,231:467~475
    99 B. M. Haugerud, M. M. Pratapgarhwala, J. P. Comeau, et al. Proton and Gamma Radiation Effects in a New First-generation SiGe HBT Technology. Solid-State Electronics. 2006,50:181~190
    100 R. M. Fleming, C. H. Seager, D. V. Lang, E. Bielejec and J. M. Campbell. Gain and Defect Bi-Stability in Radiation Damaged Silicon Bipolar Transistors. Physica B. 2007,401-402:21~24
    101 P. G. Fuochi, U. Corda, E. Gombia and M. Lavalle. Influence of Radiation Energy on the Response of a Bipolar Power Transistor Tested as Dosimeter in Radiation Processing. Nuclear Instruments and Methods in Physics Research A. 2006,564:521~524
    102 A. Al-Mohamad, M. Chahoud. Gamma-ray Irradiation Effects on High-powerDiodes and Bipolar Transistors. Nuclear Instruments and Methods in Physics Research A. 2005,538:703~707
    103 J. Metcalfe, D. E. Dorfan, A. A. Grillo, et al. Evaluation of the Radiation Tolerance of Several Generations of SiGe Heterojunction Bipolar Transistors under Radiation Exposure. Nuclear Instruments and Methods in Physics Research A. 2007,579:833~838
    104 K. V. Madhu, S. R. Kulkarni, M. Ravindra and R. Damle. DLTS Study of Deep Level Defects in Li-Ion Irradiated Bipolar Junction Transistor. Nuclear Instruments and Methods in Physics Research B. 2007, 254:98~104
    105 P. G. Fuochi, M. Lavalle, U. Corda, F. Kuntz, S. Plumeri and E. Gombia. Characterization of a Power Bipolar Transistor as High-Dose Dosimeter for 1.9-2.2MeV Electron Beams. Radiation Physics and Chemistry. 2010,79:513~518
    106王义元,任迪远,高博,李鹏伟,于跃. 10位双极数模转换器的电离辐射效应.固体电子学研究与进展. 2009,29(4):551~555
    107 L. L. Sivo. Relative Roles of Charge Accumulation and Interface States in Surface Degradation (NPN Planar Transistors). IEEE Trans. on Nuclear Science. 1972,19:305~312
    108 R. L. Pease, K. F. Galloway and R. A. Stehlin. Gamma Radiation Effects on Integrated Injection Logic Cells. IEEE Trans. Electron Devices. 1975,ED-22:348~351
    109 V. Condito, N. Lambert, T. Schwartz and S. Dodge. The Effects of Nitride Passivation on the Total Dose Radiation Resistance of a Precision Operational Amplifier. IEEE Trans. on Nuclear Science. 1981,28:4325~4327
    110 V. S. Pershenkov, V. V. Chuikin. The Effect of Junction Fringing Fields on the Radiation-Induced Leakage Current Oxide Isolation Structures. IEEE Trans. on Nuclear Science. 1992,39:2044~2051
    111 R. L. Pease, R. D. Schrimpf and D. M. Fleetwood. ELDRS in Bipolar Linear Circuits: A Review. IEEE Trans. on Nuclear Science. 2009,56(4):1894~1908
    112 D. M. Fleetwood, L. C. Riewe, J. R. Schwank, S. C. Witczak and R. D. Schrimpf. Radiation Effects at Low Electric Fields in Thermal, SIMOX, and Bipolar-Base Oxides. IEEE Trans. on Nuclear Science. 1996,43:2537~2546
    113 S. C. Witczak, R. C. Lacoe, D. C. Mayer, D. M. Fleetwood, R. D. Schrimpf and K. F. Galloway. Space Charge Limited Degradation of Bipolar Oxides atLow Electric Fields. IEEE Trans. on Nuclear Science. 1998,45:2339~2351
    114 S. N. Rashkeev, C. R. Cirba, D. M. Fleetwood, R. D. Schrimpf, S. C. Witczak, A. Michez and S. T. Pantelides. Physical Model for Enhanced Interface-Trap Formation at Low Dose Rates. IEEE Trans. on Nuclear Science. 2002,49:2650~2655
    115 A. H. Johnston, B. G. Rax and C. I. Lee. Enhanced Damage in Linear Bipolar Integrated Circuits at Low Dose Rate. IEEE Trans. on Nuclear Science. 1995,42:1650~1659
    116 J. L. Titus, D. Emily, J. F. Krieg, T. L. Turflinger, R. L. Pease and A. B. Campbell. Enhanced Low Dose Rate Sensitivity (ELDRS) of Linear Circuits in a Space Environment. IEEE Trans. on Nuclear Science. 1999,46:1608~1615
    117 T. L. Turflinger, A. B. Campbell, W. M. Schmeichel, R. J. Walters, J. F. Krieg, J. L. Titus, M. Reeves, P. W. Marshall and R. L. Pease. ELDRS in Space: An Updated and Expanded Analysis of the Bipolar ELDRS Experiment on MPTB. IEEE Trans. on Nuclear Science. 2003,50(6):2328~2334
    118 R. E. Davis, W. E. Johnson, K. Lark-Horovitz and S. Siegel. Neutron-Bombarded Germanium Semiconductors. Physical Review. 1948,74:1255
    119 C. W. Gwyn, B. L. Gregory. Designing Ultrahard Bipolar Transistors. IEEE Trans. on Nuclear Science. 1971,18:340~349
    120 C. J. Dale, P. W. Marshall, E. A. Burke, G. P. Summers and E. A. Wolicki. High Energy Electron Induced Displacement Damage in Silicon. IEEE Trans. on Nuclear Science. 1988,35:1208~1214
    121 J. R. Srour, C. J. Marshall and P. W. Marshall. Review of Displacement Damage Effects in Silicon Devices. IEEE Trans. on Nuclear Science. 2003,50(3):653~666
    122 H. Ohyama, J. Vanhellemont, Y. Takami, K. Hayama, T. Kudo, H. Sunaga, I. Hironaka, Y. Uwatoko, J. Poortmans and M. Caymax. Degradation and Recovery of Proton Irradiated Si-Ge Devices. IEEE Trans. on Nuclear Science. 1996,43:3089~3096
    123 S. R. Messenger, R. J. Walter, M. A. Xapsos, G. P. Summers and E. A. Burke. Carrier Removal in P-Type InP. IEEE Trans. on Nuclear Science. 1998,45:2857~2860
    124 G. P. Summers. Displacement Damage: Mechanisms and Measurements. In 1992 IEEE Nuclear and Space Radiation Effects Conf. Short Course Notes,1992:IV-1~IV-58
    125 G. P. Summers, E. A. Burke, P. Shapiro, S. R. Messenger and R. J. Walters. Damage Correlations in Semiconductors Exposed to Gamma, Electron and Proton Radiations. IEEE Trans. on Nuclear Science. 1993,40:1372~1379
    126 G. J. Brucker, W. J. Dennehy and A. G. Holmes-Siedle. Ionization and Displacement Damage in Silicon Transistors. 1966,NS-13(6):188
    127 D. K. Nichols, W. E. Price and M. K. Gauthier. A Comparison of Radiation Damage in Transistors from Co-60 Gammas and 2.2 MeV Electrons. IEEE Trans. on Nuclear Science. 1982,29:1970~1974
    128 M. K. Gauthier, D. K. Nichols. A Comparison of Radiation Damage in Linear IC’s from Co-60 Gamma Rays and 2.2 MeV Electrons. IEEE Trans. on Nuclear Science. 1983,30:4192~4196
    129 B. G. Rax, A. H. Johnston and C. I. Lee. Proton Damage Effects in Linear Integrated Circuits. IEEE Trans. on Nuclear Science. 1998,45:2632~2637
    130 H. J. Barnaby, R. D. Schrimpf, A. L. Sternberg, V. Berthe, C. R. Cirba and R. L. Pease. Proton Radiation Response Mechanisms in Bipolar Analog circuits. IEEE Trans. on Nuclear Science. 2001,48:2074~2080
    131 H. J. Barnaby, S. K. Smith, R. D. Schrimpf, D. M. Fleetwood and R. L. Pease. Analytical Model for Proton Radiation Effects in Bipolar Devices. IEEE Trans. on Nuclear Science. 2002,49:2643~2649
    132 J. R. Schwank, M. R. Shaneyfelt, P. Paillet, D. E. Beutler, V. Ferlet-Cavois, B. L. Draper, R. A. Loemker, P. E. Dodd and F. W. Sexton. Optimum Laboratory Radiation Source for Hardness Assurance Testing. IEEE Trans. on Nuclear Science. 2001,48:2152~2157
    133 S. Díez, M. Lozano, G. Pellegrini, I. Mandic, D. Knoll, B. Heinemann and M. Ullán. IHP SiGe: C BiCMOS Technologies as a Suitable Backup Solution for the ATLAS Upgrade Front-End Electronics. IEEE Trans. on Nuclear Science. 2009,56(4):2449
    134 S. Díez, M. Ullán, F. Campabadal, M. Lozano, G. Pellegrini, I. Mandic, D. Knoll and B. Heinemann. Proton Radiation Damage on SiGe: C HBTs and Additivity of Ionization and Displacement Effects. IEEE Trans. on Nuclear Science. 2009,56(4):1931~1936
    135 H. Erramli, O. Elbounagui, M.A. Misdaq and A. Merzouki. A Monte Carlo Computer Code for Evaluating Energy Loss of 10keV to 10MeV Ions inAmorphous Silicon Materials. Nuclear Instruments and Methods in Physics Research B. 2007,263:127~131
    136 L. W. Townsend, H. M. Moussa and Y. M. Charara. Monte Carlo Simulations of Energy Losses by Space Protons in the CRaTER Detector. Acta Astronautica. 2010,66:643~647
    137许淑艳.蒙特卡罗方法在实验核物理中的应用.修订版.原子能出版社, 2006:97~177
    138汤家墉,张祖华.离子在固体中阻止本领、射程和沟道效应.原子能出版社, 1988:32
    139 M. Vilches, S. García-Pareja, R. Guerrero, M. Anguiano and A. M. Lallen. Monte Carlo Simulation of the Electron Transport through Thin Slabs: A Comparative Study of PENELOPE, GEANT3, GEANT4, EGSnrc and MCNPX. Nuclear Instruments and Methods in Physics Research B. 2007,254:219~230
    140 M. Dapor. Monte Carlo Simulation of Electron Depth Distribution and Backscattering for Carbon Films Deposited on Aluminium as a Function of Incidence Angle and Primary Energy. Nuclear Instruments and Methods in Physics Research B. 2005,228:337~340
    141 A. Aydin. Monte Carlo Calculations of Electrons in Aluminum. Applied Radiation and Isotopes. 2009,67:281~286
    142 B. C. Franke, R. P. Kensek, T. W. Laub. ITS Version 5.0: The Integrated TIGER Series of Coupled Electron/Photon Monte Carlo Transport Codes with CAD Geometry. SAND 2004-5172, 2005:1~155
    143 J. F. Ziegler, J. P. Biersack, U. Littmark. The Stoppingn and Range of Ions in Solids. Pergamon, 1985:14~141
    144 J. F. Ziegler. SRIM-2003. Nuclear Instruments and Methods in Physics Research B. 2004,219-20:1027~1036
    145 M. Pavlovic, I. Strask. Supporting Routines for the SRIM Code. Nuclear Instruments and Methods in Physics Research B. 2007,257:601~604
    146 J. Barb, J. Sempau, J. M. Ferntidez-Vare and F. Salvat. PENELOPE: An Algorithm for Monte Carlo Simulation of the Penetration and Energy Loss of Electrons and Positrons in Matter. Nuclear Instruments and Methods in Physics Research B. 1995,100:31~46
    147 I. Kawrakow, D.W.O. Rogers. The EGSnrc Code System: Monte CarloSimulation of Electron and Photon Transport. NRCC Report PIRS-701, 2003:1~270
    148 M. Asai, D. Axen, S. Banerjee, G. Barrand and F. Behner. Geant4-A Simulation Toolkit. Nuclear Instruments and Methods in Physics Research A. 2003,506:250~303
    149 A. Ferrari, P. R. Sala, A. Fassòand J. Ranft. FLUKA: A Multi Particle Transport Code-386. Geneva, Switzerland: CERN, INFN, SLAC, 2005:1~30
    150 M. R. Jamesa, G. W. McKinneya, John S. Hendricksa and M. Moyersb. Recent Enhancements in MCNPX: Heavy-Ion Transport and the LAQGSM Physics Model. Nuclear Instruments and Methods in Physics Research A 2006,562:819~822
    151杜书华.输运问题的计算机模拟.湖南科学技术出版, 1989:649~672
    152 S. L. Kosier, W. E. Comb, A. Wei, R. D. Schrimpf, D. M. Fleetwood, M. Debus and R. L. Pease. Bounding the Total-Dose Response of Modern Bipolar Transistors. IEEE Trans. on Nuclear Science. 1994,41(6):1864~1870
    153 J. R. Schwank, M. R. Shaneyfelt, D. M. Fleetwood, J. A. Felix, P. E. Dodd, P. Paillet and V. Ferlet-Cavrois. Radiation Effects in MOS Oxides. IEEE Trans. on Nuclear Science. 2008,55(4):1833~1853
    154 H. J. Barnaby. Total-Ionizing-Dose Effects in Modern CMOS Technologies. IEEE Trans. on Nuclear Science. 2006,53(6):3103~3121
    155 P. Paillet, J. R. Schwank, M. R. Shaneyfelt, V. Ferlet-Cavrois, R. L. Jones, O. Flament and E. W. Blackmore. Comparison of Charge Yield in MOS Devices for Different Radiation Sources. IEEE Trans. on Nuclear Science. 2002,49(6):2656~2661
    156 R. D. Schrimpf. Recent Advances in Understanding Total-Dose Effects in Bipolar Transistors. IEEE 3rd Radiation and its Effects on Components and Systems, 1995:9~18
    157 V. S. Pershenkov, K. A. Chumakov, A. Y. Nikiforov, A. I. Chumakov, V. N. Ulimov, A. A. Romanenko. Interface Trap Model for the Low-Dose-Rate Effect in Bipolar Devices. IEEE 9th Radiation and Its Effects on Components and Systems, 2007:1~6
    158 S. M. Seltzer. Update Calculations for Routine Space-Shielding Radiation Dose Estimates SHIELDOSE-2. NISTIR 5477, 1994:15

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700