4H-SiC同质外延薄膜及其高压肖特基二极管器件研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
4H-SiC材料和高压4H-SiC肖特基二极管(SBD)器件具有优越的性能,在国民经济和军事等诸多领域有着广泛的应用前景,例如电力电子领域就是最具代表性的工程应用领域之一。高质量的厚外延层4H-SiC材料是制造高压SBD器件基础。但毋庸讳言,无论从4H-SiC外延材料生长还是高压SBD器件的制造中依然存在很多问题和困难,严重制约了高压4H-SiC SBD器件发展。
     国内4H-SiC单晶外延材料制备和4H-SiC SBD器件研制起步较晚,对4H-SiC宽禁带半导体和4H-SiC SBD器件关键理论问题缺乏深入、细致和系统的研究,使得我国的整体水平与国际先进水平尚存明显差距,主要存在以下问题:(1)高质量4H-SiC外延薄膜的生长机理和关键工艺尚未完全搞清;(2)没有一套系统完整4H-SiC单晶同质外延的表征测量方法;(3)高压SiC SBD器件所采用的结终端结构缺乏准确数据;(4)4H-SiC SBD器件关键制造工艺还未解决。
     在此背景下,本文针对上述主要问题进行了系统研究。主要的研究成果如下:
     1、在理论分析的基础上,对化学气相淀积(CVD)法4H-SiC同质外延生长的关键工艺进行了实验研究,得出影响这些材料参数的主要因素。确定了关键参数变化趋势,制定了完整的工艺流程。
     2、对4H-SiC同质外延薄膜进行了检测。提出了一种简易测试外延厚度的方法,即利用叶变换红外光谱(Fourier Transform Infrared Spectromtry)FTIR反射谱对4H-SiC同质外延半导体薄膜的质量进行评价,完善了用干涉条纹的频率和强弱的方法来计算外延薄膜的厚度。用汞(Hg)探针C-V测试获取4H-SiC同质外延纵向杂质浓度分布的信息,并通过多点测试,得到外延片的掺杂浓度均匀性。借助扫描电子显微镜SEM和原子力显微镜AFM等显微技术对4H-SiC同质外延薄膜样品表面形貌进行了定性和定量的测试分析。
     3、提出了高压4H-SiC SBD器件反向击穿电压与4H-SiC半导体材料临界电场、外延层的掺杂浓度、外延层的厚度之间定量关系,研究了室温下金属碳化硅接触的肖特基势垒高度Фb、串联电阻Ron和金属与4H-SiC紧密接触形成欧姆接触,并给出了它们的计算公式。证明了在温度不太高的范围(300K-500K)内,正向伏安特性符合热电子发射理论。提出了一种计算反向电流密度的理论模型,模型的计算结果与实验数据的比较表明,隧道效应是常温下反向电流的主要输运机理。但在温度较高时,反向热电子发射电流和耗尽层中复合中心产生电流都大大增加,不能再忽略不计。
     4、阐述了高压4H-SiC SBD结终端技术的必要性,原因是高压4H-SiC SBD结终端存在电场集中导致电压下降。提出了平面结终端技术:场板技术、保护环技术、腐蚀造型技术、场限环技术和结终端延伸技术等。介绍了数字模拟软件ISE-TCAD10.0特点、模拟运行的过程、并对带有场限环和结终端延伸的结终端技术的高压4H-SiC SBD进行了耐压特性模拟。通过模拟得到衬底掺杂浓度、厚度和结终端结构等参数对器件耐压的影响关系,为高压4H-SiC SBD的设计和研制做好准备
     5、研究了欧姆接触和肖特基接触,它们是高压4H-SiC SBD器件研制的基础和关键工艺。根据模拟结果,结合实际工艺条件,本文分别研制了具有结终端场限环保护的高压Mo/4H-SiC SBD和Ni/4H-SiC SBD器件及具有结终端延伸保护的高压Ni/4H-SiC SBD器件。根据实验结果指出此两种平面结终端保护结构是很有效的。这为今后进一步研制高性能的高压4H-SiC SBD器件奠定了实验基础。
     最后根据初步实验结果分析提出了今后改进设想。
4H-Silicon carbide (SiC) material and its High Voltage SBD devices have shown the attractive prospects for wide range applications to the various field of social economy because of their excellent physical and electrical properties, one of which is the application in power electronic engineering. The high quality 4H-SiC single crystal material is the base for achieving 4H-SiC SBD devices with high performance. Needless to say, both 4H-SiC epitaxial material growth or manufacture of high-voltage SBD devices still exist many problems and difficulties,Seriously restricted the development of high-voltage SBD device.
     It led still the Significant difference between our country's overall level and international advanced level to lack the in-depth, detailed and systematic study on 4H-SiC wide bandgap semiconductor and 4H-SiC SBD devices key theoretical problems because domestic 4H-SiC single crystal epitaxial material preparation and 4H-SiC SBD device development started late. There are following problems: (1) high-quality 4H-SiC epitaxial film growth mechanism and key technologies have not yet been clearly understood; (2) the lack of a series of test and characterization methods for characteristics of 4H-SiC homoepitaxial layers; (3) there are the lacks of the accurate junction terminal data for high voltage SiC SBD device; (4) the SiC SBD device key technologies are yet unresolved.
     In this dissertation, the main problem mentioned above is studied systematicly. The main studies and contributions of this dissertation are as follows.
     1. The key processes of growth are studied by experiments based on the theoretical analyse, and the major factors to affect the key processes are obtained. The trend of parameters and process are achieved.
     2. 4H-SiC homoepitaxial layers are tested. The quality of 4H-SiC homoepitaxial layers is evaluated and the depth is calculated using the intensity and frequency of interference fringes in FTIR spectrum. The surface topography and element of 4H-SiC homoepitaxial layers are qualitatively and quantitatively analysed by SEM, AFM.
     3. The quantitative relationship between high-voltage 4H-SiC SBD reverse breakdown voltage with the SiC semiconductor material critical electric field, the doping concentration and the thickness of epitaxial layer is proposed. The Schottky barrier height, series resistance and ohmic contacts under room temperature are analyzed, and their relative formulas are obtained. Then it is demonstrated that the current conduction mechanism follows the thermionic emission theory at the temperature range from 300K to 500K under forward biased conditions. A theoretical model used in calculating reverse current density is proposed considering several current transport mechanisms. The comparison of theoretical results with experimental data indicates that tunneling effect is the dominant mechanism under room temperature, but the thermionic emission current and the generation current in the depletion region will increase greatly when temperature becomes high so that they are no longer negligible.
     4. The necessity of junction termination technique for high-voltage 4H-SiC SBD is described because of the premature breakdown voltage occuring with electrical field crowding at the device edge. Some common plane termination extension techniques are put forward including field plate, guard ring, etch contour, field limiting ring and, junction termination extension technique, etc.. The digital simulation software ISE-TCAD characteristics and simulation operation process are introduced. The breakdown voltage characteristics of high-voltage 4H-SiC SBDs with field limiting rings and junction termination extension techniques are simulated respectively. The influence relations on the high voltage 4H-SiC SBD breakdown voltage obtained by the simulation substration doping concentration, thickness and junction termination structure will contribute to the design and development for high voltage 4H-SiC SBD.
     5. The ohmic contact and Schottky contact are studied because they are basis and key process of the farbrication for high-voltage 4H-SiC SBD device. According to the simulations results and our actual process conditions, the high-voltage Mo/4H-SiC SBD with field limiting ring and the high-voltage Ni/4H-SiC SBD with junction termination extension are farbricated respectively. The experimental results show that the protections of the two planar junction termination structures are very effective. This will provide for the experiment foundation for high-performance 4H-SiC SBD farbrication in the future.
     Finally, the ideas for future improvement are presented according to the preliminary experimental results.
引文
[1]张玉明,汤晓燕,张义门.SiC功率器件的研究和展望.电力电子技术学报,2008,42(12):60-62
    [2]王兆安,刘进军.电力电子技术(第5版).北京:机械工业出版社,2009
    [3]张玉明,张义门,罗晋升.SiC、GaAs和Si的高温特性的比较.固体电子学研究与进展,1997,17(3):305-310
    [4]马永吉.SiC SBD和MESFET的抗辐照特性研究:[西安电子科技大学硕士论文] .西安:西安电子科技大学,2009
    [5] Mei X B,Yoshida,W Deal,et al.35-nm InP HEMT SMMIC Amplifier With 4.4-dB Gain at 308 GHz.IEEE Electron Device Letters,2007,28(6): 470-472
    [6] Deal W R,Mei X B,Radisic V,et al.Demonstration of a 270-GHz MMIC Amplifier Using 35-nm InP HEMT Technology.IEEE Microwave and Wireless Components Letters,2007,17(5):391-393
    [7]郝红利,闫民华,李龙,等.新型半导体材料SiC在电力电子领域中的应用.UPS应用,2001,21(6):48-50
    [8] Bhatnagar M,Baliga B J.Comparison of 6H-SiC,3C-SiC,and Si for Power Devices.IEEE Transaction on Electron Devices,1993,40(3):645-655
    [9] C E Weitzel,J W Palmour,C H Carter,et al.Silicon Carbide High-Power Devices.IEEE Transactions on Electron Devices,1996,43(10):1732-1741
    [10] Baliga B J.Trends in power semiconductor devices.IEEE Transaction on Electron Devices,1996,43(10):1717-1731
    [11] D Surls,M Crawford.Individual and Parallel Behavior of High Current Density,High-Voltage 4H-Silicon Carbide P-i-N Diodes.IEEE Transaction on Magnetics,2005,41(1):330-333
    [12] S H Ryu,S Krishnaswami,M Das,et al.2KV 4H-SiC DMOSFETs for Low Loss,High Frequency Switching Applications.High performance devices,2004,14(3):255-259
    [13]任学民.SiC单晶生长技术及器件研究进展.半导体情报,1998,l35(4):7-12
    [14]王辉,琚伟伟,刘香茹,等.半导体SiC材料研究进展及其应用.科技创新导报,2008,28(1):8-9
    [15]李晋闽.SiC材料及器件研制的进展.物理,2000,29(8):481-487
    [16]贾仁需.4H-SiC同质外延的表征及深能级分析研究:[西安电子科技大学博士学位论文].西安:西安电子科技大学,2009,12-18
    [17] Bhatnagar M,Mclarty P K,Baliga B J.Silicon-Carbide High-Voltage (400V)Schottky Barrier Diodes.IEEE Electron Device Letters,1992,13(10):501-503
    [18] Kimoto T,Urushidani T,Kobayashi S.High-Voltage(>1kV) SiC Schottky Barrier Diodes with Low on-Resistances.IEEE Electron Device Letters,1993, 14(12):548-550
    [19] H Kabaza,H J Schulze,Y Gerstenmaier,et al.Cosmic ray induced failures in high power semiconductor devices.In:Proceedings of the 6th International Symposium on Power Semiconductor Devices & Ics Davos.Switzerland,1994:2041-2046
    [20] A Itoh,Kimoto T,H Matsunami.Efficient Power Schottky Rectifiers of 4H-SiC . In : Proceedings of 1995 International Symposium on Power Semiconductor Devices & Ics.Japan,1995,5(3):101-106
    [21] K J Schoen,J P Henning,J M Woodall,et al.A Dual-Metal-TrenchSchottky Pinch-Rectifier in 4H-SiC.IEEE Electron device letters,1998,19(4),97-94
    [22] Q Zhang,V Madangarli,T S Sudarshan.SiC planar MOS-Schottky diode: a high voltage Schottky diode with low leakage current.Solid-State Electronics,2001,45(7):1085-1089
    [23] V khemka,V Ananthan,T P Chow.A Fully Planarized 4H-SiC Trench MOS Barrier Schottky(TMBS) Rectifier.In:International Symposium on Power Semiconductor Devices and ICs,Toronto,1999,165-168
    [24] Zhao J H,Alexandrov Petre,Li X.Demonstration of the First 10-kV 4H-SiC Schottky Barrier Diodes.IEEE Electron devices letters,2003,24(6):402-404
    [25] Nakamura T,Miyanagi T,Kamata I,et al.A 4.15 kV 9.07-m?·cm2 4H-SiC Schottky-barrier diode using Mo contact annealed at high temperature.IEEE Electron Device Letters,2005,26(2):99-101
    [26] A P Mihaila , F Udrea , S J Radhid , et al . SiC Junction-controlled Transistors .Microelectronic Engineering,2006,83(1):176-180
    [27]李哲洋,刘六亭,董逊,等.4H-SiC同质外延中的缺陷.电子工业专用设备,2005,11(15):62-64
    [28]陈治明.碳化硅电力电子器件及其应用的研发新进展.电力电子技术,2004,4(5):21-28
    [29] Robert S Howell,S Buchoff,S Van Campen,et al.A 10-kV Large-Area 4H-SiC Power DMOSFET with Stable Subthreshold Behavior Independent ofTemperature.IEEE Ttansactions on Election Devices.2008,55(8):1807-1815
    [30] J H Zhao,K Tone,P Alexandrov,et al.1710-V 2.77-m?.cm2 4H-SiC trenched and implanted vertical junction field-effect transistors.IEEE Electron Device Letters,2003,24(2):81-83
    [31] Yongxi Zhang,Kuang Sheng,Ming Su,et al. 1000V 9.1m?.cm2 normally off 4H-SiC Lateral RESURF JFET for Power Integrated Circuit Applications.IEEE Electron Device Letters,2007,28(5):404-407
    [32] Jianhui Zhang,Petre Alexandrov,Terry Burke,et al. 4H-SiC power bipolar junction transistor with a very low specific ON-resistance of 2.9 m?.cm2.IEEE Electron Device Letters,2006,27(5):368-374
    [33] Jianhui Zhang , Xueqing Li , Petre Alexandrov , et al . Fabrication and Characterization of High-Current-Gain 4H-SiC Bipolar Junction Transistors.I- EEE Transactions on Electron Devices,2008,55(8):1899-1904
    [34]高欣,孙国胜,李晋闽,等.水平冷壁CVD生长4H-SiC同质外延薄膜的研究,半导体学报,2005,26(5):936-939
    [35] K Fujihira,T Kimoto,H Matsunami.Growth and characterization of 4H-SiC in vertical hot-wall chemical vapor deposition.Journal of Crystal Growth,2003,255(1):136-144
    [36]王守国,张义门,张玉明.Fabrication of Ohmic Contacts to 4H-SiC Created by Ion-Implantation.电子科技大学学报,2003,32(2):203-206
    [37]张玉明,张义门,罗晋升.SiC肖特基势垒二极管的研制.半导体学报,1999,20(11):1040-1044
    [38]王姝睿,刘忠立,徐萍等.6H-SiC高压肖特基势垒二极管.半导体学报,2001,22(8):1052-1055
    [39]陈治明.半导体概论(第1版).北京:电子工业出版社,2008
    [40]郑新和,渠波.使用X射线衍射技术判定SiC单晶体的结构和极性.半导体学报,2001,22(1):35-39
    [41] Lipkin L A , Palmour J W. Insulator investigation on SiC for improved reliability.IEEE Transactions on Electron Devices,1999,46(3):525-532
    [42]张玉明.碳化硅材料和器件的研究:[西安交通大学博士论文] .西安:西安交通大学,1998
    [43] A G Chynoweth.Ionization Rates for Electrons and Holes in Silicon.Physical Review,1958,109(5):1537-1545
    [44] C E Weitzel,J W Palmour,C H Carter,et al.Silicon Carbide High-power Devices.IEEE Transactios on Electron Devices,1996,43(10):1732-1741
    [45] A G Chynoweth . Uniform Silicon p-n Junctions II , Ionization Rates for Electrons.Journal of Applied Physics,1960,31(7):1161-1165
    [46] C R Crowwell,S M Sze.Temperature Dependence of Avalanche Multiplication in Semiconductors.Applied Physics Letters,1966,9(6):242-245
    [47] R V Overstraeten,H De Man.Measurement of the Ionization Rates in Diffused Silicon P-N Junction.Solide State Electronics,1970,13(5):pp.583- 608
    [48] B J Baliga.Power Semiconductor Devices,PWS Publishing Company,1996
    [49] H Iwata,K M Itoh.Theoretical Calculation of the Electron Hall Mobility in n-type 4H-and 6H-SiC,Silicon Carbide and Related Materials.In:Materials Sicience Forum,2000,879-884
    [50] R Yakimova,M Syvajarvi, M Tuominen.Seeded sublimation growth of 6H and 4H-SiC crystals.Materials Science and Engineering B,1999,61(1):54-57
    [51]陈治明.半导体概论(第1版).北京:电子工业出版社,2008
    [52]高欣,孙国胜,李晋闽,等.水平冷壁CVD生长4H-SiC同质外延膜.半导体学报,2005,增刊(1):70-73
    [53]高欣,孙国胜,李晋闽,等.化学气相沉积4H-SiC同质外延膜的生长及其特征.半导体学报,2005,32(2):203-206
    [54]杨树人,丁墨元.外延生长技术.北京:国防工业出版社,1992
    [55] A I Kingon,L J Lutz,P Liaw,et al.Thermodynamic Calculations for the Chemical Vapor Deposition of Silicon Carbide.Journal of the American Ceramic Society,1983,66(8):558-566
    [56]张永华,碳化硅宽带隙半导体薄膜的异质外延生长技术及其结构性质分析[西安电子科技大学硕士学位论文] .西安:西安电子科技大学,2002,23-30
    [57] A Veneroni,F Omarini,D Moscatelli,et al.Modeling of epitaxial silicon carbide deposition.Journal of Crystal Growth.2005,275(1):295-300
    [58] P M Lofgren,W Ji,C Hallin,et al.Modeling of Silicon Carbide Epitaxial Growth in Hot-Wall Chemical Vapor Deposition Processes.J. Electorochem.Soc,2000,147(1):164-175
    [59] A Ellison,J Zhang,A Henry,et al.Epitaxial growth of SiC in a chimney CVD reactor.Journal of Crystal Growth,2002,236(3):225-238
    [60] P F Kane,G B Larrabee.Characterization of semiconductor Materials.McGraw- Hill Book Company.NewYork,1970,151
    [61] O S Heavens.Optical Properties of Thin Solid Films.Butterworths.London,1955,76-77
    [62] M F MACMILLAN,A HENRY.Thickness Determination of Low Doped SiCEpi-Films on Highly Doped SiC Substrates.Journal of Electronic Materials,1998,27(6):300-303
    [63] O E Danielsson,U Forsberg.Predicted nitrogen doping concentrations in silicon carbide epitaxial layers grown by hot-wall chemical vapor deposition.Journal of Crystal Growth,2003,250(3-4):471-478
    [64] M D Allendorf.Equilibrium Prediction of the Role of Organosilicon Compound sin the Chemical Vapor Deposition of Silicon Caarbide.Electrochem Soc,1993,140(3):747-753
    [65] P M Lofgren,W Ji,C Hallin,et al.Modeling of Silicon Carbide Epitaxial Growth in Hot-Wall Chemical Vapor Deposition Process.Electrochem Soc,2000,147(1):164-175
    [66] Kimoto T,Miyamoto N,Matsunami H.Performance limiting surface defects in SiC epitaxial pn junction diodes.IEEE Transactions on Electron Devices,1999,46(3):471-477
    [67] Chen L,Guy O,Jennings,et al.Study of a novel Si/SiC hetero-junction MOSFET. Solid-State Electron,2007,51(5):662-666
    [68] Skowronski M,Ha S.Degradation of hexagonal silicon-carbide-based bipolar devices. Journal Applied Physics,2006,99(1):11-101
    [69] Kimoto T,Chen Z Y,Tamura S,et al.Surface Morphological Structures of 4H-, 6H-and 15R-SiC ( 0001 ) Epitaxial Layers Grown by Chemical Vapor Deposition.Japanese Journal Applied Physics,2001,40:3315-3319
    [70]刘恩科,朱秉生,罗晋生,等.半导体物理学(第5版).西安:西安交通大学出版社,1998
    [71] Kazutoshi K , Satoshi . K and Hajime O , et al . Nitrogen incorporation characteristics on a 4H-SiC epitaxial layer.Applied Physics Letters , 2006,88(10):907-909
    [72] Schoen K P ,Woodall J M , Cooper J A,et al.Design Considerations and Experimental Analysis of High-Voltage SiC Schottky Barrier Rectifiers.IEEE Transactions on Electron Devices,1998,45(7):1598-1563
    [73] M Bhatnagar,H Nakanishi,S Bothra,et al.Edge terminations Devices for SiC high voltage Schottky Rectifiers.In:Proceeding of the 5th Power Semiconductor Devices and Ics,1993,89-94
    [74] J P Colinge,C A Colinge.Physics of Semiconductor Devices.New York:Wiley,1981
    [75] B V Zeghbroeck.Principles of semiconductor devices and heterojunctions.Oxfo-rd:Prentice Hall,2005
    [76] Kipp Jay Schoen , Jerry M Woodall , et al . Design Considerations and Experimental Analysis of High-Voltage SiC Schottky Barrier Rectifiers.IEEE Transactions on Electron Devices,1998,45(7):1595-1596
    [77]常远程,张义门,张玉明.4H-SiC肖特基势垒二极管伏安特性的解析模型.西安电子科技大学学报,2001,28(4):469-472
    [78]刘恩科,朱秉生,罗晋生.半导体物理学(第6版).北京:电子工业出版社,2003
    [79] T Kimoto,T Urushidani,S Kobayashi,et al.High-Voltage(>1kV) SiC Schottky Barrier Diodes with Low On-Resistances.IEEE Transactions on Electron Leters,1993,14(12):548-550
    [80]张波,邓小川,张有润等.宽禁带半导体SiC功率器件发展现状及展望.中国电子科学研究院学报,2009,4(2):111-118
    [81] E H Roderick,R H Williams.Metal-Semiconductor Contacts.Oxford: Oxford University Press,1988
    [82] Vik Saxena, Jian Nong Su,Andrew J Steckl.High-Voltage Ni-and Pt-SiC schottky diodes utilizing metal field plate termintation. IEEE Transactions on Electron Devices,1999,46(3):456-464
    [83] Z Luo,T Chen,D C Sheridan,et al.4H-SiC Power-Switching Devices.Solid State Electron,2000,44(1):1367-1372
    [84] Mohit Bhatnagar,B J Baliga.Comparison of 6H-SiC,3C-SiC,and Si for Power Devices,IEEE Transactions on Electron Devices,1993,40(3):645-655
    [85] B J Baliga,S k ghandhi.Analytical solutions for the breakdown voltage of abrupt cylindrical and spherical junctions.Solid-State Electronics,1976,19(9):739-744
    [86] V A K Temple,W Tantrapom,Junction termination extension for near-ideal breakdown voltages in p-n junctions. IEEE Transactions on Electron Devices, 1986,33(10):1601-1608
    [87] Perez R,Tournier D,Perez T A,et al.Planar Edge Termination Design and Technology Considerations for 1.7-kV 4H-SiC PiN Diodes.IEEE Transactions on Electric Devices,2005,52(10):2309-2316
    [88] S M Sze,G Gibbons.Effect of junction curvature on the breakdown voltage in semiconductors.Solid-State Electronics,1966,9(9): 831-845
    [89] F Conti, M Conti.Surface breakdown in silicon planar diodes equippied with field plate.Solid-State Electronics,1972,15(1):93-105
    [90] Adoiph Blicher.Field-effect and bipolar power transistor physics.Academic press.New york: 1981
    [91] V Boisson.Computer study of a high-voltage a pin diode and comparision with a field-limiting ring structure.IEEE Transactions on Electric Devices,1986,33(2):80-85
    [92]贡顶,王建国,张殿辉.通用二维半导体器件模拟软件的设计.计算物理,2007,24(2):247-252
    [93] Temple V A K.JTE, A new technique for increasing avalanche breakdown voltage and controlling surface electric fields in P-N junctions . In :International Electron Devices Meeting,1977,423-426
    [94] Y C Kao, E D Wolley. High-voltage planar p-n junctions.Proceedings of the IEEE,1967,55(8):1409-1414
    [95] A O Konstantinov,Q Wahab,N Nordell,et al.Ionizationrates and critical fields in 4Hsilicon carbide . Applied Physics Letters,1997,71(1):90-92
    [96]崔晓英,黄云,恩云飞,等.SiC MESFET中Ti/Pt/Au肖特基接触稳定性的研究.半导体技术,2008,33(10):859-861
    [97]尚也淳,刘忠立,王姝睿.SIC Schocttky结反向特性的研究.物理学报,2003,52(1):211-216
    [98] Kazuya Matsuzawa,Ken Uchida,and Akira Nishiyama.A Unified Simulation of Schottky and Ohmic Contacts.IEEE Transations on Electron Devices, 2000,47(1):103-108
    [99] R H Coxand , H Strack . Ohmic contacts for GaAs devices . Solid-State Electronics,1967,10(11):1213-1218
    [100] Kuphal E.Low resistance ohmic contacts to n- and p- InP.Solid-State Electronics,1981,24(1):69-78
    [101] Proctor S J,Linholm L W.A direct measurement of interfacial contact resistance.IEEE Electron Device Letters,1982,3(10):294-296
    [102] G K Reeves.Specific contact resistance using a circular transmission line model.Solid-State Electronics,1980,23(5):487-490
    [103]李鸿渐,石瑛.测量计算金属-半导体接触电阻率的方法.半导体技术,2008,33(2):155-159
    [104] Tang Xiao-yan,Zhang Yi-men,Zhang Yu-ming,et al.Analysis of the Effect of Sidewall on the Performance of 6H-SiC Schottky Barrier Source/Drain N MOSFETs.Chinese Physics,2004,13(7):35-40
    [105]郭辉.SiC器件欧姆接触的理论和实验研究.[西安电子科技大学博士学位论文].西安:西安电子科技大学,2007
    [106] Shiro Hara,Kiyohisa Suzuki,Akira Furuya,et al.Solid state rection of Mo on cubic and hexagonal SiC.Japanese Journal of Applied Physics,1990,29(3):394-397
    [107] Nakamura T,Miyanagi T ,Kamata I.A 4.15 KV 9.07-mΩ. cm 24H ? SiC Schottky-Barrier Diode using Mo Contact.IEEE Electron Device Letters,2005,26(2):99-101
    [108] N G Wright,C M Johnson,A G O’Neill.Cell geometry optimisation of 4H-SiC power UMOSFETs by electrothermal simulation.Solid-State Electron,1999,43(3):515-520
    [109] Dearnaley G,Freeman J H,Nelson R S et al.Ion implantation,Amsterdam:North-Holland publishing company,1973:20-42
    [110] M Linnarsson,Yu Kuznetsov.Channeling implantations of Al into 6H silicon carbide.Applied Physics Lerrers,1999,74(26):124-126
    [111]李德彬,丁维清.注入离子分布参数的拟合研究.北京师范大学学报,1996,13(5):57-62
    [112]汤家墉,张祖华.离子在固体中的阻止本领射程和沟道效应.原子能出版社,1988
    [113] Rao M V,Tucker J,Holland O W.Donor ion-implantation doping into SiC.Journal of Electronic Materials,1999,28(3):334-340
    [114] Kaindl W,Lades M,Kaminski N,et al.Experimental characterization and numerical simulation of the electrical properties of nitrogen,aluminum and boron in 4H/6H-SiC.Journal of Electronic Materials,1999,28(3):154-160
    [115] Hofker W K,Osthoed D P,Koeman N J.Concerntration profiles of boron implantations in amorphous and polycrystalline silicon.Radiation Effects, 1975,24(4):223-231
    [116] Stief R,Lucassen M,Schork R.Range studies of aluminum,boron, and nitrogen implants in 4H-SiC . 1998 International Conference On Ion Implantation Technology Proceedings.Kyoto:760-763
    [117] Jason A.Gardner, Andrew Edwards,and Mulpuri V Rao et al.Material and n-p junction properties of N-,P-,and N/P-implanted SiC. Journal of Applied Physics,1998,83(10):61-68
    [118] Khemka V,Patel R,Ramungul N.Characterization of phosphorus implantation in 4H-SiC.Journal of Electronic Materials,1999,28(3):167-174
    [119] E M Handy , Mulpuri V Rao , OW Holland , et al . Variable-dose(1017-1020cm-3) phosphorus ion implantation into 4H-SiC,Journal of Applied Physics, 2000,88(10):5630
    [120] Sze S M,Physics of Semiconductor Devices,Now York:Wiley,1981
    [121] Moore K,Bhatnagar M,Weitzel C,et al.Temperature dependent small- and large- signal performance of 4H-SiC MESFET’s.Materials Science Forum,1998,264-268(2):957-960
    [122] Moore K E,Weitzel C E,Nordquist K J,et al.4H-SiC MESFET with 65.7% power added efficiency at 850 MHz.IEEE Electron Device Letters,1997,18(2):69-70
    [123] Mahajan S , Harsha K S . Principles of growth and processing of semiconductors,New York:McGraw-Hill,1999:378-407
    [124] Bratschun A.The application of rapid thermal processing technology to the manufacture of integrated circuit-an overview.Journal of Electronic Materials,1999,28(12):1328-1332
    [125] Evan M Handy,Mulpuri V Rao,K A Jones,et al.Effectiveness of AlN encapsulant in annealing ion-implanted SiC.Journal of Applied Physics,1999,86(2):746-751
    [126] Evan M Handy,Mulpuri V Rao,O. W. Holland,et al.Al,B,and Ga Ion -Implantation Doping of SiC.Journal of Electronic Materials.2000,29(11):1340-1345
    [127] L B Ruppalt,S Stafford,D Yuan, et al.Using a PLD BN/AlN Composite as an Annealing Cap for Ion Implanted SiC,Solid-State Electronics,2003,47(2):253-257
    [128] K A Jones,M A Derenge,P B Shan,et al. A Comparison of Graphite and AlN Caps Used for Annealing Ion-Implanted SiC.Journal of Electronic Materials,2002,31(6):568-575
    [129]王菁,李美成.降低肖特基势垒的途径探讨.半导体光电,2000,21(4):261-265
    [130]陈刚,秦宇飞,柏松,等.采用场板和边缘终端技术的大电流Ni-SiCSBDs.固体电子学研究与进展,2009,29(4):611-614
    [131]何进,张兴.场限环结构电压和边界峰值电场分布及环间距优化.固体电子学研究与进展,2003,23(2):164-169
    [132] Singh R,Cooper J A Jr,Melloch M R.SiC power Schottky and PiN diodes,IEEE Transactions on Electron Devices,2002,49(4):665-672
    [133] Zhao J H,Alexandrov P,Li, X.Demonstration of the first 10KV 4H-SiCSchottky-Barrier Diodes,IEEE Electron Device Letters,2003,24,(6):402-404
    [134] Schoen K J,Woodall J M,Copper J A,et al.Design Considerations and Experimental Characterization of High Voltage SiC Schottky Barrier Rectifiers.IEEE Transactions on Electron Devices,1998,45(7):1595-1604
    [135]李效白.SiC和GAN电子材料和器件的几个科学问题.微纳电子技术,2004,41(11):1-6
    [136] H. H. Berger.Models for contacts to planar devices.Solid-State Electronics,1972,15(2):145-158
    [137]郭辉,张义门,张玉明,等.Ni基n型SiC材料的欧姆接触机理及模型研究.固体电子学研究与进展学报,2008,28(1):42-45
    [138] Lu W J,Mitchel W C,Landis G R,et al.Catalytic Graphitization and Ohmic Contact Formation on 4H-SiC.Journal of Applied Physics,2003,93(9):5397-5403

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700