国产铷光谱灯用GG17玻璃辐照损伤及铷消耗机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以工程应用为背景,系统地分析了影响铷光谱灯工作特性的因素,并对其进行了试验研究。应用不同能量质子和电子作为辐照源,研究了用于铷光谱灯壳材料的国产GG17玻璃的辐照效应,揭示了辐照缺陷产生的微观机理;对射频放电和不同加热条件的铷光谱灯泡玻壳进行了分析,确定了铷与玻壳发生化学反应的产物,建立了化学反应模型;在不同的灯基座温度和射频放电条件下,对铷光谱灯进行了光谱发光模式的研究,建立了铷光谱灯的环模式参数区间。
     研究结果表明,电子辐照、质子辐照及电子质子综合辐照都会对GG17玻璃的光学性能产生不同程度的影响。电子和高能质子辐照引起GG17玻璃的光学性能退化明显,尤其1MeV电子在辐照注量为1016/cm2时能引起铷D线波长(780.0nm和794.6nm)处的谱透过率下降幅度超过18%。相比较而言,低能质子辐照对铷D线的影响较弱。光学性能的退化主要来源于辐照诱导大量色心的出现。通过傅里叶红外变换光谱和电子顺磁共振谱等手段分析表明,辐照缺陷的主要类型为氧空穴心。电子和高能质子辐照产生的缺陷类型以硼氧空穴心为主,主要呈现电离效应;低能质子辐照产生的缺陷类型主要为硅氧空穴心和硼氧空穴心,主要呈现位移效应。针对不同辐照条件,建立了氧空穴心的产生机理。电子和高能质子辐照产生的硼氧空穴心是空穴被捕获在桥氧上;低能质子辐照产生的硼氧空穴心是空穴被捕获在非桥氧上。
     铷光谱灯作为抽运光源时,需要在一定的温度和射频电压条件下工作。长时间的加热和射频放电使得铷与玻壳发生相互作用—扩散和化学反应,从而导致金属铷消耗。当温度升高或射频激励电压增大时,铷在玻壳内的扩散能力及铷与玻壳的化学反应程度均增强。通过二次离子质谱、X射线光电子谱和扫描电镜/背散射衍射/能谱分析,确定了不同工作条件下铷在玻壳厚度方向上的分布。阐明了250℃加热和射频放电条件下铷灯中金属铷的消耗机理。利用X射线衍射和X射线光电子谱分析,给出了铷与玻壳发生相互作用的主要产物为铷的氧化物(Rb_2O,Rb_2O_2和RbO_2)、铷的硅酸盐(Rb_2Si_4O_9和Rb_2SiO_3),以及铷的硼酸盐(RbBO_2)。
     影响铷光谱灯工作特性的另一重要因素为发光模式,主要受温度和射频激励电压的影响。当温度过高或射频激励电压过大时,将导致铷光谱灯发光模式由环模式向红模式发生转变,光强信号的信噪比下降并使铷光谱灯失效。铷光谱灯的温度愈高,发生模式转变所对应的最大射频激励电压愈小,由此确立了铷光谱灯环模式工作所对应的温度和射频电压参数。为了减弱铷与玻壳的相互作用和保证发光的稳定性,应在环模式发光的条件下以尽可能低的温度和射频电压工作,从而减缓铷光谱灯性能退化速率。深入研究玻壳材料在空间辐照环境作用下的损伤效应与机理,以及铷与玻壳相互作用机制,具有十分重要的工程应用背景及理论研究意义。
Factors of affecting the rubidium spectral lamp performance were analysed systematically, and the corresponding experiments were performed under the background of engineering application. Radiation effects caused by protons and electrons with various energies were investigated for the GG17 borosilicate glass as envelope materials of rubidium spectral lamps. The mechanisms of radiation-induced defects were investigated. The glass envelope of rubidium spectral lamps under the conditions of RF discharge and various temperatures was analysed, and the chemical reaction between rubidium and glass envelope was characterized. The spectral performance of rubidium spectral lamps was investigated and the parameter range of ring mode was identified.
     Experimental results show that the electron irradiation, proton irradiation and simultaneous irradiation of electrons and protons affect the optical property of GG17 glasses to some different extent. The optical degradation of GG17 glass irradiated by electrons and higher energy protons is evident, especially 1MeV electrons with the fluence of 1016/cm2 could induce a spectral transmittance decrease over 18% at the rubidium D lines (780nm and 794.6nm). In comparison, lower energy protons have a weak effect on the rubidium D line. The optical change results from a number of radiation-induced color centers. The results show that the main type of radiation defects is the oxygen hole center, determined by Electron Paramagnetic Resonance and Fourier Transform Infrared Spectroscopy. Electrons and higher energy protons mainly induce ionizing effect and the major defects are boron-oxygen hole centers. Lower energy protons mainly induce displacement effect and the primary defects are silicon-oxygen hole centers and boron-oxygen hole centers. The formation model of oxygen hole centers was presented for various irradiation conditions. The boron-oxygen hole centers induced by electrons and higher energy protons are due to holes trapped on bridging oxygens, while for lower energy protons as a result of holes trapped on non-bridging oxygens.
     Rubidium lamp serves as an optically pumped sources under a certain temperature and RF voltage. Heating and RF discharge for a long time could cause an interaction of the rubidium and glass envelope, including the rubidium diffusion into the glass envelope and the chemical reaction of rubidium and glass envelope, leading to rubidium loss. Both the diffusion and chemical reaction strongly depend on temperature and RF voltage. Rates of chemical reaction and rubidium diffusion are enhanced with increasing temperature and RF voltage. The rubidium diffusion process is examined by secondary ion mass spectra, X-ray photoelectron spectra and back-scattered diffraction analysis, giving rubidium profile distribution along glass wall for various work conditions. The main products of chemical reactions are rubidium-oxides (Rb_2O, Rb_2O_2 and RbO_2), rubidium-silicates (Rb_2Si_4O_9 and Rb_2SiO_3) and rubidium-borates (RbBO_2).
     Another important factor affecting rubidium lamp performance is luminescent mode, which is mainly cotrolled by temperatue and RF voltage. Change of the luminescent mode from a ring mode to a red mode arises as the temperature or RF voltage becomes too large, leading to a decrease in the signal-to-noise ratio of optical intensity and failure of the rubidium spectral lamp. The maximal RF voltage corresponding to the mode change decreases with increasing temperature, and the parameter range of temperature and RF voltage corresponding to the ring mode is identified.
     The rubidium lamp should work at the temperatures and RF voltages as low as possible under the ring mode in order to weaken the interaction of rubidium and glass and to guarantee the discharge stability. It could reduce the rate of performance degradation for rubidium lamps. It is important and significant for engineering application and theoretical research to reveal damage effects and mechanisms for the glass envelope material exposed by radaition environment, as well as the mechanism of the interaction between rubidium and glass envelope.
引文
1 Space environments & effects program. http://see.msfc.nasa.gov
    2刘振兴.太空物理学.哈尔滨工业大学出版社. 2005:95-173
    3 H.A.Davis,B.P.Wood and C.P.Munson. Ion Beam and Plasma Technology Developent for Surface Modifieation at Los Alamos National Laboratory. Material Chemistry and Physics. 1998, 54:213-218
    4大林辰藏.日地空间物理.北京师范大学出版社, 1984: 295-297, 326, 331
    5 S.Bourdarie and M.Xapsos. The Near-Earth Space Radiation Environment. IEEE Trans. On Nuclear Science. 2008, 55(4):1810-1830
    6 S.L.Huston, D.Cantwell, P.Dorman and J.Carsten. Model for Estimating Directional Flux and Detector Response for Space Radiation Experiments. IEEE Trans. On Nuclear Science. 2007, 54(6):1990-1996
    7曹晋滨,李磊,吴季.太空物理学导论.科学出版社. 2001:270
    8宋礼庭.从太阳到地球.湖南教育出版社, 1994: 42~45
    9 J. H. King. Solar Proton Fluences for 1977-1983 Space Missions. Journal of Spacecraft and Rockets. 1974, 11:401
    10 C. Dyer. Radiation Effects on Spacecraft & Aircraft. QinetiQ. 2001:1-8
    11 D.M.Sawyer and J.I.Vette. AP8 Trapped Proton Environment for Solar Maximum and Solar Minimum. NSSDC/WDC-A-R&S 76-06, 1976:6
    12 W.W. Vaughan, K.O. Niehuss and M.B. Alexander. Spacecraft Environments Interactions: Solar Activity and Effects on Spacecraft. NASA Reference Publication. 1996, 1396:2-26
    13薛丙森,叶宗海.近地轨道宇宙线的强度分布.宇航学报. 1998, 19(2):99-104
    14国家自然科学基金委员会.空间物理学.科学出版社. 1998:90-109
    15丁富荣,班勇,夏宗璜.辐射物理.北京出版社. 2004:17-22
    16郁金南.材料辐照效应.化学工业出版社. 2007:168
    17曹建中.半导体材料的辐射效应.科学出版社. 1993:66-125
    18李兴冀.星用双极性器件带电粒子辐照效应及损伤机理.哈尔滨工业大学博士论文. 2010:80
    19 Adli Bishay. Radiation Induced Color Centers in Multicomponent Glasses. Journal of Non-Crystalline Solids. 1970, 3:54-114
    20 Ghanm A. Al-Jumaily. Effects of Radiation on the Optical Properties of Glass Materials. SPIE. 1992, 1761:26-34
    21 A.Mejri, K.Farah, H.Eleuch and H.Ben Quada. Application of CommercialGlass in Gamma Radiation Processing. Radiation Measurements. 2008, 43:1372-1376
    22 M.Mazúr, J.Lesny, P. Pelikán, M. Liska and P. Simurka. EPR Spectroscopy ofγ-irradiated 15Na2O10(MgO,CaO,TiO_2,ZrO_2)75SiO_2 Glasses. Journal of Non-Crystalline Solids. 1995, 192:199-202
    23 Sook Lee and P. J. Bray. Electron Spin Resonance Studies of Irradiate Glasses Containing Boron. The Journal of Chemical Physics. 1963, 39:2863-2873
    24 D.L.Griscom. ESR Studies of an Intrinsic Trapped-Electron Center in X-irradiated Alkali Borate Glasses. The Journal of Chemical Physics. 1971, 55(3):1113-1122
    25 D.L.Griscom, G.H.Sigel, Jr. and R.J.Ginther. Defect Centers in a Pure-Silica-core Borosilicate-Clad Optical Fiber: ESR Studies. Journal of Applied Physics. 1976, 47(3):960-967
    26 D.L.Griscom. Electron Spin Resonance Studies of Trapped Hole Centers in Irradiated Alkali Silicate Glasses: a Critical Comment on Current Models for HC1 and HC2. Journal of Non-Crystalline Solids. 1984, 64:229-247
    27 Ilya A. Shkrob, Boris M. Tadjikov and Alexander D. Trifunac. Magnetic Resonance Studies on Radiation-Induced Point Defects in Mixed Oxide Glasses. Ⅱ. Spin Centers in Alkali Silicate Glasses. Journal of Non-Crystalline Solids. 2000, 262:35-65
    28 Ilya A. Shkrob, Boris M. Tadjikov and Alexander D. Trifunac. Magnetic Resonance Studies on Radiation-Induced Point Defects in Mixed Oxide Glasses. I. Spin Centers in B_2O_3 and Alkali Borate Glasses. Journal of Non-Crystalline Solids. 2000, 262:6-34
    29 N. Ollier, B. Boizot, B. Reynard, D. Ghaleb and G. Petite.βIrradiation in Borosilicate Glasses: the Role of the Mixed Alkali Effect. Nuclear Instruments and Methods in Physics Research B. 2004, 218:176-182
    30 Samir Y. Marzouk, Fatma H. Elbatal, A.M. Salem and S.M. Abo-Naf. Absorption Spectra of Gamma-Irradiation TM-doped Cabal Glasses. Optical Materials. 2007, 29:1456–1466
    31 F.H. ElBatal, M.S. Selim, S.Y. Marzouk and M.A. Azooz. UV-vis Absorption of the Transition Metal-Doped SiO_2–B_2O_3–Na_2O Glasses. Physica B. 2007, 398:126-134
    32 F.H. El Batal, A.A. El Kheshen, M.A. Azooz and S.M. Abo-Naf. Gamma Ray Interaction with Lithium Diborate Glasses Containing Transition Metals Ions. Optical Materials. 2008, 30(6):881-891
    33 E. Malchukova and B. Boizot.β-irradiation Effect in AluminoborosilicateGlasses:the Role of RE-codoping (RE=Sm, Gd).Физикатвердготела. 2008, 50(9):1623-1627
    34 S. Peuget, J.-N. Cachia, C. Jegou, X. Deschanels, D. Roudil,V. Broudic, J.M. Delaye and J.-M. Bart. Irradiation Stability of R7T7-type Borosilicate Glass. Journal of Nuclear Materials. 2006, 354:1-13
    35 J.E.Shelby. Effect of Radiation on the Physical Properties of Borosilicate Glasses. Journal of Applied Physics. 1980, 51(5):2561-2565
    36 S.L.Conners. Effects of Gamma Radiation on the Structure and Properties of Borosilicate Glasses. M.S. thesis, Alfred University, 1992:50
    37 S.Sato. Radiation Effect of Simulated Waste Glass Irradiated with Ion, Electron, and Gamma-ray. Nuclear Instruments and Methods in Physics Research B. 1984, 1:534
    38 W.A.Zdaniewski, T.E.Easler and R.C.Bradt. Gamma Radiation Effects of the Strength of a Borosilicate Glass. Journal of the American Ceramic Society. 1983, 66:311-321
    39 Clark L.Allred. Effect of Radiaiton on Silicon and Borosilicate Glass. Massachusettes Institute of Technology, PhD thesis. 2003:40
    40 S. Hirsch, H. Klein and P. Jung. Dimensional Changes of Silica-, Borosilicate- and Germania-glasses and Quartz Under Irradiation. Journal of Non-Crystalline Solids. 2005, 351:3279-3288
    41 Thomas C. English, Henry Vorwerk and Norman J.Rudie. Radiation Hardness of EFRAROM M-100 Rubidium Frequency Stadard. 1983:547-575
    42 Liu Hai, He Shiyu and Wei Qiang. A Study on Effects of Proton Radiation with 140keV on Spectrum Property of Quartz Glass. Acta Optica Sinica. 2003, 23(3):366-369
    43魏强,何世禹,刘海,杨德庄.石英玻璃低能质子辐照损伤动力学研究.光学学报. 2005, 25(1):83-87
    44魏强,杨贤金,何世禹,杨德庄.质子辐照对石英玻璃光学性能的影响.航天器环境工程. 2007, 24(3):178-182
    45周忠祥,王宏利,申艳青,刘大军.带电粒子辐照下石英玻璃和镀铝膜反射镜光学性能研究.物理学报. 2008, 57(1):592-599
    46王义遒,王庆吉,董太乾.量子频标原理.北京科学出版社. 1986:367-370
    47杨丰,刘淑琴,董太乾. 85Rb灯对87Rb原子的光抽运.物理学报. 1984, 33(1):116-120
    48 Dicke, R.H.. The Effect of Collisions Upon the Doppler Width of Spectral Lines. Physical Review. 1953, 89:472-473
    49 Bender, P.L.. Effect of Hydrogen-Hydrogen Exchange Collisions. Physical Review. 1963, 132:2154-2158
    50梅刚华,钟达,安绍锋,夏白桦.星载铷原子频标研究进展.全国时间频率学术交流会论文集. 2003:52-54
    51 W. J. Riley. Rubidium Atomic Frequency Standards for GPS Block IIR. Proceeding of the 22nd Annual Precise Time and Time Interval (PTTI) Applications and Planning Meeting. 1990:221-232
    52 D. M. Tennant. NAVSTAR Global Positioning System(GPS) Clock Program: Present and Future. Proceeding of the 12th Annual Precise Time and Time Interval (PTTI) Applications and Planning Meeting, NASA Conference Publication. 1980, 2175:703-718
    53 Ganghua Mei,Da Zhong, Shaofeng An and Baihua Xia. Development of Space Rubidium Atomic Frequency Standard at WIPMEC.欧洲伽俐略计划国际研讨会. 2002:35-39
    54 D. M. Tennant. NAVSTAR Global Positioning System(GPS) Clock Program: Present and Future. Proceeding of the 12th Annual Precise Time and Time Interval (PTTI) Applications and Planning Meeting. NASA Conference Publication. 1980, 2175:703-718
    55 W.J.Riley. A Rubidium Clock for GPS. Proceedings of the 13th Annual Precise Time and Time Interval Applications and Planning Meeting. 1981, 2220:609-630
    56 T. McClelland, I. Pascaru and M. Meirs. Development of a Rubidium Frequency Standard for the Milstar Satellite System. 41~(st) Annual Frequency Control Symposium. IEEE, 1987:66-74
    57 http://www.univs.cn/newweb/univs/nwpu/2007-05-23/754870.html
    58 William, E. Bell, Arnold, L. Bloom, and James Lynch. Alkali Metal Vapor Spectral Lamps. The Review of Scinetific Instruments. 1961, 32(6):688-692
    59 Richard G. Brewer, High Intensity Low Noise Rubidium Light Source, The Review of Scinetific Instruments. 1961, 32(12):1356-1358
    60 Nobunori Oura, Naimu Kuramochi, Shigeya Naritsuka and Teruhiko Hayashi. Composite-Type 87Rb Optical-Pumping Light Source for the Rubidium Frequency Standard. Proceedings of the 13th Annual Precise Time and Time Interval (PTTI) Applications and Planning Meeting. 1981:803-816
    61 Hitoshi Oyamada and Keiichi Takahashi. A Consideration of Rubidium Lamp Stability for Rubidium Frequency Standard. 1974:340-343
    62 Toshiharu Tako, Yasuki Koga and Isao Hirano. Spectral Profiles of Rb-D Lines. Japanese Journal of Applied Physics. 1975, 14(5):591-598
    63 R.P.Frueholz, N.D.Bhaskar, J.C.Camparo, B.Jaduszliwer and C.M.Klimcak. Atomic Clocks Research in the Aerospace Corporation Chemistry and Physics Laboratory an Overiew. Proceedings of the 18~(th) Annual Precise Time and Time Interval Applications and Planning Meeting.1986:11-36
    64 R. P. Frueholz, M. Wun-Fogle, H. U. Eckert, C. H. Volk, and P. F. Jones. Lamp Reliability Studies for Improved Satellite Rubidium Frequency Standard. Proceedings of the 13~(th) Annual Precise Time and Time Interval Applications and Planning Meeting. 1981:767-791
    65 C. H. Volk and R. R. Frueholz. Lifetime and Reliability of Rubidium Discharge Lamps for Use in Atomic Frequency Standards. 38~(th) Annual Frequency Control Symposium. IEEE, 1984:387-400
    66 Rubidium clock lifetime and MTBF data. 2003:1-3. [Online].Available: http://www.spectratime.com/documents/rmo_life_mtbf.pdf
    67 Cook. R. A and Frueholz R. P.. An Improved Rubidium Consumption Model for Discharge Lamps Used in Rubidium Frequency Standards. 42~(nd) Annual Frequency Control Symposium. 1988:525-531
    68 T. C. English and E. Jechart. Development of a Sapphire Lamp for Use in Satellite-Borne Atomic Rubidium Clocks. Proceedings. 35~(th) Annual Symposium on Frequency Control. 1981:637-645
    69 Claire Couplet, Pascal Rochat, Gaetano Mileti, Hartmut Schweda, Pierre Thomann and Giovanni Busca. Miniaturized Rubidium Clocks for Space and Industrial Applications. IEEE International Frequency Contral Symposium. 1995:53-59
    70 J. Ma, A. Kishinevski, Y.-Y. Jau, C. Reuter, and W. Happer. Modification of Glass Cell Walls by Rubidium Vapor. Physical Review A. 2009, 79:042905-1-5
    71 A Gevorkyan, G Smirnova and V Khutorshchikov. Durability of Spectral Lamps with Vapors ~(87)Rb for Optically Pumped Frequency Standards. European Frequency Time Forum. 1996, 418:50-54
    72 James Camparo. Lamp Stabilization Using Ion Waves: Smart-Clock Technology to Eliminate Light-Shift Variations. IEEE, 2006:706-710
    73 J. C. Camparo, C. M. Klimcak and S. J. Herbulock. Frequency equilibration in the vapor-cell atomic clock. IEEE Trans. Instrum. Meas. 2005, 54:1873-1880
    74 C. Camparo and R. Mackay. Ion-wave Stabilization of an Inductively Coupled Plasma. Applied Physics Letters. 2006, 88:173510-1-3
    75 James Camparo and Charles Klimcak. Ion-Acoustic Plasma Waves in rf-Discharge Lamps: Light-Shift Stabilization for Atomic Clocks. IEEE. 2005:477-480
    76 J. C. Camparo and C. M. Klimcak. Generation of Ion-acoustic Waves in an Inductively Coupled, Low-Pressure Discharge Lamp. Journal of Applied Physics. 2006, 99:083306-1-7
    77 J. C. Camparo and R. Mackay. Spectral Mode Changes in an Alkali RF Discharge. Journal of Applied Physics. 2007, 101: 053303-1-6
    78 James Camparo and Ryan Mackay. A Mechanism of Rubidium Atomic Clock Degradation: Ring-Mode to Red-Mode Transition in rf-Discharge Lamps. IEEE. 2007:45-48
    79 Fabien Droz, Gérald Barmaverain, Qinghua Wang and Pascal Rochat. Galileo Rubidium Standard- Lifetime Data and GIOVE-A Related Telemetries. IEEE. 2007:1122-1126
    80周忠石,王亮,郭鹏翔.铷原子频率标准的小型化研究.宇航计测技术, 2002, 22(1):1-7
    81刘淑琴,董太乾.铷频标物理部分的改进与长期稳定度的测量.陕西天文台台刊. 1996, 19:38-41
    82刘淑琴,董太乾.光抽运实验中的拍频现象.物理学报. 1984, 33(12): 1673-1679
    83初鑫钊,刘淑琴,董太乾.铷原子频标中的微波功率频移.物理学报, 43(7):1072-1076
    84刘淑琴,董太乾.铷原子频标老化的成因及消除.计量学报, 1996, 17(4):293-296
    85涂建辉,李冠斌,达道安.铷光谱灯老化过程分析.真空与低温, 2006, 12(3):173-175
    86冯浩.铷频标光强稳定性影响因素的研究.甘肃科技. 2007, 23(5):107-108
    87曾媛,赵峰,梅刚华.气泡型铷原子频标光谱灯优化设计.波谱学杂志, 2004, 21(3):345-350
    88管妮娜,雷海东,盛荣武.一种铷谱灯快速启动与降低功耗的方法.全国时间频率学术报告会. 2001:100-102
    89陈志红.被动型铷原子频标光谱灯优化设计及频标相关技术.中国科学院武汉物理与数学研究所, 2001:55
    90梅刚华,盛荣武,朱熙文,刘金廷.星载铷原子频标物理系统研究进展.全国时间频率学术报告. 1999:11-14
    91王芳,赵峰,祁峰,吴汉华,钟达,梅刚华.铷光谱灯的光谱研究光谱学与光谱分析.2009, 29(5):1164-1167
    92徐鸿志,胡圣红,胡兆初,姜劲锋,王晓红.激光剥蚀电感耦合等离子体质谱研究富钴结壳生长环带的元素分布.分析化学. 2007, 35(8):1099-1104
    93 Yongsheng Liu, Zhaochu Hu, Shan Gao, Detlef Günther, Juan Xu, Changgui Gao and Haihong Chen. In situ analysis of Major and Trace Elements of Anhydrous Minerals by LA-ICP-MS Without Applying an Interal Standard. Chemical Geology. 2008, 257:34-43
    94石顺祥,张海兴,刘劲松.物理光学与应用光学.西安电子科技大学出版社. 2000:52
    95王铁邦.二氧化硅等材料的红外光谱学研究.南京大学博士论文. 2004:14-16
    96 R.M. Silverstein, F.X. Webster and D.J.Kiemle.药明康德新药开发有限公司分析部译制.有机化合物的波谱解析.华东理工大学出版社. 2007:71-89
    97晁月盛,张艳辉.正电子湮没技术原理及应用.材料与冶金学报. 2007, 6(3):234-240
    98腾敏康.正电子湮没谱学及其应用.原子能出版社. 2000:38
    99范春梅,孙诗兵,王为,王瑛,王荣.电子束辐照BSTS玻璃的正电子湮灭研究.北京工业大学学报. 2002, 28(4):509-512
    100徐元植.实用电子磁共振波谱学——基本原理和实际应用.科学出版社. 2008:11
    101郭沁林. X射线光电子能谱.试验技术. 2007, 36(5):405-410
    102查良镇,桂东,朱怡峥.二次离子质谱学的新进展.真空科学与技术. 2001, 21(2): 129-136
    103周强,李金英,梁汉东,伍昌平.二次离子质谱(SIMS)分析技术及应用进展.质谱学报. 2004, 25(2):113-120
    104 Adams F, Gijbels R, Rvan Grieken.祝大昌译. Inorganic Mass Spectromet ry.上海:复旦大学出版社. 1993:126-258
    105易小红,邹同华.差示扫描量热法在食品热物性测量中的应用.计量与测试技术. 2006, 33(9):22-23
    106国防科工委科技与质量司组织.计量培训教材——化学计量.原子能出版社. 2004:147
    107郭素枝.扫描电镜技术及其应用.厦门大学出版社. 2006:35
    108 [J. F. Ziegler. SRIM-2003. Nuclear Instruments and Methods in Physics Research B. 2004, 219-220:1027-1036] [J.F.Ziegler.Networks[Online]. Available: http://www.SRIM.org]
    109 G. Lulli, E. Albertazzi, M. Bianconi, G.G. Bentini, R. Nipoti, R. Lotti. Determination of He Electronic Energy Loss in Crystalline Si by Monte-CarloSimulation of Rutherford Backscattering-Channeling Spectra. Nuclear Instruments and Methods in Physics Research B. 2000, 170: 1-9
    110 J.F. Ziegler, J.P. Biersack and U. Littmark. The Stopping and Range of Ions in Solids. Vol. 1, New York: Pergamon Press. 1985:14-141
    111汤家镛,张祖华.离子在固体中的阻止本领射程和沟道效应(第六版).原子能出版社. 1988:32
    112 M.Pavlovic and I.Strask. Supporting Rountines for the SRIM Code. Nuclear Instruments and Methods in Physics Research B. 2007, 257:601-604
    113 W.D. Wilson, L. G.Haggmark and J.P. Biersack. Calculations of Nuclear Stopping, Ranges, and Straggling in the Low-Energy Region. Physical Review B. 1977, 15: 2458-2468
    114 J.P. Biersack and J.F. Ziegler. Refined Universal Potentials in Atomic Collisions. Nuclear Instruments and Methods in Physics Research B. 1982, 194: 93-100
    115 W.H. Bragg and R. Kleeman. On the Alpha Particles of Radium and Their Loss of Range in Passing through Various Atoms and Molecules. Philosophical Magazine. 1905, 10: 318-340
    116 CASINO 2003 MonteCarlo Simulation. http://www.gel.usherb.ca/casino
    117 M. Asai, D. Axen, S. Banerjee, G. Barrand, and F. Behner. Geant4-A Simulation Toolkit. Nuclear Instruments and Methods in Physics Research Section A. 2003, A506:250-303
    118 S.T. Pantelides, Z.-Y. Lu, C. Nicklaw, T. Bakos, S.N. Rashkeev, D.M. Fleetwood and R.D. Schrimpf. The E0 Center and Oxygen Vacancies in SiO_2. Journal of Non-Crystalline Solids. 2008, 354:217-223
    119 Jiawei Sheng, Xinji Yang, Wen Dong and Jian Zhang. X-ray Induced Nonbridging Oxygen Hole Center in Soda-Lime Silicate Glass. Int. J. Hydrogen Energ. 2009, 34:3988-3991
    120 P I Paulose, Gin Jose, Vinoy Thomas, Gijo Jose, N V Unnikrishnan and M K R Warrier. Spectroscopic Studies of Cu2+ Ions in Sol-gel Derived Silica Matrix. Bulletin of Materials Science. 2002, 25(1):69-74
    121刘预知.无机物质理化性质及重要反应方程式手册.成都科技大学出版社. 1992:58-60
    122朱仁.无机化学(第五版).高等教育出版社. 2002:501
    123 J.Crank. The Mathematics of Diffusion. Oxford University Press. 1975:120
    124 Noel H.Turner, Brett I.Dunlap and Richard J.Colton. Surface Analysis:X-Ray Photoelectron Spectraoscopy, Auger Electron Spectroscopy and Secondary Ion Mass Spectrometry. Analytical Chemistry. 1984, 56(5):373R-416R
    125 Paul Siddons, Charles S Adams, Chang Ge and Ifan G Hughes. AbsoluteAbsorption on Rubidium D Lines:Comparison Between Theory and Experiment. Journal of Physics B. 2008, 41(155004):1-10
    126 M.A.Rosenberry, J.P.Reyes, D.Tupa and T.J.Gay. Radiation Trapping in Rubidium Optical Pumping at Low Buffer-Gas Pressures. Physical Review A. 2007, 75(023401):1-7
    127 G. G. Lister, J. E. Lawler, W. P. Lapatovich and V. A. Godyak. The Physics of Discharge Lamps. Reviews of Modern Physics. 2004, 76:541-598
    128 Amanpreet Kaur Sandhu, Surinder Singh and Om Prakash Pandey. Neutron Irradiation Effects on Optical and Structural Properties of Silicate Glasses. Materials Chemistry and Physics. 2009, 115:783-788
    129 Yoji Kawamoto, etal. Absence of Phase Seperation in the System B2O_3-SiO_2.ⅫInternational Glass Congress. 1983:783-787
    130 Gopi Sharma, Kulwant Singh, Manupriya, Shaweta Mohan, Harvinder Singh and Sukhleen Bindra. Effects of Gamma Irradiation on Optical and Structural Properties of PbO-Bi2O_3-B2O_3 Glasses. Radiation Physics and Chemistry. 2006, 75:959-966
    131 R.H. Doremus. Glass Science. New York: Willing Sons. 1973:70-79
    132 G. Buchmayer, E. Radlein, G.H. Frischat, W. Beier and B. Speit. Paramagnetic Centers in Glasses Induced by Low Earth Orbit Space Radiation. Journal of Non-Crystalline Solids. 1996, 204:253-259
    133 N. Ollier, P. Lombard, F. Farges and B. Boizot. Titanium Reduction Processes in Oxide Glasses Under Electronic Irradiation. Journal of Non-Crystalline Solids. 2008, 354:480-485
    134 S.H. Wang and Jonathan F. Stebbins. On the Structure of Borosilicate Glasses: a Triple-Quantum Magic-Angle Spinning 17O Nuclear Magnetic Resonance Study. Journal of Non-Crystalline Solids. 1998, 231(3):286-290
    135 L.S. Du and Jonathan F. Stebbins. Solid-state NMR Study of Metastable Immiscibility in Alkali Borosilicate Glasses. Journal of Non-Crystalline Solids. 2003, 315:239-255
    136 Y. Miura, H. Kusano, T. Nanba and S. Matsumoto. X-ray Photoelectron Spectroscopy of Sodium Borosilicate Glasses. Journal of Non-Crystalline Solids. 2001, 290(1):1-14
    137 C.H. Hsieh, H. Jain, A.C. Miller, E.I. Kamitsos. X-ray Photoelectron Spectroscopy of Al- and B-substituted Sodium Trisilicate Glasses. Journal of Non-Crystalline Solids. 1994, 168:247-257
    138 D. Sprenger, H. Bach, W. Meisel, P. Gütlich. XPS Study of Leached Glass Surfaces. Journal of Non-Crystalline Solids. 1990, 126:111-129
    139 R.A.B. Devine, Macroscopic and Microscopic Effects of Radiation in Amorphous SiO_2. Nuclear Instruments and Methods in Physics Research Section B. 1994, 91:378-390
    140 M.Hasegawa, M.Saneyasu, M.Tabata, Z.Tang, Y.Nagai, T.Chiba and Y.Ito. Positron and Positronnium Studies of Irradiation-induced Defects and Microvoids in Vitreous Matamict Silica. Nuclear Instruments and Methods in Physics Research Section B. 2000, 166-167:431-439
    141 M. Hasegawa, M. Tabata, M. Fujinami, Y. Ito, H. Sunaga, S. Okada and S. Yamaguchi. Positron Annihilation and ESR Study of Irradiation Defects in Silica Glass. Nuclear Instruments and Methods in Physics Research B. 1996, 116:347-354
    142 Motoko Kwete, D.Segers, M.Dorikens, L.Dorikens-Vanpraet, P.Clauws and I. Lemahieu. Temperature Characteristics of Positron Trapping at Defects in Electron-Irradiated Silicon. Applied Physics A: Materials Science & Processing. 1989, 49(6):659-664
    143 S.Dannefaer, T. Friessnegg and D.Kerr. Annihilation of Positronium inα-SiO_2 Investigated by Combined Angular Correlation and Lifetime Measurements. Physical Review B. 1996, 54(21):15051-15055
    144 Roger B. Gregory. Free-volume and Pore Size Distributions Determined by Numerical Laplace Inversion of Positron Annihilation Lifetime Data. Journal of Applied Physics. 1991, 70:4665-4670
    145 Linards Skuja, Koichi Kajihara, Masahiro Hirano and Hideo Hosono. Hydrogen-related Radiation Defects in SiO_2-based Glasses. Nuclear Instruments and Methods in Physics Research B. 2008, 266:2971-2975
    146 G.Navarra, R.Boscaino, M.Leone and B.Boizot. Irradiation Effects on the OH-related Infared Absorption Band in Synthetic Wet Silica. Journal of Non-Crystalline Solids. 2007, 353:555-558
    147 S.Kuchinsky and M.Mlejnek. Comment on‘Modification of Vacuum-ultraviolet Absorption of SiOH Groups in SiO_2 Glass with Temperature, F2 Laser Irradiation, and H-D Isotope Exchange’by K.Kajihara etal.. Journal of Non-Crystalline Solids. 2008, 354:3507-3509
    148 A. Gusarov, D. Doyle, L. Glebov and F. Berghmans. Kinetic Approach to the Decomposition of Radiation-induced Absorption Spectra. Journal of Non-crystalline Solids. 2006, 352:3343-3349
    149 E.Malchukova, B.Boizot, G.Petite and D.Ghaleb. Irradiation Effects in Oxide Glasses Doped with Transition and Rare-earth Elements. The European Physical Journal-Applied Physics. 2009, 45:10701-10710
    150刘海.质子和电子对光学石英玻璃的辐照效应及机理.哈尔滨工业大学博士论文. 2003:75
    151 D.A.Dutt, P.L.Higby, C.I.Merzbacher and D.L.Griscom. Compositional Dependence of Trapped Hole Centers in Gamma Irradiated Calcium Aluminosilicate Glasses. Journal of Non-crystalline Solids. 1991, 135:122-130
    152 R.R. Gulamova, E.M. Gasanov and R. Alimov. Proton-induced Changes of Optical Properties and Defect Formation in Quartz Glasses. Nuclear Instruments and Methods in Physics Research Section B. 1997, 127/128:497-502
    153吴建新,麻茂生,刘先明,朱警生,季明荣.光电子能谱研究O_2和Rb在InSb(111)表面上共吸附.化学物理学报. 1995, 8(6):559-563
    154 R.Miranda, M.Prietsch, C.Laubschat, M.Domke, T.Mandel and G.Kaindl. Thermally Induced Oxidation of GaAs(110) by a Rb Oxide Overlayer. Physical Review B. 1989, 39(14):10387-10391
    155 Vicente Jiménez, Paula Sánchez, Fernando Dorado, JoséLuís Valverde and Amaya Romero. Microporosity Development of Herringbone Carbon Nanofibers by RbOH Chemical Activation. Research Letters in Nanotechnology. 2009, 373986:1-5
    156 B. Lamontagne, F. Semond and D. Roy. K Overlayer Oxidation Studied by XPS: the Effects of the Adsorption and Oxidation Conditions. Surface Science. 1995, 327:371-378
    157 B. Lesiak, J. Zemek, P. Jiricek, O. Gedeon and A. Józ′wik. Effect of Electron Irradiation on Na–K Silicate Glass Investigated Using X-ray Photoelectron Spectroscopy and Pattern Recognition Method. Journal of Non-Crystalline Solids. 2008, 354:3840–3848
    158 Sung Keun Lee and Jonathan F.Stebbins. Effects of the Degree of Polymerization on the Structure of Sodium Silicate and Aluminosilicate Glasses and Melts: An 17O NMR Study. Geochimica et Cosmochimica Acta. 2009, 73:1109-1119
    159 Paul W.Wang. Formation of Silver Colloids in Silver Ion-exchanged Soda-lime Glasses During Annealing. Applied Surface Science. 1997, 120:291-298
    160 J. Lau, P. W. Mcmillan. Interaction of Sodium with Simple Glasses: Part 2 Na_2O-SiO_2 and Na_2O-Al_2O_3-SiO_2. Journal of Materials Science. 1984, 19:881-889
    161 K. Takahashi and A. Osaka. Network Structure of Sodium and Potassium Borosilicate Glass Systems. Journal of Non-Crystalline Solids. 1983, 55:15-26

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700