软粘土土坡稳定性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国东部沿海地区的港口、码头大都修建在软粘土地基上,因此软粘土土坡稳定性是重要的工程课题。在港口、码头建设阶段,软粘土土坡的安全储备较低,抗剪强度指标的正确选取对安全性的评估非常重要,只有得到接近真实抗剪强度的强度指标才能准确地评估土坡稳定性。在软粘土土坡稳定性中如果采用室内固结快剪强度会过高估计欠固结土坡的稳定性;若采用快剪强度又过于保守;原位测试的十字板强度最可靠,但实际工程分析表明采用十字板强度计算的安全系数偏小,与实际工程度安全度不符。因此需对软粘土的强度指标的确定方法进行深入研究。本文密切结合《港口工程地基规范》修订工作,针对这一问题及与之相关的其它问题,进行了以下几个方面的研究探索工作:
     1.通过计算分析和比较证明,对于软粘土土坡安全系数的估算,抗剪强度指标的影响要大于计算模式的影响。
     2.通过分析十字板剪力仪的工作机理和软粘土土坡破坏时滑动面的特点,阐述了用十字板强度计算的安全系数偏小的原因:一是十字板强度主要反映的是土体竖直面上的强度,是强度的较小值;二是土坡破坏的滑动面是一斜面,十字板强度小于该滑动面上的抗剪强度。
     3.通过对十字板试验测试土体工作机理的研究,结合地基土的十字板强度随深度线性变化的特点,提出了由十字板强度推算土体强度指标的方法,在计算方法中考虑土体的各向异性,并引入侧压力系数以及平均固结度,认为该方法回归出的抗剪强度指标更接近软粘土土坡的真实强度。
     4.采用由十字板强度回归得到的抗剪强度指标对多个实际的软粘土土坡进行了分析计算,计算结果与实际工程非常吻合。同时,将该法用于新型箱筒型基础稳定性的分析计算,取得了较好的计算结果,说明了该法的广泛适用性。
     5.依据极限分析的上、下限定理提出了软粘土土坡破坏的渐进发展过程,并可以用于分析计算软粘土土坡破坏引起的对码头后方填土的影响范围。
In the east coastal areas of our country, most of the ports, docks and dikes are built on the soft clay foundation. Therefore, it is an important problem for the slope stability consisting of soft clay, which has lower shear strength. The proper shear strength parameters are needed to estimate the slope stability of the soft clay. However, because of the complex physical and mechanical properties, it is difficult to know exactly the shear strength of the soft clay. Among the common shear strength indexes, the shear strength parameters by CU test and those by UU test cannot be used to calculate the stability of the soft clay correctly. The former is usually over eatimated the safety of the slope, and the latter is consistently under estimated the safety of the same slope. The in-situ vane shear test is frequently performed to determine shear strength for slope stability analysis. But without considering the increase of the shear strength, the safety factors of stable slopes are always calculated less than 1.0. In this thesis, for the sake of revising the Code for Soil Foundations of Port Engineering, the shear strength for soft clay slope stability analysis is studied. The main research work consists of the following parts.
     1. Calculating results show that between the shear strength parameters and calculation methods, the safety factor of soft soil slopes are more sensitity to the shear strength parameters than to the calculation methods.
     2. According to the analysis of the work mechanism of the vane shear test and the characters of the sliding surfaces, it is shown the in-situ vane shear strength may not represent the shear strength mobilized along the analyzed sliding surfaces, which is the shear strength of the vertical plane. It is known to all that the shear strength on vertical plane is the smallest shear strength in all plane of the soil element. Therefore, the in-situ vane shear strength is less than the real shear strength on the slipping surface of the slope. Using the vane shear strength, the safety factor would be under estimated.
     3. Based on the analysis of the work mechanism of the vane shear test, and using the linear relation between the vane shear strength and the depth, this thesis presented a method of converting in-situ vane shear strength into undrained shear strength parameters. The Mohr-Coulomb theory is used on the vane shear strength calculation equation. The shear strength parameters determined for in-situ vane shear strength are subjected to statistical regression analysis, which is taken into consideration the anisotropy, the lateral compression coefficient and the average consolidation degree in the soft clay.
     4. Using the regressed shear strength parameters, the slope stability analysis method is performed for some existing slopes. Based on the results, it can be concluded that the presented method is effective to convert in-situ vane shear strength into undrained shear strength parameters for slope stability analysis. Simultaneously, the regressed analysis method is used to calculate the stability of cylindrical foundation. The results are closed to the practical engineering. Therefore, the method has a wide application.
     5. The upper bound and lower bound theorem is used to analyze the process of the progressive failure for the slope of the soft clay, and the calculation method is feasible to calculate the effective broken range of the slope of the soft clay.
引文
[1]陈仲颐,周景星,王洪谨,土力学,北京:清华大学出版社,1997,239-324.
    [2]王恭先,预防滑坡的原理和方法,滑坡文集编委会主编,滑坡文集(第十六集)北京:中国铁道出版社,2003,60-64.
    [3]王恭先,面向21世纪我国滑坡灾害防治的思考,兰州滑坡泥石流学术研讨会文集,兰州:兰州大学出版社,1998,1-8.
    [4]陈环,海河防潮闸工程中的滑坡,侯钊,陈环,钱征等编著,天津软土地基,天津:天津科学技术出版社,1987,235-248.
    [5]交通部,JTJ250-98,港口工程地基规范,北京:人民交通出版社,1998-04-20.
    [6]钱家欢,殷宗泽编著,土工原理与计算(第二版),北京:中国水利水电出版社,1996,302-339.
    [7]张天宝,土坡稳定分析和土工建筑物的边坡设计,成都:成都科技大学出版社,1987,52-78.
    [8] YANG H. HUAN,土坡稳定分析(包承纲,王清友等译),北京:清华大学出版社,1988,3-18.
    [9]华南理工大学等编,地基及基础,北京:中国建筑工业出版社,1991,156-179.
    [10]殷宗泽,吕擎峰,圆弧滑动有限元土坡稳定分析,岩土力学,2005,26(10):1525-1529.
    [11]陈艺南,潘华良,连云港滨海相软土工程特性,岩土工程技术,2001,(6):1-5.
    [12]郭连清,蔡友民,天津新港地区岸坡工程设计综述,侯钊,陈环,钱征等编著,天津软土地基,天津:天津科学技术出版社,1987,268-278.
    [13]陈环,边坡稳定计算理论和工程经验的分析,侯钊,陈环,钱征等编著,天津软土地基,天津:天津科学技术出版社,1987,278-289.
    [14]吴鸿云,陈新明,高宇清,十字板优化轴试验研究,2006,22(6):58-61.
    [15]孟令福,微型十字板的应用实践,水文地质工程地质,2004,31(5):112-112,114.
    [16]Bishop A.W., Bejerrum L., The relevance of the triaxial test to the solution of stability problems. ASCE Research Conference on Shear Strength of Cohesive soils, Boulder, CO.1960, 437~501.
    [17] Bjerrum L., Problem of soil mechanics and construction on soft clays and structurally unstable soil(collapsible, expansive and others): Proceeding 8th International Conference Soil Mechanics Foundation Engineering, Moscow,1973, 111-159.
    [18]Leroueil S., La Rochelle, P., Remarks on the stability of temporary cuts. Canadian Geotechnical Journal, 1990, 687-692.
    [19]陈祖煜,土质边坡稳定分析:原理·方法·程序,北京:中国水利水电出版社,2003,54-68.
    [20]Terzaghi K., Theoretical soil mechanics. John Wiley&Sons, Inc., New York, N. Y, 1943, 35-41.
    [21]王朝晖,颜志平,高玉峰等,边坡稳定理论的发展及研究现状,广东公路交通,2001增刊71:1-5.
    [22]肖柏,于学馥,边坡稳定性的计算方法及发展方向,矿山技术,1989,6:13-16.
    [23] Fredlund D. G., Krahn J ., Comparison of slope stability methods of analysis. Canadian Geotechnical Journal, 1977, 14:429-439.
    [24]Ching R. K. H., Fredlund D.G., some difficulties associated with the limit equilibrium method of slices. Canadian Geotechnical Journal, 1983, 20:661-672.
    [25]John Krahn, The limits of limit equilibrium analysis. Canadian Geotechnical Journal, 2003, 40: 643-660.
    [26]钱家欢,土力学及地基工程,北京:水利电力出版社,1983,103-115.
    [27]冯国栋,土力学,北京:水利电力出版社,1984,168-174.
    [28]徐东强,刘熙媛,李艳春,土力学,北京:中国建材工业出版社,2006,190-200.
    [29]陈祖煜,土坡稳定分析通用条分法及其改进,岩土工程学报,1983,5(4):11-27.
    [30]Bishop A. W., The use of the slip circle in stability analysis of slopes. Geotechnique, 1955, 5(1):7-17.
    [31]Morgenstern N. R., Price V. E., The analysis of the stability of general slipe surfaces. Geotechnique, 1965, 15 (1):70-93.
    [32]Spencer E., A ., Method of analysis of the stability of embankments assuming parallel inter-slice forces. Geotechnique, 1967, 17(1):1521-1534.
    [33]Janbu N., Slope stability computations. In: Embankment-dam engineering, Casagrande volume, Stockholm, London:John Wiley, 1973, 47 -86.
    [34]王复来,土石坝边坡的滑动稳定计算,水利水电技术,1979,10:25-36.
    [35]Sarman S. K., Stability analysis of embankments and slopes. Geotechinique, 1973, 23(3):423-433.
    [36]潘家铮,建筑物的抗滑稳定和滑坡分析,北京:水利出版社,1980,121-138.
    [37]张天宝,土坡稳定分析圆弧法的数值解,水利水电技术,1983,7:68-79.
    [38]孙君实,条分法的数值分析,岩土工程学报,1984,6(2):1-12.
    [39]黄戡,边坡稳定性分析及计算程序设计:[硕士学位论文],中南大学,2004.
    [40]Johnson S. J., Analysis and design relating to embankments. Proc Conf Analysis and Design Geotech Engng, ASCE, Austin,Texas,1974, 2: 1- 48.
    [41]张旭辉,龚晓南,边坡稳定影响因素敏感性的正交法计算分析,中国公路学报,2003,16(1):36-39
    [42]Bishop A.W., The influence of progressive failure on the choice of the method of stability. Geotechnique, 1971, 21(2):168-172.
    [43]Bishop A.W., Morgenstern N.R., Stability coefficients for earth slopes., Geotechnique, 1960, 10 (4): 129-150.
    [44]Bishop A.W., The strength of soils as engineering materials. Geotechnique, 1966, 16 (2):91-128.
    [45]Chen W. F., Giger, M.W., Limit analysis of stability of slopes. Soil Mech Fdns Div, ASCE, 1971, 97 (1):19-26.
    [46]Chen W. F., Snitbhan, N., On slip surface and slope stability analysis. Soils and Foundations, 1975, 15(3):41-49.
    [47]Janbu N., Application of composite slip surface for stability analysis. Proc Euro Conf Stability of Earth Slopes, Stockholm,1954, 3:43-49.
    [48]Morgenstern N.R., Price, V.E., A numerical method for solving the equation soft stability general slip surfaces. Computer, 1967, 9 (4):388-393.
    [49]陈祖煜,土力学经典问题的极限分析上、下限解,岩土工程学报,2002,24(1) 1-11.
    [50]丰定详,吴家秀,葛修润,边坡稳定性分析中几个问题的探讨,岩土工程学报,1990,12 (3):1-9.
    [51]孙君实,条分法的提法及其数值计算的最优化方法,水力发电学报,1983.
    [52]Zienkiewicz O.C., Taylor R.L., Finite Element Method: Volume 1, The Basis. Fifth Edition.Butterworth-Heinemann,2000.
    [53]Griffiths D.V., Lane P.A., Slope stability analysis by finite elements, Geotechnique, 1999, 49(3):387-403.
    [54] Duncan J.M., State of the art: limit equilibrium and finite-element analysis o f slopes. Journal of Geotechnical Engineering, 1996, 122(7):577-596.
    [55]Dawson E.M., Roth W.H., Drescher A., Slope stability analysis by strength reduction. Geotechnique, 1999, 49(6):835-840.
    [56]Ugai K., A method of calculation of total factor of safety of slopes by elastic-plastic FEM. Soils and Foundations, JGS, 1989, 29(2):190-195.
    [57]宋二样,高翔,邱玥,基坑土钉支护安全系数的强度参数折减有限元法,岩土工程学报,2005,27(3):258-263.
    [58]Matsui T., San K., Finite element slope stability analysis by shear strength reduction technique. Soils and Foundations, 1992, 32(1): 59-70.
    [59]栾茂田,武亚军,年廷凯,强度折减有限元法中边坡失稳的塑性区判据及其应用,防灾减灾工程学报,2003,23(3):1-8.
    [60]张鲁渝,郑颖人,赵尚毅等,有限元强度折减系数法计算土坡稳定安全系数的精度研究,水利学报,2003,(1):21-27.
    [61]赵尚毅,郑颖人,张玉芳,极限分析有限元法讲座——有限元强度折减法中边坡失稳的判据探讨,岩土力学,2005,26(2):332-336.
    [62]刘金龙,栾茂田,赵少飞等,关于强度折减有限元方法中边坡失稳判据的讨论,岩土力学,2005,26(8):1345-1348.
    [63]钱家欢,土力学及地基工程,北京:水利电力出版社,1983,115-121.
    [64]高大钊,袁聚云,土质学与土力学,北京:人民交通出版社,1986,165-187.
    [65]刘祖德,陆士强,包承纲等,土的抗剪强度特性,土的抗剪强度与本构关系学术会议水平发展报告之一,岩土工程学报,1986,8(1):18-25.
    [66]刘祖德,土的抗剪强度的取值标准问题,岩土工程学报,1987,9(2):11-19.
    [67]陈愈炯,吴有茗,胡中雄等,工程实践中土体抗剪强度的确定,土的抗剪强度与本构关系学术会议水平发展报告之四,岩土工程学报,1986,8(1):106-119.
    [68]汪益敏,苏卫国,土的抗剪强度指标对边坡稳定分析的影响,华南理工大学学报(自然科学版),2001,29(1):22-25.
    [69]魏汝龙,张凌,稳定分析中的强度指标问题,岩土工程学报,l993,l5(5):24-30.
    [70]汪洋,王成华,土坡稳定分析中强度理论的应用及考虑因素,岩土工程师,2001,13(1):14-16.
    [71] Burland J B, On the compressibility and shear strength of natural clays. Geotechnique, 1990, 40(3):329-378.
    [72]周福田主编,土工试验及地基承载力检测,北京:人民交通出版社,2000,68-81.
    [73]石林珂等编著,岩土工程原位测试,郑州:郑州大学出版社,2003,62-70.
    [74]刘润,闫澍旺,软粘土边坡稳定性分析中十字板强度取值的探讨,岩石力学与工程与学报,2005,24(8):1422-1426.
    [75]胡展飞,傅艳蓉,基于不同初始含水量的软粘土抗剪强度的试验研究,上海地质,2001,(1):38-42.
    [76]杨嵘昌,饱和粘性土任意固结度的不排水抗剪强度,南京建筑工程学院学报(自然科学版),2001,(4):20-24.
    [77]赵青,黄质宏,土质边坡抗剪强度试验结果分析,贵州工业大学学报(自然科学版),2003,32(2):92-97.
    [78]于清扬,赵淑云,詹军,抗剪强度参数反分析取值研究,岩土工程师,2001,13(3):7- 9.
    [79]孙林柱,杨芳,软土抗剪强度指标c和φ值的优化计算,工业建筑,2002,(4):33-36.
    [80]林鲁生,蒋刚,白世伟等,土体抗剪强度参数取值的统计分析方法,岩土力学,2003,24(2):277-280.
    [81]夏明诚,关于抗剪强度c、φ值统计方法的思考,岩土力学,1997,18(1):65-72.
    [82]周霭如,官士鸿,Visual Basic程序设计教程,北京:清华大学出版社,2000,35-147.
    [83]李兰友、庄国瑜、秦卫光,Visual Basic绘图与图像处理,北京:人民邮电出版社,2001,23-87.
    [84]中交第一航务工程勘察设计院,天津港南疆通用散货泊位堆场工程地质勘察报告,2001.
    [85]黄文熙,土的工程性质,北京:水利电力出版杜,1983,277-301.
    [86]孙更生,郑大同等,软土地基与地下工程,北京:中国建筑工业出版社,156-175.
    [87]彭钜新,航道工程边坡稳定计算中淤泥现场十字板剪切试验指标应用的探讨,水运工程,2002,(8):60-62.
    [88]林孔锱,预压地基的强度增长与稳定计算问题,岩土工程学报,1998,20(1):93-96.
    [89]赵成刚,白冰,王运霞,土力学原理,北京:清华大学出版社,北京交通大学出版社,2004,180-220.
    [90]Leroueil S., Vaughan P R., The general and congruent effects of structure in natural soils and weak rocks.Geotechnique,1990,40 (3):467-488.
    [91]Leroueil S., Critical state soil mechanics and the behaviour of real soils. Proceedings of the International Symposium on Recent Developments in Soil and Pavement Mechanics(Almeida M S S ed.),Rio de Janeiro,1997:41-80
    [92]Leroueil S., Natural slopes and cuts: movement and failure mechanisms. Geotechnique, 2001, 51 (3): 197-243.
    [93]Bjerrum L., Embankment on soft ground. Proc Speciality Conf Performance Earth and Earth-Supported Structures, ASCE, Lafayette, Indiana,1972,2: 1- 54.
    [94]Terzaghi, K., Undisturbed clay samples and undisturbed clays. Boston Soc Civ Engrs,1941,28 (3):211-231.
    [95]Taylor D.W., Fundamentals of soil mechanics. NewYork:John Wiley and Sons,1948.
    [96]Peck R.B., Lowe JⅢ, Session 4: Shear strength of undisturbed cohsive soils,Moderator’s report. Research Conf Shear Strength Cohesive Soils, ASCE, Boulder, Colorado,1960:1137-1140.
    [97]Skempton A.W., Long-term stability of clay slopes. Geotechnique,1964,14 ( 2):77-101.
    [98]Bjerrum L., Progressive failure in slopes of overconsolidated plastic clay and clay shales. Soil Mech Fdns Div,ASCE,1967b, 93( 5):3- 49.
    [99]Mitchell J.K., Fundamentals of soil behavior, New York:John Wiley and Sons,1976.
    [100]Lo K.Y., The influence of mechanical disturbance on the consolidation of clays, Proc 3rd South east Asian Conf Soil Engng(Lumb Ped), Hong Kong,1972:223-232.
    [101]Skempton A.W., Geotechnical aspects of the Carsington Dam failure. Proc l Ith lnt Conf Soil Mech Fdn Engng, San Francisco, 1985,5: 2581-2591.
    [102]张学言,闫澍汪,岩土塑性力学基础(第2版),天津:天津大学出版社,2006,4-8,72-78.
    [103]郑颖人,沈珠江,龚晓南,岩土塑性力学原理(广义塑性力学),北京:建筑工业出版社,2002,15-47.
    [104]朱伯芳,有限单元法原理与应用(第2版),北京:中国水利水电出版社,1998,161-172.
    [105]王勖成,邵敏,有限单元法基本原理和数值方法,北京清华大学出版社,2001.
    [106]张孟喜,陈昭,土坡稳定分析的有限元追踪法,岩土工程学报,1991,13(6):35-41.
    [107]Lechman J.B., Grifiths D.V., Analysis of the progression of earth slopes by finite elements. Proc Session Geo-Denver2000 (Griffiths D V, Fenton G A and Martin T R eds), Geo- Institute ASCE, Denver, 2000, 250-265.
    [108]Wroth C.P., Simpson B., An induced failure at a trial embankment: Part II Finite element computations. Proc Speciality Conf Performance Earth and Earth-Supported Structures, ASCE, Lafayette, Indiana, 1972,1.1:65-79.
    [109]朱以文,蔡元奇,徐晗,ABAQUS与岩土工程分析,北京:中国图书出版社,2005,156-165.
    [110]Duncan J.M. State of the art: limit equilibrium and finite element analysis of slopes. Geotech Engng, ASCE, 1996,122(7 ):577-596.
    [111]沈珠江,土体结构性的数学模型——21世纪土力学的核心问题,岩土工程学报,1996,18(1)95-97.
    [112]龚晓南,土塑性力学,杭州:浙江大学出版社,1990,35-67.
    [113] Ted belytschko, Wing Kam Liu, Brian Moran编著,(庄茁译),连续体和结构的非线性有限元,北京:清华大学出版社,2002,35-47.
    [114]ABAQUS/Standard User's Manual. U.S.A, Hibbitt, Karlsson& Sorensen, Inc,2002.
    [115]庄茁,张帆,岑松等,ABAQUS非线性有限元分析与实例,北京:科学出版社,2005,52-65.
    [116]戴自航,卢才金,边坡失稳机理的力学解释,岩土工程学报,2006,28(10):1191-1197.
    [117]Drucker D.C., Prager W., Soil mechanics and plastic analysis or limit design. Quart Appl Math, 1952, 10(2):157-165.
    [118]郭怀志,马启超等,岩体初始应力场的分析方法,岩土工程学报,1983,5( 3):68 -71.
    [119]吴春秋,非线性有限单元法在土体稳定分析中的理论及应用研究,[博士学位论文],武汉大学,2004.
    [120]王小敏,朱爱军,王宏润等,有限元法中开挖释放荷载计算方法的研究,水力发电,2005,31(7):48-50.
    [121]王勇,殷宗泽,有限元计算深开挖中挖方等效荷载的分析,河海大学学报,1998,26(5):7l-74.
    [122]高俊合,赵维炳,李兴文,深开挖有限元分析中释放荷载模拟——三种常用方法比较及改进的Mana法,河海大学学报,1999,27(1):47-52.
    [123]章青,有限元分析中开挖释放荷载的正确计算,河海大学学报,1999,27(3):1l2-1l5.
    [124]王敏强,许原,有限元分析中开挖释放荷载计算的讨论,武汉大学学报,200l,34(1):56-59.
    [125]李春忠,陈国兴,樊有维,基于ABAQUS的强度折减有限元法边坡稳定性分析,防灾减灾工程学报,2006,26(2):207-212.
    [126]Zienkiewicz O.C., Humpheson C, Lewis R W. Associated and non-associated visco-plasticity and plasticity in soil mechanics. Geostechnique, 1975, 25(4):671-689.
    [127]年廷凯,桩—土—边坡相互作用数值分析及阻滑桩简化设计方法研究,[博士学位论文],大连理工大学,2005.
    [128]杜平安,有限元网格划分的基本原则,机械设计与制造,2002,2(1):34-36.
    [129]王钊,陆士强,强度和变形参数的变化对土工有限元计算的影响,岩土力学,2005,26(12):1892-1894.
    [130]邓楚键,何国杰,郑颖人,基于M-C准则的D-P系列准则在岩土工程中的应用研究,岩土工程学报,2006,28(6):735-739.
    [131]张鲁渝,时卫民,郑颖人,平面应变条件下土坡稳定有限元分析,岩土工程学报,2002,24(4):487-490.
    [132]Wright S.G., Kulhawy F.H., Duncan J.M. Accuracy of equilibrium slope stability analysis. J. Soil Mech. and FDN. Div.1973.99 (SM10):783-791.
    [133]Kim J.Y., Lee S.R., An improved search strategy for the critical slip surface using finite element stress fields, Computers and Geotechnics,1997,21(4): 295-313.
    [134]Serge Leroueil, Mechanisms of slope failure. Nanyang Technological University NTU-PWD Geotechnical Research Center. 2000, 21-44.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700