防波堤风险分析与管理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文研究了防波堤风险分析与管理的框架,建立了防波堤工程风险的评估体系及相应模型,解决了技术指标与经济指标及其他非技术指标的结合问题。研究主要侧重于四个方面:①海洋动力因素随机性研究;②防波堤风险量化方法研究;③防波堤风险决策模型研究;④防波堤剩余风险管理研究。
     在“海洋动力因素随机性研究”部分,首先讨论了极值分布不确定性所带来的防波堤风险。探讨了利用人工神经网络技术推算缺失风浪数据的方法。引进了区域频率分析方法,为解决海洋动力条件极值分布拟合中常见的数据样本匮乏问题提供了一种新的途径。基于一种结构化参数模式,联合统计和物理参数模型建立了海洋动力因素的联合分布,使之更适于概率积分求解和风险分析。
     在“防波堤风险量化方法研究”部分,基于200多例防波堤事故资料建立了防波堤工程失效树。基于可靠度计算方法提出了防波堤风险量化的手段。考虑到常规可靠度计算方法的缺陷,提出将Monte Carlo法与可靠度计算方法相结合的新思路,使概率计算方法能达到近似全概率的水平。为了验证和探讨风险量化理论在防波堤工程中的实用性和应用方法,给出了基于可靠度的斜坡堤护面块体稳定性分析及基于变形的沉箱式防波堤蛇行破坏模型两个算例。
     在“防波堤风险决策模型研究”部分,探讨了防波堤工程的决策模型,重点是将效用理论引入防波堤风险决策中,以满足多属性目标决策及风险态度度量的需要。
     风险分析与管理的一个优势在于能够揭示防波堤生命周期内各阶段的风险,这使得剩余风险的管理成为可能。第四部分“防波堤剩余风险管理研究”重点讨论了防波堤工程剩余风险管理中工程保险费率的厘定。
     沉箱式防波堤底面与基床之间的摩擦系数是保证其抗滑稳定性的重要随机变量。本文依托相关的工程项目对新型材料-橡胶阻滑板与抛石基床间的摩擦系数进行了试验研究,为本领域提供一些有用的基础资料。
In this paper, the risk analysis and management framework of breakwater engineering is studied. The evaluation system and related models are established to integrate the technical indexes with economic indicators or other nontechnical indexes. The work in this paper consists of four parts: study on the randomicity of ocean dynamic elements; research on the quantitative methods for the risks in breakwater engineering; discussion on the decision-making models for breakwater risk; exploring on the management of the remaining risk after the optimization of breakwater.
     In the first part, the risks of breakwater induced by the uncertainties existing in extremal distribution of ocean dynamic elements are discussed ahead. Then, the Artificial Neural Network technique is introduced to hindcasting the lost wave data in observation. Thereafter, the regional frequency analysis methods based on L-moments is put forward to solve the problem of being short of data samples in the parameter estimate of the extremal distribution by collecting the homogeneous data in neighborhood regions. Risk analysis on breakwater is not possible if the environmental conditions are not properly quantified. It appears that the traditional methods to describe the joint statistics of ocean dynamic conditions are not always consistent with the physical behaviour of wave conditions. An alternative mode is proposed to describe properly the joint probability distribution of ocean dynamic conditions by combining the statistical models with parametric physical models.
     In the second part, the first produce is the setting up of the fault tree of breakwater by analysing more than 200 cases of breakwater failures. Then, some reliability-based methods are provided for quantifying breakwater risk. A new idea is proposed to improve the precision of computing failure probability by combining Monte Carlo simulation with traditional reliability method. In the end of this part, two case studies, reliability-based stability analysis of rubble mound breakwater and deformation-based model quantifying meandering damage of caisson breakwater, are presented to verifying and discussing the application of risk evaluation theory in breakwater engineering.
     In the third part, several models for the decision-making of breakwater engineering are discussed. There is a focus on the introduction of the utility theory into this field so as to perform the multi-attribute decision making and measuring the risk attitude of decision maker.
     Through the risk analysis of breakwater engineering, various risks existing during the lifetime of breakwater could be exposed, which makes the management of remaining risk possible. In the fourth part, the method to determining the premium rate of the insurance of breakwater construction project based on the risk analysis is discussed.
     The capacity of breakwater against sliding is influenced heavily by the friction coefficient between the bottom of cassion and the rubble mound foundation. It is necessary to have an insight in the random behaviour of the friction coefficient. Based on a project, this paper presents an experimental study on the friction coefficient between rubber slap, a new engineering material against sliding, and the top surface of a rubble mound foundation in the end.
引文
[1] Acreman M. C., Sinclair C. D. Classification of drainage basins according to their physical characteristics: an application for flood frequency analysis in Scotland. Journal of Hydrology (Amsterdam), 1986, 84(3/4): 365-380
    [2] Ang A.H-S., Abdelnour J., Chaker A.A. Analysis of activity networks under uncertainty. J. of Engineering Mechanics Division, ASCE, 1975, 101(EM4): 373-387
    [3] Ang A.H-S., Cornell C.A. Reliability bases of structural safety and design. J. of Structural Division, ASCE, 1974, 100(ST9): 1755-1769
    [4] Ang A.H-S, Tang, W.H. Probability concepts in engineering planning and design, Vol.1: Basic Principles. New York: John Wiley and Sons, Inc., 1975
    [5] Ang A.H-S, Tang W.H. Probability concepts in engineering planning and design, Vol.2: Decision, Risk, and Reliability. New York: John Wiley and Sons, Inc., 1984
    [6] Ayyub B.M., William J Bender. Assessment of the construction feasibility of the mobile offshore base, Part I: Risk-informed assessment methodology. Technical report No. CTSM-98-RBA-MOB, University of Maryland, 1999
    [7] Bakker W.T., Vrijling J.K. Probabilistic design of sea defences. Proceedings International Conference on Coastal Engineering, 1980
    [8] Balas C. E., Ergin A. Reliability-based risk assessment in coastal projects: case study in Turkey. Journal of Waterway, Port, Coastal and Ocean Engineering, ASCE, 2002,128(2): 52-61
    [9] Booij N., Holthuijsen L. H., Ris R. C. The SWAN wave model for shallow water. Proceedings of 24th International Conference on Coastal Engineering, ASCE, Orlando, 1996(1): 668-676
    [10] Borgman L.E. Spectral analysis of ocean wave forces on piling. Proc. of ASCE, 1967,93(WW2): 5-26
    [11] Breitung K. Asymptotic approximations for multinormal integrals. Journal of Engineering Mechanics, ASCE, 1984, 110(3): 357-366
    [12] Bretheron F. P., Garrett C. J. R. Wave trains in inhomogeneous moving media. Proc. Roy. Soc. London, 1968(A302): 529-554
    [13] Burcharth H.F. Development of a partial safety factor system for the design of rubble mound breakwaters. PIANC PTCII Working group 12, Subgroup F, final report, Brussels: PIANC, 1993
    [14] Cété-Laboratoire Régional Nord-Pas de Calais. Le havre-route du mole central-essais de frottement beton ondulé-grave concassée, laboratoire régional nord - Pas de Calais, 1990
    [15] Chowdhury R.N. Probability risk analysis in geomechanics and water engineering. Department of Civil and Mining Engineering, University of Wollongong, NSW, Australia, 1996
    [16] Churchman C.W., Ackoff R., Arnoff E. Introduction to operation research. J. New York: Wiley and Sons,1957
    [17] Cornell C. A. A First Order Reliability Theory of Structure Designs, Structural Reliability and Codified Design. SM Study No.3, University of Waterloo, Ontario Canada, 1970
    [18] CUR. Risk analysis in civil engineering. Centre for Civil Engineering Research, Codes and Specification, CUR Research Committee E10-Risk Analysis. 1997, 1(190): Probabilistic Design in Theory, Gouda, the Netherlands (in Dutch).
    [19] Dalrymple T. Flood frequency analysis us geological survey. Water Supply Paper 1543-A,1986
    [20] Delta Committee. Final report and interim-advices. Delta Report, considerations concerning storm surges and tidal movements(volume I), 1961 (in Dutch)
    [21] Delta Committee. The economic decision problem concerning the protection of the Netherlands against storm surges, contribution II.2 of the Delta Report. Delta Report, considerations concerning storm surges and tidal movements(Volume II),1961 (in Dutch)
    [22] Delta Committee. Investigations pertaining to dike construction, Contribution V.2 of the Delta Report. Delta Report, investigations of importance to the design of dikes and dams Volume (V), 1961.(in Dutch)
    [23] Ditlevsen O. Generalized second moment reliability index. Journal of Structural Mechanics, 1979, 7(4): 435-451
    [24] Ergin A., Balas C.E. Reliability-based risk assessment of rubble mound breakwaters under tsunami attack. Journal of Coastal Research, 2002: 266-272
    [25] Fiessler B., Neumann H-J, Rackwitz R. Quadratic Limit States in Structural Reliability. J. Engrg Mech ASCE, 1979, 105(4): 661-676
    [26] Franco Leopoldo. Vertical breakwaters: the Italian experience. Coastal Engineering, 1994, 22(1-2): 31-55
    [27] Freudenthal A. M. The safety of structures. ASCE, Transactions, 1947, 112: 125-159
    [28] Gingras D., Adamowski, Pilon. Regional flood equations for the province of Ontario and Quebec. Water Resources Bulletin, 1994, 30:55-67
    [29] Goda Y. Extreme wave statistics for reliability-based design of caisson breakwater. Proc. of Int. Workshop on Advanced Design of Maritime Structures in the 21st century, PHRI, MLIT, Japan, 2001: 1-13
    [30] Goda Y. Performance-based design of caisson breakwaters with new approach to extreme wave statistics. Coastal Engineering Journal, 2001, 43(4): 289-316
    [31] Goda Y. Random seas and design of maritime structures. Singapore: World Scientific Publishing Co. Pte. Ltd., 2000
    [32] Goda Y. Spread parameter of extreme wave height distribution for performance-based design of maritime structures. Journal of Waterway, Port, Coastal and Ocean Engineering, ASCE, 2004, 130(1): 29-38
    [33] Goda Y., Takagi H. A reliability design method of caisson breakwaters with optimal wave heights. Coastal Eng. J., 2000, 42(4): 357-387
    [34] Gomyoh M., Sakai K., Takayama T., et al. Field investigations on wave-dissipating concrete blocks covering vertical wall breakwater. Proc. 25th ICCE[C], 1996: 1652-1664
    [35] Greenwood J.A., et al. Probability weighed moment: definition and relation to parameters of several distributions expressible in inverse form. Water Resources Research, 1979,15(5):1049-1054
    [36] Hasofer A.M., Lind N.C. Exact and invariant second-moment code format. J. Engrg. Mech. Division, Proceedings of the American Society of Civil Engineers, ASCE, 1974, 100(EM1): 111-121
    [37] Hitachi S. Case study of breakwater damage: Mutsu-Ogawara Port. Proc. of Int. workshop on wave barriers in deepwaters, Yokosuka, 1994: 308-331
    [38] Hogben N, Dacunha N. M. C., Andrews K. S. Assessment of a new global capability for Wave Climate Synthesis. Proc. OCEANS’83, 1983,2
    [39] Hosking J.R.M. L-moments: analysis and estimation of distributions using linear combinations of order statistics. J.Royal Stat. Soc. Ser. B, 1990,52: 105-124
    [40] Hosking J.R.M., Wallis J.R. Parameter and quantile estimation for the generalized Pareto distribution. Technometrics, 1987, 29: 339-49
    [41] Hosking J.R.M., Wallis J.R. The effect of intersite dependence on regional flood frequency analysis. Water Resources Research, 1988, 24(4): 588-600
    [42] Hosking J.R.M., Wallis J.R. Regional frequency analysis: an approach based on l-moments. Cambridge: Cambridge University Press, 1997
    [43] Hosking J.R.M., Wallis J.R., Wood E.F. Estimation of the generalized extreme value distribution by the probability weighted moments. Technometrics, 1985, 27: 251-261
    [44] Iwagaki Y., Shioda K., Doi H. Shoaling coefficient and refraction coefficient by finite amplitude wave theory. Proc. Coastal Engineering, JSCE 28, 1981: 99-103 (in Japanese)
    [45] Jonkman S. N., van Gelder P. H. A. J. M., Vrijling J. K. An overview of quantitative risk measures for loss of life and economic damage. Journal of Hazardous Materials, 2003, A99:1-30
    [46] Kamphuis. Marketing Uncertainty. Hydroinformatics, Sustainability and Technology Transfer, CAPE TOWN SA, 1999: 2088-2099
    [47] Keeney R.L., Raiffa H. Decision with multiple objectives: preferences and value tradeoffs. New York: J.Wiley and Sons, 1976
    [48] Kim T-M, et al. Computational analysis of caisson sliding distance due to typhoon Tokage. Asian and Pacific Coasts 2005 Jeju, Korea, 2005
    [49] Kim T-M., Takayama T. Computational improvement for expected sliding distance of a caisson-type breakwater by introduction of a doubly-truncated normal distribution. Coastal Eng. J., 2003, 45(3): 387-419
    [50] Kim T-M, Takayama T. Effect of caisson tilting on the sliding distance of a caisson. Annual Journal of Civil Engineering in the Ocean, JSCE, 20, 2004: 89-94
    [51] Kiureghian A.D., Lin H.Z., Hwang S.J. Second-order reliability approximations. J. Engrg Mech ASCE, 1987, 113(8): 1208-1225
    [52] Kortenhaus A. et al. Probabilistic Design Tools for Vertical Breakwaters. Rotterdam: A.A. Balkema, 2001
    [53] Lagarias J.C., Reeds J. A., Wright M. H., et al. Convergence properties of the Nelder-Mead simplex method in low dimensions. SIAM Journal of Optimization, 1998, 9(1): 112-147
    [54] Lee D. S., Hong G.P. Korean experience on composite breakwater. Proc. of Int. workshop on wave barriers in deepwaters, Yokosuka, 1994: 172-183
    [55] Ma Qing-shan, Li Yan bao, Li Jing. Regional Frequency Analysis of Significant Wave Heights Based on L-moments. China Ocean Engineering,2006, 20(1): 85-98
    [56] Marihira M., Kihara T., Horikawa H. On the friction coefficients between concrete block sea walls and rubble-mound foundations. Personal Communication, 1998
    [57] McConnell K. J., Allsop N. W. H., Flohr H. Seaward wave loading on vertical coastal structures. Proc. Int. Conf. Coastal Structures’99, Santander, Spain, 1999: 447-454
    [58] Melby J.A., Kobayashi N. Damage progression on breakwaters. Coastal Engineering, 1998: 1884-1897
    [59] Nathwani, J.S., Lind, N.C., Pandey, M.D. Affordable safety by choice, the life quality method. Institute for Risk Research, University of Waterloo, Canada,1997
    [60] Nguyen D., Widrow B. Improving the learning speed of 2-layer neural networks by choosing initial values of the adaptive weights. Proceedings of the International Joint Conference on Neural Networks, 1990, 3: 21-26,
    [61] Ochi M K. Wave statistics for the design of ships and ocean structures. Trans. SNAME, 1978, 86: 47-76
    [62] Oumeraci H. Review and analysis of vertical breakwater failures-lessons leaned. Coastal Engineering, 1994, 22: 3-29
    [63] Oumeraci H. Sustainable coastal flood defences: scientific and modelling challenges toward an integrated risk-based design concept. First IMA International Conference on Flood Risk Assessment, Keynote lecture, IMA, Session 1, Bath, UK, 2004
    [64] Pandey M.D., Van Gelder P.H.A.J.M., Vrijling J.K. The estimation of extreme quantiles of wind velocity using L-moments in the peaks-over-threshold approach. Structural Safety, 2001, 23: 179-192
    [65] Pearson C. P. New Zeland regional flood frequency analysis using L-moments. Journal of Hydrology, 1991, 30: 53-64
    [66] Penny W. G., Price A. T. The diffraction theory of sea waves and the shelter afforded by breakwaters. Philosophical Transactions of the Royal Society of London, Physical Science and Engineering, 1952, 244(882): 236-253
    [67] Port Sines investigating panel: Fail of breakwater at Port Sines, Portugal. ASCE, 1982
    [68] Rackwitz R., Fiessler B. Structural reliability under combined random load sequences. Computers and Structures, Pergamon Press, 1978, 9: 489-494
    [69] Rasmussen J., Pedersen O.M., Carnino A., et al. Classification system for reporting events involving human malfunctions. Report Riso-M-2240, DK-4000, Riso National Laboratories, Denmark, 1981
    [70] Reason J. Human Error. London: Cambridge University Press, 1990
    [71] Rumelhart D. E., Hinton G. E., Williams R. J. Learning internal representations by error propagation, In D. E. Rumelhart and J. L. McClelland, EdsParallel Data Processing. Cambridge: The M.I.T. Press, 1986, 1: 318-362
    [72] Rutten J.G., et al. Uncertainties in extreme value analysis and their effect on load factors. 23rd International Conference on Offshore Mechanics and Arctic Engineering, Vancouver, British Columbia, Canada, 2004: 1-8
    [73] Schuttrumpf H., Moller J. and oumeraci H. Overtopping flow parameters on the inner slope of seadikes. Coastal Engineering, 2002: 2116-2127
    [74] Shaefer M.G. Regional analyses of precipitation annual in Washington State. Water Resourse Research, 1990,26: 191-131
    [75] Shimosako K., Takahashi S. Application of deformation-based reliability design for coastal structures-Expected sliding distance method of composite breakwaters. Coastal Structures '99, ed. I. J. Losada, Spain, Balkemare, 1999: 363-371
    [76] Shimosako K., Takahashi S. Reliability design method of composite breakwater using expected sliding distance. Report of the Port and Harbour Research Institute 37, 3, 1998: 3-30 (in Japanese)
    [77] Shimosako K., Takahashi S., Tanimoto K. Estimating the sliding distance of composite breakwaters due to wave forces inclusive of impulsive forces. Proc. 24th Int. Conf. Coastal Eng., Kobe, ASCE, 1994: 1580-1594
    [78] Smithers J.C., Schulze R.E. A methodology for the estimation of short duration design storms in South Africa using a regional approach based on L-moments. Journal of Hydrology, 2001, 241: 42-52
    [79] Stückrath T. Recommendation for the Construction of Breakwaters With Vertical and Inclined Concrete Walls. Report of Sub-Group C, Working Group 28, PIANC PTC II, 1996
    [80] Takahashi S., Shimosako K., Kimura K., et al. Typical failures of composite breakwaters in Japan. Proc. 27th ICCE, 2000: 1899-1910
    [81] Takahashi S., Tanimoto K., Shimosako K. A proposal of impulsive pressure coefficient for the design of composite breakwaters. Proc. Int. Conf. Hydrotechnical Engrg. for Port and Harbor Constr. (Hydro-Port’ 94), Yokosuka, Japan, 1994: 92-104
    [82] Takayama T. Estimation of sliding failure probability of present breakwaters for probabilistic design. Port and Harbour Research Institute, 1992, 31(5): 80-96
    [83] Takayama T., Ikeda N. Estimation of sliding failure probability of present breakwaters for probabilistic design, Report of the Port and Harbour Research Institute, 1993, 31(5): 3-32 (in Japanese).
    [84] Takayama T., Ikesue S., Shimosako K. Effect of directional occurrence distribution of extreme waves on composite breakwater reliability in sliding failure. Proc. 27th Int. Conf. Coastal Eng., Sydney, ASCE, 2000: 1738-1750
    [85] Tvedt L. Two Second-Order Approximations to the Failure Probability. Veritas Report R74-33, Det norse Veritas, Oslo, Norway, 1983
    [86] Tzang S-Y, Hsiao S-S. A case study on typhoon-induced consecutive damages on coastal structures at Keelung coast, Taiwan. Coastal Structures’99, Losada(ed), Balkema, Rotterdam, 2000: 1017-1025
    [87] US Army Coastal Engineering Research Center. Shore protection manual (Vol.1). Washington, D. C.: US Government Printing Office (GPO), 1977
    [88] US Army Corps of Engineers (USACE). Coastal Engineering Manual (CEM). Washington, D. C.: US Government Printing Office (GPO), 2002-2005
    [89] Van Dantzig, D. Economic design problems for flood prevention. Econometrica nr. 24, 1956:276-287
    [90] Van der Meer, J. W. Deterministic and probabilistic design of breakwater armour layers. J. Waterway, Port, Coastal and Ocean Engineering, ASCE, 1988,114(1): 66-80
    [91] Van Gelder P.H.A.J.M., Voortman H.G., Vrijling J.K. Estimation techniques for inhomogeneous hydraulic boundary conditions along coast lines with a case study to the Dutch Petten Sea Dike. Proceedings ICASP8’99, Sydney, Australia, 12-15 December 1999
    [92] Van Gelder P.H.A.J.M., Vrijling J.K. Risk-averse reliability-based optimization of Sea defenses. Risk-Based Decision Making in Water Resources,1997: 61-76
    [93] Vogl T. P., Mangis J. K., Rigler A. K., et al. Accelerating the convergence of the backpropagation method. Biological Cybernetics, 1988, 59: 256-264
    [94] Voortman H.G. Risk-based design of large-scale flood defence systems. [Phd], Dutch: Delft University of Technology, 2003
    [95] Voortman H.G., Kuijper H.K.T., Vrijling J.K. Economic optimal design of vertical breakwaters. Proceedings International Conference Coastal Engineering (ICCE), ASCE, Copenhagen, Denmark, 1998, 26: 1-14
    [96] Vrijling, J.K., Hengel, W.van, Houben, R.J. Acceptable risk as a basis for design. Reliability Engineering and System Safety 59, 1998:141-150
    [97] WAMDI Group. The WAM model-a third generation ocean wave prediction model. Journal of Physical Oceanography, 1988, 18: 1775-1810
    [98] Widrow B., M. E. Hoff. Adaptive switching circuits. 1960 IRE WESCON Convention Record, New York IRE, 1960: 96-104
    [99] Wiltshire. Regional frequency analysis I: Homogeneity statistics. Hydrological Science Journal, 1986, 30: 151-9
    [100] Yasuda T., Mase H., Takayama T. Statistical characteristics of sea walls damaged by storm waves. Proc. 27th ICCE[C], 2000: 2229-2239
    [101] 北岛昭一,中野拓治,掘井修身等.被灾防波堤集览.港湾技研资料,1968,58
    [102] 陈伟珂,黄艳敏.工程风险与工程保险.天津:天津大学出版社,2005
    [103] 范期锦,李乃扬.长江口二期北导堤局部破坏的原因及对策.中国港湾建设,2004,2:1-8
    [104] 方天中.斜坡式防波堤异型块体的损毁原因及使用加筋块体的探讨.水运工程,1983,1:16-21
    [105] 方钟圣.《西北太平洋波浪统计集》与其他图册资料的比较.中国海洋平台,1997,12(1):29-32
    [106] 方钟圣,戴顺孙,金承仪.海洋特征波高和周期的长期联合分布及其应用.海洋学报,1989,11(5):535-543
    [107] 方钟圣,金承仪,缪泉明.西北太平洋波浪统计集.北京:国防工业出版社,1996
    [108] 方钟圣,金承仪,缪泉明.中国海与西北太平洋波浪长期统计的导算方法.中国造船,1994,4:21-35
    [109] 冯平,纪恩福.水库下游洪灾淹没损失的估算.灾害学,1995,10(1):5-9
    [110] 服部千佳志,柴田钢三,大堀晃一.被灾防波堤集览(その 3).港湾技研资料,1984,485
    [111] 高桥重雄.直立式防波堤的设计. 港工技术与管理,2001,2:32-39
    [112] 郭鸿仪等.重力式码头抗滑稳定设计研究.天津大学水资源与港湾工程系研究报告,1996
    [113] 郭鸿仪等.混凝土预制块体与块石基床间摩擦系数的现场实验研究-油毡原纸或泥浆夹层对摩擦系数的影响.港口工程,1993,6
    [114] 郭文英.期望效用理论的发展.首都经济贸易大学学报,2005,5:11-14
    [115] 郭振华,熊华,苏燕.工程项目保险.北京:经济科学出版社,2004
    [116] 郭仲伟.风险分析与决策. 北京:机械工业出版社,1987
    [117] 何文炯.风险管理.沈阳:东北财经大学出版社,1999:22-28
    [118] 交通部第一航务工程勘察设计院. 海港工程设计手册(中册).北京:人民交通出版社,1994:549-554
    [119] 雷胜强.国际工程风险管理与保险.北京:中国建筑工业出版社,1996
    [120] 李 炎 保 , 马 青 山 , 蒋 学 炼 . 防 波 堤 风 险 分 析 研 究 框 架 . 海 洋 通报,2006,25(1):16-23
    [121] 李炎保,吴永强,蒋学炼.国内外防波堤损坏研究进展评述.中国港湾建设,2004,6:53-56
    [122] 李炎保,张效铭.大直径圆筒结构施工期稳定性试验与分析.港口工程,1995,2:39-42
    [123] 李松仕.概率权重矩法推求 P-型分布新公式.水利学报,1989,5:39-48
    [124] 廖雄华.地铁与轻轨土建工程的风险和保险.[博士后学位论文],上海:同济大学,2002
    [125] 林忠民.工程结构可靠度设计与估计.北京:人民交通出版社,1990
    [126] 刘光文.皮尔逊型分布参数估计(1).水文,1990,4:1-15
    [127] 刘光文.皮尔逊型分布参数估计(2).水文,1990,5:1-14
    [128] 鹿岛辽一等.被灾事例から见た防波堤、防波护岸の波浪被灾特性.第 33 届海岸工学讲演会论文集,1986:626-630
    [129] 罗英华,周锡礽,付臣余.直立式防波堤工程的风险评估模型分析.港工技术,2004,2:15-18
    [130] 卢世浪.神经网络与模糊集理论在实时洪水预报中的应用研究.[硕士学位论文],大连:大连理工大学,2002
    [131] 马青山.设计波浪中的不确定性和基于线性矩的特征波高区域频率分析.[硕士学位论文],天津:天津大学,2006
    [132] 麻荣永.土石坝风险分析方法与应用.北京:科学出版社,2004
    [133] 马秀峰.计算水文频率参数的权函数法.水文,1984,4:1-8
    [134] 潘宝雄.斜坡式建筑物波要素的设计标准探讨.水运工程,1982,11:49-56
    [135] 潘家华.油气管道的风险分析(1).油气储运,1995,14(3):11-15
    [136] 潘家华.油气管道的风险分析(2).油气储运,1995,14(4):1-7
    [137] 潘家华.油气管道的风险分析(3).油气储运,1995,14(5):3-10
    [138] 郄禄文.削角直立式防波堤可靠度分析. [博士学位论文],天津:天津大学,2005
    [139] 三井宏.海岸構造物不连续部の波高分布にっいて(第 1 报)[B].第 13 回海岸工学讲演会讲演集,1966:80-86
    [140] 三井宏.海岸構造物不连续部の波高分布にっいて(第 5 报)[B].第 17 回海岸工学讲演会讲演集,1970:85-90
    [141] 三井宏,川崎俊太.海岸構造物不连续部の波高分布にっいて(第 3 报)[B].第 15 回海岸工学讲演会讲演集,1968:41-49
    [142] 三井宏,村上仁士.海岸構造物不连续部の波高分布にっいて(第 2 报)[B].第 14 回海岸工学讲演会讲演集,1967:53-59
    [143] 三井宏,井筒茂明.海岸構造物不连续部の波高分布にっいて(第 4 报)[B].第 16 回海岸工学讲演会讲演集,1969
    [144] 宋 德 敖 , 丁 晶 . 概 率 权 重 矩 法 及 其 在 P- 分 布 中 的 应 用 . 水 利 学报,1988,3:1-11
    [145] 天津大学建工学院.钢沉箱底板与抛石基床的摩擦系数试验报告.天津大学,2001
    [146] 王成环,董文才.浅谈科技建港—写在京唐港脐身国家大港行列之际.港工技术,2002,1:6-8
    [147] 王发廷,高里. 抽水泵站机电设备安装工程技术与管理风险分析.水利水电技术,2003,34(8):15-17
    [148] 汪新天.工程项目施工风险管理研究.[硕士学位论文],哈尔滨:哈尔滨工业大学,2002
    [149] 魏汝龙.水运工程技术四十年:我国沿海软粘土特性及其工程问题.北京:人民交通出版社,1996: 947-952
    [150] 武山秀夫,中山种清.被灾防波堤集览(その 2).港湾技研资料,1975,200
    [151] 吴世伟.结构可靠度分析.北京:人民交通出版社,1990
    [152] 吴世伟.水工结构风险分析. 河海科技进展,1991,11(4):29-33
    [153] 吴兴征,丁留谦,张金接.防洪堤的可靠性设计方法探讨.2003,4:94-100
    [154] 谢崇宝,袁宏源等.P-型理论频率曲线参数估计-模糊极值法.水文,1997,3:1-7
    [155] 许东,吴铮.基于MATLAB6.X的系统分析与设计-神经网络.西安:西安电子科技大学出版社,2002
    [156] 许泰文.近岸水动力学.台湾:科技图书出版社,2003:59-97
    [157] 徐钟济.蒙特卡罗方法.上海:科学技术出版社,1985
    [158] 徐祖信,郭子中.开敞式溢洪道泄洪风险计算.水利学报,1989,4:50-54
    [159] 严恺,梁其荀.海港工程.北京:人民交通出版社,1996
    [160] 阎澍旺,朱红霞,钟骏扬.长江口深水航道治理二期工程地基土弱化特性的试验分析.中国港湾建设,2003,6:1-2
    [161] 伊藤喜行,谷本胜利.混成防波堤的蛇行灾害.港湾技研资料,1971,112
    [162] 俞聿修.随机波浪及其工程应用.大连:大连理工大学出版社,2000
    [163] 曾 光 明 , 钟 政 林 . 环 境 风 险 评 价 中 的 不 确 定 性 问 题 . 中 国 环 境 科学,1998,18(3):252-255
    [164] 张圣坤,白勇,唐文勇.船舶与海洋工程风险评估.北京:国防工业出版社,2003
    [165] 张文仲.预制混凝土或钢筋混凝土结构与抛石基床之间摩擦系数的取值问题.港口工程,1986,6
    [166] 赵国藩.工程结构可靠度.北京:水利电力出版社,1984
    [167] 赵国藩.工程结构可靠性理论与研应用.大连:大连理工大学出版社,1996
    [168] 赵国藩,金伟良,贡金鑫.结构可靠度理论.北京:中国建筑工业出版社,2000
    [169] 赵林明,胡浩云等.多层前向人工神经网络. 郑州:黄河水利出版社,1999
    [170] 中华人民共和国交通部.重力式码头设计与施工规范(JTJ290-98).北京:人民交通出版社,1998
    [171] 周汉东.防波堤工程风险管理及工程保险.[硕士学位论文],天津:天津大学,2006
    [172] 周柔娥,程端华.港口工程结构可靠度:混凝土与碎石间摩擦系数统计分析.北京:人民交通出版社,1992:147-153
    [173] 周志华.神经网络及其应用.北京:清华大学出版社,2004

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700