有机磷致鸡迟发性神经病相关差异表达蛋白筛选及其诱发机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究目的与背景:
     有机磷化合物致迟发性神经病(organophosphorus easter-induced delayedneuropathy,OPIDN)是指某些有机磷化合物经一次性大剂量接触或者反复多次接触,经过7-14天(或更长)的潜伏期出现的,以肢体感觉异常、运动障碍、共济失调、麻痹甚至瘫痪为主要临床特征的一类后果严重的神经退行性疾病。磷酸三邻甲苯酯(tri-o-cresyl phosphate,TOCP)被广泛用作增塑剂,软化剂,阻燃剂及机油添加剂,因为其烷基位于苯环的邻位上,是磷酸三甲苯酯三个异构体中唯一可以诱发OPIDN的化合物。目前,因为OPIDN发生确切机制不清楚而尚无有效地治疗方法,因此OPIDN的发生机制得到了广泛的关注。有机磷化合物染毒早期后除了诱发迟发神经病之外,还会表现出急性胆碱能危象和中间综合征,和以上三种病变发生机制相关的蛋白在TOCP染毒早期均会出现异常表达,很难区分表达改变的蛋白中哪些与OPIDN发生有关。国内外研究已证明在TOCP染毒前皮下注射苯甲基磺酰氟(Phenylmethanesulfonyl fluoride,PMSF)可以有效的预防OPIDN发生,因此我们推测在TOCP染毒组表达发生改变,但同时在PMSF干预组表达没有发生改变的蛋白可能与OPIDN发生机制有关。为了筛选出与OPIDN发生发展机制相关的蛋白从而帮助科学家们进一步研究OPIDN的分子机制,本次实验利用PMSF特性,使用蛋白质双向电泳结合质谱分析技术通过比较TOCP染毒组,PMSF干预组及对照组中蛋白表达筛选OPIDN相关蛋白;在筛选出的差异表达蛋白中,由于谷氨酰胺合成酶(glutamine synthetase,GS)在调控谷氨酸代谢中起到关键作用,进而影响细胞内钙离子浓度,引起我们极大兴趣,我们对GS的表达进行验证,并检测另一关键酶GLS基因和蛋白的表达水平。同时也对GS活性,细胞外谷氨酸和谷氨酰胺浓度及细胞内钙离子浓度进行了测定,以期了解TOCP染毒后,GS的表达是否影响其所调控的谷氨酸/谷氨酰胺代谢,并进一步影响细胞内钙离子浓度。
     研究方法:
     1、TOCP染毒诱发鸡OPIDN模型的制备
     成年罗曼母鸡随机分为TOCP染毒组,PMSF干预组和对照组。其中TOCP染毒组浓度分别为1000mg/kg和750mg/kg,经灌胃一次性给予实验鸡;PMSF干预组先将PMSF按浓度40mg/kg给鸡皮下注射,24小时后,再经灌胃一次性给鸡1000mg/kg的TOCP;而对照组则给予等量安慰剂。
     2、OPIDN症状观察及评分
     使用6分制来评价OPIDN临床症状。
     3、OPIDN期间神经组织超微结构的观察
     在染毒第5天和第21天分别断头处死鸡(3只/组/时间点),制备电镜切片并电镜下观察,拍照。
     4、蛋白质双向电泳及质谱分析
     5、生物信息学分析
     将质谱分析鉴定出来的与OPIDN发生机制相关的蛋白质按NCBI蛋白质数据库序列号输入到DAVID网站进行Gene Ontology富集分析和pathway分析。
     6、筛选蛋白基因水平验证及对GLS基因表达测定:
     Real-time RT-PCR技术对蛋白质双向电泳筛选出来的OPIDN相关的差异表达蛋白在基因水平进行验证并对GLS基因表达进行检测。
     7、GS和GLS蛋白表达测定
     ELISA技术对TOCP染毒鸡脑及脊髓组织GS和GLS蛋白表达进行检测。
     8、谷氨酰胺合成酶活性及谷氨酸与谷氨酰胺浓度测定
     取鸡脑及脊髓组织制备匀浆,分别应用相应的试剂盒进行测定。
     9、细胞内钙离子浓度测定
     取鸡脑及脊髓组织制备细胞悬液,利用Fluo3-AM检测细胞内钙离子浓度。
     研究结果:
     1、TOCP染毒后鸡行为学改变:
     临床症状随着时间的延长而渐进性加重,最先出现轻微步履蹒跚,随后染毒组鸡出现下肢无力,行动迟缓现象,并进一步加重为下肢震颤,活动时肢体关节经常突然打弯和臀部着地。而PMSF干预组鸡与对照组鸡实验期间则无任何OPIDN异常表现。
     2、OPIDN期间神经组织超微结构的改变
     TOCP组染毒5天后,发现个别线粒体有轻微肿胀,有轴突内微丝微管排列怀疑发生改变,但是其他细胞器没有明显异常改变。TOCP组染毒21天后,脑和脊髓里神经元细胞退行性改变明显,内质网肿胀,线粒体异常改变,细胞骨架排列紊乱,髓鞘板层分离,疏松不紧密并有气泡样改变。
     3、蛋白质双向电泳结合质谱分析对OPIDN相关蛋白筛选结果
     (1)蛋白质双向电泳筛选OPIDN机制相关蛋白质点
     在染毒5天鸡脑中,表达改变的OPIDN相关蛋白质点为102个,其中上调63个,下调为39个。而染毒21天时,表达改变的OPIDN机制相关蛋白质点为150个,其中上调81个,下调为69个。
     在染毒5天鸡脊髓中,表达改变的OPIDN相关蛋白质点为43个,其中上调24个,下调为19个。而染毒21天时,表达改变的OPIDN机制相关蛋白质点为86个,其中上调46个,下调为40个。
     (2)质谱分析鉴定鸡神经系统OPIDN相关蛋白
     在鸡脑中共鉴定蛋白10个,表达上调的蛋白分别是:EIF5A2,DSTN,PSMA1和CKB。表达下调的蛋白分别是:GS,GST1,LDHB,HOMER1,VDAC2和Hsc70。
     在鸡脊髓中共鉴定蛋白10个,表达上调的蛋白是NEFM。表达下调的蛋白分别是:HSPB1,LMW-PTP,ETFa,STMN1,MDH1,THAP5,MBP,SNCA和VAT1。
     (3)Gene Ontology和pathway分析结果
     通过GO富集分析发现质谱鉴定出的蛋白主要定位在胞浆(GO:0005737)及线粒体(GO:0005739)中,参与的生物过程和分子功能主要有蛋白分解调控(GO:0043244),细胞骨架组合调控(GO:0051493),细胞内氨基酸及衍生物代谢(GO:0006519),actin蛋白解聚调控(GO:0030834)及氧化应激调控(GO:0016491)等。
     (4)Real-time RT-PCR基因验证结果
     对蛋白质双向电泳筛选出的蛋白LDHB,HSPA8,CKB,PSMA1,STMN1,THAP5,MBP,NEFM和SNCA在基因水平进行验证,OPIDN相关蛋白在基因水平与蛋白水平变化一致。
     4、TOCP染毒致OPIDN对GS和GLS表达及谷氨酸/谷氨酰胺循环的影响
     (1)TOCP染毒诱导成年鸡OPIDN对GS和GLS基因和蛋白表达的影响
     TOCP染毒5天时,与对照组和PMSF干预组相比较,GS蛋白和基因在TOCP组表达均显著下降(在鸡脑中P<0.01,在鸡脊髓中P<0.05),然而TOCP染毒21天时,与对照组和PMSF干预组相比较,GS蛋白在TOCP组鸡脑和脊髓中表达没有明显变化。TOCP染毒5天和染毒21天两个时间点,与对照组和PMSF干预组相比较,GLS蛋白在TOCP组鸡脑和脊髓中表达都没有明显改变。
     (2)谷氨酰胺合成酶活性测定结果
     TOCP染毒5天时,谷氨酰胺合成酶活性在TOCP组与对照组比较表达显著下降,(在鸡脑和脊髓中P<0.05);然而TOCP染毒21天时,与对照组和PMSF干预组相比较,谷氨酰胺合成酶活性在TOCP组鸡脑和脊髓中表达没有明显变化。
     (3)谷氨酸和谷氨酰胺含量测定结果
     TOCP染毒5天时,与对照组和PMSF干预组相比较,谷氨酸含量在TOCP组表达显著上升(在鸡脑中P<0.01,在鸡脊髓中P<0.05),相反,谷氨酰胺含量在TOCP组表达显著下降(在鸡脑中P<0.01,在鸡脊髓中P<0.05),然而TOCP染毒21天时,与对照组和PMSF干预组相比较,谷氨酸与谷氨酰胺含量在TOCP组鸡脑和脊髓中表达没有明显变化。
     (4)细胞内钙离子含量测定结果
     TOCP染毒5天时,细胞内钙离子含量在TOCP组与对照组比较表达显著上升(在鸡脑中和鸡脊髓中P<0.05),然而TOCP染毒21天时,与对照组和PMSF干预组相比较,细胞内钙离子含量在TOCP组鸡脑和脊髓中表达没有明显变化。
     结论:
     1、TOCP暴露可上调鸡脑组织EIF5A2、DSTN、PSMA1和CKB及下调GST1、LDHB、HOMER1、VDAC2和Hsc70。
     2、TOCP暴露可上调鸡脊髓组织NEFM及下调HSPB1,LMW-PTP,ETFa、STMN1、MDH1、THAP5、MBP、SNCA和VAT1。
     3、些OPIDN相关蛋白主要定位在胞浆及线粒体中,主要参与蛋白分解调控,细胞骨架组合调控,细胞内氨基酸及衍生物代谢,actin蛋白解聚调控及氧化应激调控等生物过程。
     4、TOCP在暴露早期可诱导鸡神经组织GS表达水平和活性显著下降。
     5、TOCP在暴露早期可诱导鸡神经组织谷氨酸水平显著升高。
     6、TOCP在暴露早期可诱导鸡神经组织谷氨酰胺水平显著下降。
     7、TOCP在暴露早期可诱导鸡神经组织细胞钙离子浓度显著升高。
     8、TOCP暴露早期鸡神经组细胞钙离子浓度显著升高可能与GS活性下降所导致的谷氨酸水平显著升高有关。
     9、GS活性抑制所导致的谷氨酸/谷氨酰胺循环障碍和钙离子浓度显著升高可能与TOCP暴露鸡诱发OPIDN机制密切相关。
Background and Objective
     Organophosphate-induced delayed neuropathy (OPIDN) is a well-recognizedserious neuropathy induced by organophosphorus compounds (OPs) during2–3weeksafter acute exposure. Tri-ortho-cresyl-phosphate (TOCP) is widely used as additive orsoftener and has been believed to be associated with OPIDN. The mechanism ofOPIDN is still unclear, so OPIDN has been increasingly concerned.Because enoughdoses of TOCP administered to the laboratory animals not only promoted the initiationof OPIDN but also induced immediate neurotoxic action at the same time, it is difficultto identify the biochemical changes resulted from acute toxicity with those from OPIDN.It has been documented that pretreatment of Phenylmethylsulfonyl fluoride (PMSF)prior to OPs administration could prevent the signs and symptoms of the delayedneuropathy in hens. The biochemical changes both related to OPIDN and acute toxicityoccur when only TOCP is administered to hens, but the biochemical changes related toacute toxicity occur alone when hens exposed to TOCP followed by PMSF. In thepresent study, to screen the changed protein related to OPIDN and help researchersfurther explore the molecule mechanism of OPIDN, Two-dimensional polyacrylamidegel electrophoresis (2D-PAGE) and mass spectrometry (MS) were used to investigatethe disturbance of proteins in the brain of hens in OPIDN. As the result of ourproteomic analysis, we found that glutamine synthetase (GS) was showed dramaticallydecreased expression in OPIDN. Because GS play an important role in intracellularCa~(2+)homeostasis, we further studied the expression of GS by real time RT-PCR andELISA, and the expression of another protein glutaminase (GLS), which were notidentified by our2D-PAGE but was thought to be closely related to the physiologicalfunction of GS. At last, we also examined the levels of glutamate (Glu) and glutamine (Gln), and the concentration of intracellular Ca~(2+).
     Methods
     1. Animal model of OPIDN: The hens were randomly divided into four groups.TOCP group was treated with TOCP by gavage at a single dosage of1000mg/kg and750mg/kg respectively, and control group was given an equivalent volume vehicle bygavage while hens in the PMSF+TOCP group were subcutaneously injected with40mg/kg PMSF followed by1000mg/kg TOCP24h later.
     2. Neurological behavior scores: OPIDN neurological signs were assessed by asix-point graded scale.
     3. The ultrastructural alterations in OPIDN: The samples cut into50nm thicksections and examined by transmission electron microscopy.
     4. Two-dimensional electrophoresis and image analysis and Mass SpectrometryAnalysis.
     5. Bioinformatics analysis: The GO category and pathway analysis were carriedout statistical analysis tools of DAVID.
     6. Real-time RT-PCR was used to determination the expression of the proteinsrelated OPIDN and GLS.
     7. ELISA was used to determination the expression of GS and GLS.
     8. Measurement of the activity of GS and the level of Glu and Gln.
     9. Measurement of intracellular Ca~(2+)level.
     Results
     1. Delayed neurotoxic symptoms: Abnormal gaits progressed in severity with timeand hens were nearly or completely paralyzed by the end of21-day experimental period.However, no clinical signs of delayed neuropathy were observed in hens of the othertwo groups during the whole experiment period.
     2. Effects of TOCP on morphological changes in OPIDN: The changes includedswelling and vacuolation of mitochondria, the fragmentation of microtubule andneurofilaments in axon, etc.
     3.2D-PAGE combined MS analysis of protein expression in hens:
     (1)2D-PAGE analysis of protein expression in hens
     In the brain:102spots of the differentially expressed proteins closely related toOPIDN were found in the TOCP group on day5, which63spots were upregulated and39spots were downregulated. On day21,150protein spots were found, which81spotswere upregulated and69spots were downregulated.
     In the spinal cord:43spots of the differentially expressed proteins closely relatedto OPIDN were found in the TOCP group on day5, which24spots were upregulatedand19spots were downregulated. On day21,86protein spots were found, which46spots were upregulated and40spots were downregulated.
     (2) Identification of proteins closely related to the OPIDN in brains of hens
     In the brain: The upregulated proteins were EIF5A2, DSTN, PSMA1and CKB.And the dowregulated proteins were GS, LDHB, HOMER1, VDAC2, Hsc70andGSTA.
     In the spinal cord: The upregulated protein was NEFM. And the dowregulatedproteins were HSPB1,LMW-PTP, ETFa, STMN1, MDH1, THAP5, MBP, SNCA andVAT1.
     (3) The results of GO category: The main GO categories are GO:0005737~cytoplasm, GO:0005739~mitochondrion, GO:0043244~regulation of proteincomplex disassembly, GO:0051493~regulation of cytoskeleton organization, GO:0006519~cellular amino acid and derivative metabolic process, GO:0030834~regulation of actin filament depolymerization and GO:0016491~oxidoreductase activity.
     (4) Gene expression of the identified protein
     LDHB,HSPA8,CKB,PSMA1,STMN1,THAP5,MBP,NEFM,SNCA werechosen to study whether the differential level of proteins was related to the differentmRNA level and the results were consistent with those from2-DE.
     4. Impact of TOCP exposure on the expression of GS and GLS, and theglutamate–glutamine cycle:
     (1)Expressions of GS and GLS after TOCP exposed: the gene and proteinexpression of GS in the CNS of hens decreased significantly in the TOCP groupcompared to control group or to PMSF+TOCP group on day5. However, there was nosignificant difference in the expression of GS between control group and PMSF+TOCPgroup on day21, and there was no significant difference in the expression of GLSbetween control group and PMSF+TOCP group on day5or day21.
     (2) The activity of GS after TOCP exposed: The activity of GS in the CNS of hensdecreased significantly in the TOCP group compared to control group on day5.However, there was no significant difference in the expression of GS between controlgroup and PMSF+TOCP group on day21.
     (3) The levels of Glu and Gln after TOCP exposed: On day5, Glu level in CNS of hens was significantly increased in TOCP group compared to control and PMSF+TOCPgroups. There were no significant differences in the Glu level among the three groupson day21. In contrast, Gln level in CNS of hens was significantly in TOCP groupcompared to control and PMSF+TOCP groups. However, there was no significantdifference in the Gln level between control group and PMSF+TOCP group on day5orday21.
     (4) The level of the intracellular Ca~(2+)in brains of hens: Intracellular level of Ca~(2+)in the CNS of hens was significantly increased in TOCP group compared to controlgroup. However, there was no significant difference in the intracellular level of Ca~(2+)inthe brains of hens among the three groups on day21.
     Conclusions
     1. Ten proteins were identified in the brain, which were EIF5A2, DSTN, PSMA1,CKB, GS, LDHB, HOMER1, VDAC2, Hsc70and GSTA.
     2. Ten proteins were identified in the spinal cord, which were NEFM, HSPB1,LMW-PTP, ETFa, STMN1, MDH1, THAP5, MBP, SNCA and VAT1.
     3. The results of GO category indicated that proteins related OPIDN were mainlyin cytoplasm and mitochondrion, and involved in regulation of protein complexdisassembly, regulation of cytoskeleton organization, regulation of actin filamentdepolymerization and oxidoreductase activity;
     4. The expression and the activity of GS were down regulation in the early stageafter TOCP exposure;
     5. The level of Glu was up regulation in the early stage after TOCP exposure;
     6. The level of Gln was down regulation in the early stage after TOCP exposure;
     7. The intracellular Ca~(2+)homeostasis was up regulation in the early stage afterTOCP exposure.
     8. TOCP exposure might induce downregulation of GS and increase in glutamatelevels in the brains of hens in the early stage after administration.
     9. The increased extracellular glutamate level in brain of hens exposed to TOCPmay be associated with the downregulated expression of GS.
引文
[1]王芳,岳凤霞,杨守芳.乐果诱导的迟发性神经病大鼠模型的实验研究[J].中国实用神经疾病杂志,2007,02):7-9.
    [2] JOKANOVIC M, KOSANOVIC M, BRKIC D, et al. Organophosphate induceddelayed polyneuropathy in man: an overview [J]. Clin Neurol Neurosurg,2011,113(1):7-10.
    [3] MOU D L, WANG Y P, SONG J F, et al. Triorthocresyl phosphate-inducedneuronal losses in lumbar spinal cord of hens--an immunohistochemistry andultrastructure study [J]. Int J Neurosci,2006,116(11):1303-16.
    [4] LOTTI M, BECKER C E, AMINOFF M J. Organophosphate polyneuropathy:pathogenesis and prevention [J]. Neurology,1984,34(5):658-62.
    [5] LOTTI M. The pathogenesis of organophosphate polyneuropathy [J]. Crit RevToxicol,1991,21(6):465-87.
    [6] LOTTI M, MORETTO A. Organophosphate-induced delayed polyneuropathy [J].Toxicol Rev,2005,24(1):37-49.
    [7] CHANG P-A. Effect of tri-o-cresyl phosphate on cytoskeleton in humanneuroblastoma SK-N-SH cell [J]. Molecular and Cellular Biochemistry,2006,290(7.
    [8] MORGAN J P, PENOVICH P. Jamaica ginger paralysis. Forty-seven-yearfollow-up [J]. Arch Neurol,1978,35(8):530-2.
    [9] VERONESI B, PADILLA S. Phenylmethylsulfonyl fluoride protects rats fromMipafox-induced delayed neuropathy [J]. Toxicol Appl Pharmacol,1985,81(2):258-64.
    [10]CARRINGTON C D, BROWN H R, ABOU-DONIA M B. Histopathologicalassessment of triphenyl phosphite neurotoxicity in the hen [J]. Neurotoxicology,1988,9(2):223-33.
    [11]SONG F, YAN Y, ZHAO X, et al. Phenylmethylsulfonyl fluoride protects againstthe degradation of neurofilaments in tri-ortho-cresyl phosphate (TOCP) induceddelayed neuropathy [J]. Toxicology,2009,262(3):258-64.
    [12]PIAO F Y, KITABATAKE M, XIE X K, et al. Effects of various post-treatment byphenylmethylsulfonyl fluoride on delayed neurotoxicity induced by leptophos [J]. JToxicol Sci,1995,20(5):609-17.
    [13]PIAO F Y, XIE X K, YAMAMOTO H, et al. Effect of phenylmethylsulfonylfluoride administration prior to and following leptophos administration onelectrolyte concentration and enzyme activity in hen serum [J]. Environ Health PrevMed,1996,1(1):44-50.
    [14]傅真真,张振玲,刘毅.鸡有机磷中毒迟发性神经病的模型建立及病理研究[J].中国工业医学杂志,2009,02):95-7.
    [15]PIAO F, YAMAUCHI T, MA N. The effect of Calcicol as calcium tonic ondelayed neurotoxicity induced by organophosphorus compounds [J]. Toxicol Lett,2003,143(1):65-71.
    [16]刘安明.农村口服农药自杀状况调查[J].湖北预防医学杂志,2003,01):33.
    [17]ABOU-DONIA M B. Organophosphorus ester-induced delayed neurotoxicity [J].Annu Rev Pharmacol Toxicol,1981,21(511-48.
    [18]MORETTO A, CAPODICASA E, LOTTI M. Clinical expression oforganophosphate-induced delayed polyneuropathy in rats [J]. Toxicol Lett,1992,63(1):97-102.
    [19]ABOU-DONIA M B, LAPADULA D M. Mechanisms of organophosphorusester-induced delayed neurotoxicity: type I and type II [J]. Annu Rev PharmacolToxicol,1990,30(405-40.
    [20]中华人民共和国国家质量监督检验检疫总局,中国国家标准化管理委员会.化学品(有机磷化合物)急性染毒的迟发性神经毒性试验方法[M].中国标准出版社;国家标准化管理委员会.2008:7.
    [21]U.S.EPA. Pesticide assessment guidelines, subdivision F. Hazard evaluation:Human and domestic animals [M].
    [22]JOHNSON M K. Organophosphorus and other inhibitors of brain 'neurotoxicesterase' and the development of delayed neurotoxicity in hens [J]. Biochem J,1970,120(3):523-31.
    [23]CARRINGTON C D, ABOU-DONIA M B. The correlation between the recoveryrate of neurotoxic esterase activity and sensitivity to organophosphorus-induceddelayed neurotoxicity [J]. Toxicol Appl Pharmacol,1984,75(2):350-7.
    [24]HONORATO DE OLIVEIRA G, MOREIRA V, RIBEIRO GOES S P.Organophosphate induced delayed neuropathy in genetically dissimilar chickens:studies with tri-ortho-cresyl phosphate (TOCP) and trichlorfon [J]. Toxicol Lett,2002,136(2):143-50.
    [25]ABOU-DONIA M B, SUWITA E, NOMEIR A A. Absorption, distribution, andelimination of a single oral dose of [14C]tri-o-cresyl phosphate in hens [J].Toxicology,1990,61(1):13-25.
    [26]SOMKUTI S G, ABOU-DONIA M B. Disposition, elimination, and metabolism oftri-o-cresyl phosphate following daily oral administration in Fischer344male rats[J]. Archives of toxicology,1990,64(7):572-9.
    [27]TANAKA D, JR., BURSIAN S J, LEHNING E. Selective axonal and terminaldegeneration in the chicken brainstem and cerebellum following exposure tobis(1-methylethyl)phosphorofluoridate (DFP)[J]. Brain Res,1990,519(1-2):200-8.
    [28]TANAKA D, JR., BURSIAN S J. Degeneration patterns in the chicken centralnervous system induced by ingestion of the organophosphorus delayed neurotoxintri-ortho-tolyl phosphate. A silver impregnation study [J]. Brain Res,1989,484(1-2):240-56.
    [29]LEHNING E J, TANAKA D, JR., BURSIAN S J. Triphenyl phosphite anddiisopropylphosphorofluoridate produce separate and distinct axonal degenerationpatterns in the central nervous system of the rat [J]. Fundam Appl Toxicol,1996,29(1):110-8.
    [30]JENSEN K F, LAPADULA D M, ANDERSON J K, et al. Anomalousphosphorylated neurofilament aggregations in central and peripheral axons of henstreated with tri-ortho-cresyl phosphate (TOCP)[J]. J Neurosci Res,1992,33(3):455-60.
    [31]MASSICOTTE C, JORTNER B S, EHRICH M. Morphological effects ofneuropathy-inducing organophosphorus compounds in primary dorsal root gangliacell cultures [J]. Neurotoxicology,2003,24(6):787-96.
    [32]XIN X, ZENG T, DOU D D, et al. Changes of mitochondrial ultrastructures andfunction in central nervous tissue of hens treated with tri-ortho-cresyl phosphate(TOCP)[J]. Hum Exp Toxicol,2011,30(8):1062-72.
    [1] LOTTI M, MORETTO A. Organophosphate-induced delayed polyneuropathy [J].Toxicol Rev,2005,24(1):37-49.
    [2] JOHNSON M K. The delayed neurotoxic effect of some organophosphoruscompounds. Identification of the phosphorylation site as an esterase [J]. BiochemJ,1969,114(4):711-7.
    [3] ABOU-DONIA M B, VIANA M E, GUPTA R P, et al. Enhanced calmodulinbinding concurrent with increased kinase-dependent phosphorylation ofcytoskeletal proteins following a single subcutaneous injection of diisopropylphosphorofluoridate in hens [J]. Neurochem Int,1993,22(2):165-73.
    [4] DAMODARAN T V, ATTIA M K, ABOU-DONIA M B. Early differential celldeath and survival mechanisms initiate and contribute to the development ofOPIDN: a study of molecular, cellular, and anatomical parameters [J]. ToxicolAppl Pharmacol,2011,256(3):348-59.
    [5] SONG F, HAN X, ZENG T, et al. Changes in beclin-1and micro-calpainexpression in tri-ortho-cresyl phosphate-induced delayed neuropathy [J]. ToxicolLett,2012,210(3):276-84.
    [6] SONG F, ZOU C, HAN X, et al. Reduction of retrograde axonal transportassociated-proteins motor proteins, dynein and dynactin in the spinal cord andcerebral cortex of hens by tri-ortho-cresyl phosphate (TOCP)[J]. Neurochem Int,2012,60(2):99-104.
    [7] MASOUD A, KIRAN R, SANDHIR R. Modulation of dopaminergic system andneurobehavioral functions in delayed neuropathy induced by organophosphates[J]. Toxicol Mech Methods,2011,21(1):1-5.
    [8] CHOUDHARY S, GILL K D. Protective effect of nimodipine ondichlorvos-induced delayed neurotoxicity in rat brain(1)[J]. Biochem Pharmacol,2001,62(9):1265-72.
    [9] EL-FAWAL H A, EHRICH M F. Calpain activity in organophosphorus-induceddelayed neuropathy (OPIDN): effects of a phenylalkylamine calcium channelblocker [J]. Ann N Y Acad Sci,1993,679(325-9.
    [10]辛星,裴晶晶,曾涛,等.磷酸三邻甲苯酯对母鸡神经组织线粒体膜通透性的影响[J].环境与健康杂志,2009,08):684-7.
    [11]辛星,钟志霞,陈晶晶,等.磷酸三邻甲苯酯对母鸡神经组织线粒体超微结构及功能的影响[J].环境与健康杂志,2010,08):668-70.
    [12]辛星,陈晶晶,钟志霞,等.磷酸三邻甲苯酯对母鸡中枢神经组织线粒体中ATP含量及ATPase的影响[J].毒理学杂志,2010,06):428-32.
    [13] ABOU-DONIA M B, SUWITA E, NOMEIR A A. Absorption, distribution, andelimination of a single oral dose of [14C]tri-o-cresyl phosphate in hens [J].Toxicology,1990,61(1):13-25.
    [14] SOMKUTI S G, ABOU-DONIA M B. Disposition, elimination, and metabolismof tri-o-cresyl phosphate following daily oral administration in Fischer344malerats [J]. Archives of toxicology,1990,64(7):572-9.
    [15] PIAO F Y, KITABATAKE M, XIE X K, et al. Effects of various post-treatmentby phenylmethylsulfonyl fluoride on delayed neurotoxicity induced by leptophos[J]. J Toxicol Sci,1995,20(5):609-17.
    [16] PIAO F Y, XIE X K, YAMAMOTO H, et al. Effect of phenylmethylsulfonylfluoride administration prior to and following leptophos administration onelectrolyte concentration and enzyme activity in hen serum [J]. Environ HealthPrev Med,1996,1(1):44-50.
    [17] CUI J W, WANG J, HE K, et al. Two-dimensional electrophoresis proteinprofiling as an analytical tool for human acute leukemia classification [J].Electrophoresis,2005,26(1):268-79.
    [18] MASSICOTTE C, KNIGHT K, VAN DER SCHYF C J, et al. Effects oforganophosphorus compounds on ATP production and mitochondrial integrity incultured cells [J]. Neurotox Res,2005,7(3):203-17.
    [19] XIN X, ZENG T, DOU D D, et al. Changes of mitochondrial ultrastructures andfunction in central nervous tissue of hens treated with tri-ortho-cresyl phosphate(TOCP)[J]. Hum Exp Toxicol,2011,30(8):1062-72.
    [20] MASOUD A, KIRAN R, SANDHIR R. Impaired mitochondrial functions inorganophosphate induced delayed neuropathy in rats [J]. Cell Mol Neurobiol,2009,29(8):1245-55.
    [21] FAN A C, YOUNG J C. Function of cytosolic chaperones in Tom70-mediatedmitochondrial import [J]. Protein Pept Lett,2011,18(2):122-31.
    [22] MARTINEZ-HERNANDEZ A, BELL K P, NORENBERG M D. Glutaminesynthetase: glial localization in brain [J]. Science,1977,195(4284):1356-8.
    [23] HERTZ L, DRINGEN R, SCHOUSBOE A, et al. Astrocytes: glutamateproducers for neurons [J]. J Neurosci Res,1999,57(4):417-28.
    [24] LIU W, XU Z, DENG Y, et al. Excitotoxicity and oxidative damages induced bymethylmercury in rat cerebral cortex and the protective effects of tea polyphenols[J]. Environ Toxicol,2012,
    [25] EL-FAWAL H A, JORTNER B S, EHRICH M. Modification of phenyl saligeninphosphate-induced delayed effects by calcium channel blockers: in vivo and invitro electrophysiological assessment [J]. Neurotoxicology,1990,11(4):573-92.
    [26] EMERICK G L, PECCININI R G, DE OLIVEIRA G H.Organophosphorus-induced delayed neuropathy: a simple and efficienttherapeutic strategy [J]. Toxicol Lett,2010,192(2):238-44.
    [27] BROWN I R. Heat shock proteins and protection of the nervous system [J]. AnnN Y Acad Sci,2007,1113(147-58.
    [28] ZARA V, FERRAMOSCA A, ROBITAILLE-FOUCHER P, et al. Mitochondrialcarrier protein biogenesis: role of the chaperones Hsc70and Hsp90[J]. BiochemJ,2009,419(2):369-75.
    [29] FAN A C, KOZLOV G, HOEGL A, et al. Interaction between the humanmitochondrial import receptors Tom20and Tom70in vitro suggests a chaperonedisplacement mechanism [J]. J Biol Chem,2011,286(37):32208-19.
    [30] MIN C K, YEOM D R, LEE K E, et al. Coupling of ryanodine receptor2andvoltage-dependent anion channel2is essential for Ca2+transfer from thesarcoplasmic reticulum to the mitochondria in the heart [J]. Biochem J,2012,447(3):371-9.
    [31] YOO B C, FOUNTOULAKIS M, CAIRNS N, et al. Changes ofvoltage-dependent anion-selective channel proteins VDAC1and VDAC2brainlevels in patients with Alzheimer's disease and Down syndrome [J].Electrophoresis,2001,22(1):172-9.
    [32]陈涛,唐北沙,廖小平. α-突触核蛋白在帕金森病发病机制中的作用[J].中华神经科杂志,2006,06):415-8.
    [33]梁源,杨慧.线粒体、α-突触核蛋白在帕金森病发病机制中的作用[J].中国临床康复,2005,09):148-50.
    [34] ABOU-DONIA M B, LAPADULA D M. Mechanisms of organophosphorusester-induced delayed neurotoxicity: type I and type II [J]. Annu Rev PharmacolToxicol,1990,30(405-40.
    [35] TANAKA D, JR., BURSIAN S J, LEHNING E. Selective axonal and terminaldegeneration in the chicken brainstem and cerebellum following exposure tobis(1-methylethyl)phosphorofluoridate (DFP)[J]. Brain Res,1990,519(1-2):200-8.
    [36] PATTON S E, LAPADULA D M, ABOU-DONIA M B. Relationship oftri-O-cresyl phosphate-induced delayed neurotoxicity to enhancement of in vitrophosphorylation of hen brain and spinal cord proteins [J]. J Pharmacol Exp Ther,1986,239(2):597-605.
    [37] SUWITA E, LAPADULA D M, ABOU-DONIA M B. Calcium andcalmodulin-enhanced in vitro phosphorylation of hen brain cold-stablemicrotubules and spinal cord neurofilament triplet proteins after a single oral doseof tri-o-cresyl phosphate [J]. Proc Natl Acad Sci U S A,1986,83(16):6174-8.
    [38] JENSEN K F, LAPADULA D M, ANDERSON J K, et al. Anomalousphosphorylated neurofilament aggregations in central and peripheral axons ofhens treated with tri-ortho-cresyl phosphate (TOCP)[J]. J Neurosci Res,1992,33(3):455-60.
    [39] LAPADULA E S, LAPADULA D M, ABOU-DONIA M B. Biochemicalchanges in sciatic nerve of hens treated with tri-o-cresyl phosphate: increasedphosphorylation of cytoskeletal proteins [J]. Neurochem Int,1992,20(2):247-55.
    [40] ABOU-DONIA M B. The cytoskeleton as a target for organophosphorusester-induced delayed neurotoxicity (OPIDN)[J]. Chem Biol Interact,1993,87(1-3):383-93.
    [41] ABOU-DONIA M B. Involvement of cytoskeletal proteins in the mechanisms oforganophosphorus ester-induced delayed neurotoxicity [J]. Clin Exp PharmacolPhysiol,1995,22(5):358-9.
    [42] DAMODARAN T V, ABDEL-RAHMAN A, ABOU-DONIA M B. Altered timecourse of mRNA expression of alpha tubulin in the central nervous system ofhens treated with diisopropyl phosphorofluoridate (DFP)[J]. Neurochem Res,2001,26(1):43-50.
    [43] LAPADULA E S, LAPADULA D M, ABOU-DONIA M B. Persistent alterationsof calmodulin kinase II activity in chickens after an oral dose of tri-o-cresylphosphate [J]. Biochem Pharmacol,1991,42(1):171-80.
    [44] CHOUDHARY S, JOSHI K, GILL K D. Possible role of enhanced microtubulephosphorylation in dichlorvos induced delayed neurotoxicity in rat [J]. Brain Res,2001,897(1-2):60-70.
    [45]韩雪榕,朴丰源,张彦宁.三邻甲苯磷酸酯暴露鸡脊髓神经中Stathmin的差异表达[J].中华劳动卫生职业病杂志,2011,29(12):
    [46] RUBIN C I, FRENCH D L, ATWEH G F. Stathmin expression andmegakaryocyte differentiation: a potential role in polyploidy [J]. Exp Hematol,2003,31(5):389-97.
    [47]李君山,王庆才. Stathmin蛋白的研究进展[J].泰山医学院学报,2010,04):317-9.
    [48]时多,蒋恒义,缪明永, et al. Stathmin调控及与疾病的关系[J].医学分子生物学杂志,2007,04):350-2.
    [49] GUPTA R P, ABOU-DONIA M B. Enhanced activity and level of protein kinaseA in the spinal cord supernatant of diisopropyl phosphorofluoridate (DFP)-treatedhens. Distribution of protein kinases and phosphatases in spinal cord subcellularfractions [J]. Mol Cell Biochem,2001,220(1-2):15-23.
    [50] TONG Y, PARK I, HONG B S, et al. Crystal structure of human eIF5A1: insightinto functional similarity of human eIF5A1and eIF5A2[J]. Proteins,2009,75(4):1040-5.
    [51] TANG D J, DONG S S, MA N F, et al. Overexpression of eukaryotic initiationfactor5A2enhances cell motility and promotes tumor metastasis inhepatocellular carcinoma [J]. Hepatology,2010,51(4):1255-63.
    [52] SRIVASTAVA A K, RENUSCH S R, NAIMAN N E, et al. Mutant HSPB1overexpression in neurons is sufficient to cause age-related motor neuronopathyin mice [J]. Neurobiol Dis,2012,47(2):163-73.
    [53] WETTSTEIN G, BELLAYE P S, MICHEAU O, et al. Small heat shock proteinsand the cytoskeleton: an essential interplay for cell integrity?[J]. Int J BiochemCell Biol,2012,44(10):1680-6.
    [54] HORMAN S, FOKAN D, MOSSELMANS R, et al. Anti-sense inhibition ofsmall-heat-shock-protein (HSP27) expression in MCF-7mammary-carcinomacells induces their spontaneous acquisition of a secretory phenotype [J]. Int JCancer,1999,82(4):574-82.
    [55] MIRON T, VANCOMPERNOLLE K, VANDEKERCKHOVE J, et al. A25-kDinhibitor of actin polymerization is a low molecular mass heat shock protein [J]. JCell Biol,1991,114(2):255-61.
    [56] ALMEIDA-SOUZA L, GOETHALS S, DE WINTER V, et al. Increasedmonomerization of mutant HSPB1leads to protein hyperactivity inCharcot-Marie-Tooth neuropathy [J]. J Biol Chem,2010,285(17):12778-86.
    [57] ZHAI J, LIN H, JULIEN J P, et al. Disruption of neurofilament network withaggregation of light neurofilament protein: a common pathway leading to motorneuron degeneration due to Charcot-Marie-Tooth disease-linked mutations inNFL and HSPB1[J]. Hum Mol Genet,2007,16(24):3103-16.
    [58] BJ RKDAHL C, SJ GREN M J, ZHOU X, et al. Small heat shock proteinsHsp27or alphaB-crystallin and the protein components of neurofibrillary tangles:tau and neurofilaments [J]. J Neurosci Res,2008,86(6):1343-52.
    [59] ACKERLEY S, JAMES P A, KALLI A, et al. A mutation in the small heat-shockprotein HSPB1leading to distal hereditary motor neuronopathy disruptsneurofilament assembly and the axonal transport of specific cellular cargoes [J].Hum Mol Genet,2006,15(2):347-54.
    [60] GUPTA R P, LIN W W, ABOU-DONIA M B. Enhanced mRNA expression ofneurofilament subunits in the brain and spinal cord of diisopropylphosphorofluoridate-treated hens [J]. Biochem Pharmacol,1999,57(11):1245-51.
    [61]韩雪榕,朴丰源.三磷甲苯磷酸酯暴露对鸡脊髓神经中髓鞘碱性蛋白表达的影响[J].大连医科大学学报,2011,04):313-6.
    [62] ARTEMIADIS A K, ANAGNOSTOULI M C. Apoptosis of oligodendrocytesand post-translational modifications of myelin basic protein in multiple sclerosis:possible role for the early stages of multiple sclerosis [J]. Eur Neurol,2010,63(2):65-72.
    [63] DAMODARAN T V, GREENFIELD S T, PATEL A G, et al. Toxicogenomicstudies of the rat brain at an early time point following acute sarin exposure [J].Neurochem Res,2006,31(3):367-81.
    [64] ELENICH L A, NANDI D, KENT A E, et al. The complete primary structure ofmouse20S proteasomes [J]. Immunogenetics,1999,49(10):835-42.
    [65] KORHONEN L, LINDHOLM D. The ubiquitin proteasome system in synapticand axonal degeneration: a new twist to an old cycle [J]. J Cell Biol,2004,165(1):27-30.
    [66] COLEMAN M P, RIBCHESTER R R. Programmed axon death, synapticdysfunction and the ubiquitin proteasome system [J]. Curr Drug Targets CNSNeurol Disord,2004,3(3):227-38.
    [67] ZHAI Q, WANG J, KIM A, et al. Involvement of the ubiquitin-proteasomesystem in the early stages of wallerian degeneration [J]. Neuron,2003,39(2):217-25.
    [68] WAKATSUKI S, SAITOH F, ARAKI T. ZNRF1promotes Walleriandegeneration by degrading AKT to induce GSK3B-dependent CRMP2phosphorylation [J]. Nat Cell Biol,2011,13(12):1415-23.
    [69] TANAKA D, JR., BURSIAN S J, LEHNING E J, et al. Exposure to triphenylphosphite results in widespread degeneration in the mammalian central nervoussystem [J]. Brain Res,1990,531(1-2):294-8.
    [1] ABOU-DONIA M B. Organophosphorus ester-induced delayed neurotoxicity [J].Annu Rev Pharmacol Toxicol,1981,21(511-48.
    [2] EL-FAWAL H A, EHRICH M F. Calpain activity in organophosphorus-induceddelayed neuropathy (OPIDN): effects of a phenylalkylamine calcium channelblocker [J]. Ann N Y Acad Sci,1993,679:325-9.
    [3] CHOUDHARY S, GILL K D. Protective effect of nimodipine ondichlorvos-induced delayed neurotoxicity in rat brain(1)[J]. Biochem Pharmacol,2001,62(9):1265-72.
    [4] MASOUD A, KIRAN R, SANDHIR R. Modulation of dopaminergic system andneurobehavioral functions in delayed neuropathy induced by organophosphates [J].Toxicol Mech Methods,2011,21(1):1-5.
    [5] QIAN Y, VENKATRAJ J, BARHOUMI R, et al. Comparative non-cholinergicneurotoxic effects of paraoxon and diisopropyl fluorophosphate (DFP) on humanneuroblastoma and astrocytoma cell lines [J]. Toxicol Appl Pharmacol,2007,219(2-3):162-71.
    [6] EMERICK G L, EHRICH M, JORTNER B S, et al. Biochemical,histopathological and clinical evaluation of delayed effects caused bymethamidophos isoforms and TOCP in hens: ameliorative effects using control ofcalcium homeostasis [J]. Toxicology,2012,302(1):88-95.
    [7] EMERICK G L, PECCININI R G, DE OLIVEIRA G H.Organophosphorus-induced delayed neuropathy: a simple and efficient therapeuticstrategy [J]. Toxicol Lett,2010,192(2):238-44.
    [8] PIAO F, YAMAUCHI T, MA N. The effect of Calcicol as calcium tonic ondelayed neurotoxicity induced by organophosphorus compounds [J]. Toxicol Lett,2003,143(1):65-71.
    [9] ABOU-DONIA M B. The cytoskeleton as a target for organophosphorusester-induced delayed neurotoxicity (OPIDN)[J]. Chem Biol Interact,1993,87(1-3):383-93.
    [10] ABOU-DONIA M B. Involvement of cytoskeletal proteins in the mechanisms oforganophosphorus ester-induced delayed neurotoxicity [J]. Clin Exp PharmacolPhysiol,1995,22(5):358-9.
    [11] WALTON H S, DODD P R. Glutamate-glutamine cycling in Alzheimer's disease[J]. Neurochem Int,2007,50(7-8):1052-66.
    [12] STIRLING D P, STYS P K. Mechanisms of axonal injury: internodalnanocomplexes and calcium deregulation [J]. Trends Mol Med,2010,16(4):160-70.
    [13] HERTZ L, DRINGEN R, SCHOUSBOE A, et al. Astrocytes: glutamate producersfor neurons [J]. J Neurosci Res,1999,57(4):417-28.
    [14] BR ER S, BROOKES N. Transfer of glutamine between astrocytes and neurons[J]. J Neurochem,2001,77(3):705-19.
    [15] XU B, XU Z F, DENG Y, et al. Protective effects of MK-801onmethylmercury-induced neuronal injury in rat cerebral cortex: involvement ofoxidative stress and glutamate metabolism dysfunction [J]. Toxicology,2012,300(3):112-20.
    [16] LAJDOVA I, SPUSTOVA V, OKSA A, et al. Intracellular calcium homeostasisin patients with early stages of chronic kidney disease: effects of vitamin D3supplementation [J]. Nephrol Dial Transplant,2009,24(11):3376-81.
    [17] JOKANOVIC M, KOSANOVIC M, BRKIC D, et al. Organophosphate induceddelayed polyneuropathy in man: an overview [J]. Clin Neurol Neurosurg,2011,113(1):7-10.
    [18] CHOI D W. Calcium and excitotoxic neuronal injury [J]. Ann N Y Acad Sci,1994,747(162-71.
    [19] CRISH S D, CALKINS D J. Neurodegeneration in glaucoma: progression andcalcium-dependent intracellular mechanisms [J]. Neuroscience,2011,176(1-11.
    [20] ZOU J, WANG Y X, DOU F F, et al. Glutamine synthetase down-regulationreduces astrocyte protection against glutamate excitotoxicity to neurons [J].Neurochem Int,2010,56(4):577-84.
    [21] VARDIMON L. Neuroprotection by glutamine synthetase [J]. Isr Med Assoc J,2000,2Suppl(46-51.
    [22] LIU W, XU Z, DENG Y, et al. Excitotoxicity and oxidative damages induced bymethylmercury in rat cerebral cortex and the protective effects of tea polyphenols[J]. Environ Toxicol,2012,
    [23] YU X, HE G R, SUN L, et al. Assessment of the treatment effect of baicalein on amodel of Parkinsonian tremor and elucidation of the mechanism [J]. Life Sci,2012,91(1-2):5-13.
    [24] CASTEGNA A, PALMIERI L, SPERA I, et al. Oxidative stress and reducedglutamine synthetase activity in the absence of inflammation in the cortex of micewith experimental allergic encephalomyelitis [J]. Neuroscience,2011,185(97-105.
    [25] BEN-DROR I, HAVAZELET N, VARDIMON L. Developmental control ofglucocorticoid receptor transcriptional activity in embryonic retina [J]. Proc NatlAcad Sci U S A,1993,90(3):1117-21.
    [26] PU H F, YOUNG A P. Glucocorticoid-inducible expression of a glutaminesynthetase-CAT-encoding fusion plasmid after transfection of intact chickenretinal explant cultures [J]. Gene,1990,89(2):259-63.
    [27] BERKO-FLINT Y, LEVKOWITZ G, VARDIMON L. Involvement of c-Jun inthe control of glucocorticoid receptor transcriptional activity during developmentof chicken retinal tissue [J]. EMBO J,1994,13(3):646-54.
    [28] OREN A, HERSCHKOVITZ A, BEN-DROR I, et al. The cytoskeletal networkcontrols c-Jun expression and glucocorticoid receptor transcriptional activity in anantagonistic and cell-type-specific manner [J]. Mol Cell Biol,1999,19(3):1742-50.
    [29] PIAO F, MA N, YAMAMOTO H, et al. Effects of prednisolone and complex ofvitamin B1, B2, B6and B12on organophosphorus compound-induced delayedneurotoxicity [J]. J Occup Health,2004,46(5):359-64.
    [30] BAKER T, STANEC A. Methylprednisolone treatment of anorganophosphorus-induced delayed neuropathy [J]. Toxicol Appl Pharmacol,1985,79(2):348-52.
    [31] DAMODARAN T V, RAHMAN A A, ABOU-DONIA M B. Early differentialinduction of C-jun in the central nervous system of hens treated withdiisopropylphosphorofluoridate (DFP)[J]. Neurochem Res,2000,25(12):1579-86.
    [1] JOKANOVIC M, STUKALOV P V, KOSANOVIC M. Organophosphate induceddelayed polyneuropathy [J]. Curr Drug Targets CNS Neurol Disord,2002,1(6):593-602.
    [2] ABOU-DONIA M B. Organophosphorus ester-induced delayed neurotoxicity [J].Annu Rev Pharmacol Toxicol,1981,21:511-48.
    [3] LOTTI M, MORETTO A. Organophosphate-induced delayed polyneuropathy [J].Toxicol Rev,2005,24(1):37-49.
    [4] JOKANOVIC M, KOSANOVIC M, BRKIC D, et al. Organophosphate induceddelayed polyneuropathy in man: an overview [J]. Clin Neurol Neurosurg,2011,113(1):7-10.
    [5] ABOU-DONIA M B, LAPADULA D M. Mechanisms of organophosphorusester-induced delayed neurotoxicity: type I and type II [J]. Annu Rev PharmacolToxicol,1990,30:405-40.
    [6] ABOU-DONIA. Organophosphorus ester-induced chronic neurotoxicity [J]. JOccup Health Safety,2005,21(5):24.
    [7] MORGAN J P, PENOVICH P. Jamaica ginger paralysis. Forty-seven-yearfollow-up [J]. Arch Neurol,1978,35(8):530-2.
    [8] HIMURO K, MURAYAMA S, NISHIYAMA K, et al. Distal sensory axonopathyafter sarin intoxication [J]. Neurology,1998,51(4):1195-7.
    [9] COSTA L G. Current issues in organophosphate toxicology [J]. Clin Chim Acta,2006,366(1-2):1-13.
    [10]刘安明.农村口服农药自杀状况调查[J].湖北预防医学杂志,2003,01:33.
    [11]冷欣夫,伍一军.有机磷化合物的结构与迟发性神经毒性关系的研究[J].农药,1998,10):20-4.
    [12]JOHNSON M K. Organophosphorus and other inhibitors of brain 'neurotoxicesterase' and the development of delayed neurotoxicity in hens [J]. Biochem J,1970,120(3):523-31.
    [13]TANAKA D, JR., BURSIAN S J, LEHNING E J, et al. Exposure to triphenylphosphite results in widespread degeneration in the mammalian central nervoussystem [J]. Brain Res,1990,531(1-2):294-8.
    [14]JOKANOVIC M, KOSANOVIC M. Neurotoxic effects in patients poisoned withorganophosphorus pesticides [J]. Environ Toxicol Pharmacol,2010,29(3):195-201.
    [15]LOTTI M, BECKER C E, AMINOFF M J. Organophosphate polyneuropathy:pathogenesis and prevention [J]. Neurology,1984,34(5):658-62.
    [16]WANG L, LIU Y H, XU Y, et al. Thirteen-year follow-up of patients withtri-ortho-cresyl phosphate poisoning in northern suburbs of Xi'an in China [J].Neurotoxicology,2009,30(6):1084-7.
    [17]TOSI L, RIGHETTI C, ADAMI L, et al. October1942: a strange epidemicparalysis in Saval, Verona, Italy. Revision and diagnosis50years later oftri-ortho-cresyl phosphate poisoning [J]. J Neurol Neurosurg Psychiatry,1994,57(7):810-3.
    [18]ROBERTSON D G, SCHWAB B W, SILLS R D, et al. Electrophysiologicchanges following treatment with organophosphorus-induced delayedneuropathy-producing agents in the adult hen [J]. Toxicol Appl Pharmacol,1987,87(3):420-9.
    [19]DYER K R, JORTNER B S, SHELL L G, et al. Comparative dose-response studiesof organophosphorus ester-induced delayed neuropathy in rats and hensadministered mipafox [J]. Neurotoxicology,1992,13(4):745-55.
    [20]MOU D L, WANG Y P, SONG J F, et al. Triorthocresyl phosphate-inducedneuronal losses in lumbar spinal cord of hens--an immunohistochemistry andultrastructure study [J]. Int J Neurosci,2006,116(11):1303-16.
    [21]BOULDIN T W, CAVANAGH J B. Organophosphorous neuropathy. II. Afine-structural study of the early stages of axonal degeneration [J]. Am J Pathol,1979,94(2):253-70.
    [22]MORETTO A, CAPODICASA E, LOTTI M. Clinical expression oforganophosphate-induced delayed polyneuropathy in rats [J]. Toxicol Lett,1992,63(1):97-102.
    [23]常平安,李明,伍一军.培养细胞在迟发性神经毒性研究中的应用[J].卫生毒理学杂志,2002,04:245-7.
    [24]NOSTRANDT A C, EHRICH M. Development of a model cell culture system inwhich to study early effects of neuropathy-inducing organophosphorus esters [J].Toxicol Lett,1992,60(1):107-14.
    [25]VERONESI B, EHRICH M. Differential cytotoxic sensitivity in mouse and humancell lines exposed to organophosphate insecticides [J]. Toxicol Appl Pharmacol,1993,120(2):240-6.
    [26]HENSCHLER D, SCHMUCK G, VAN AERSSEN M, et al. The inhibitory effectof neuropathic organophosphate esters on neurite outgrowth in cell cultures: Abasis for screening for delayed neurotoxicity [J]. Toxicol In Vitro,1992,6(4):327-35.
    [27]JOHNSON M K. The delayed neurotoxic effect of some organophosphoruscompounds. Identification of the phosphorylation site as an esterase [J]. Biochem J,1969,114(4):711-7.
    [28]LI Y, DINSDALE D, GLYNN P. Protein domains, catalytic activity, andsubcellular distribution of neuropathy target esterase in Mammalian cells [J]. J BiolChem,2003,278(10):8820-5.
    [29]GLYNN P. Neural development and neurodegeneration: two faces of neuropathytarget esterase [J]. Prog Neurobiol,2000,61(1):61-74.
    [30]GLYNN P. Neuropathy target esterase [J]. Biochem J,1999,344Pt3(625-31.
    [31]JOHNSON M K. Improved assay of neurotoxic esterase for screeningorganophosphates for delayed neurotoxicity potential [J]. Arch Toxicol,1977,37(2):113-5.
    [32]LOTTI M, MORETTO A, CAPODICASA E, et al. Interactions betweenneuropathy target esterase and its inhibitors and the development ofpolyneuropathy [J]. Toxicol Appl Pharmacol,1993,122(2):165-71.
    [33]EDGAR J M, GARBERN J. The myelinated axon is dependent on the myelinatingcell for support and maintenance: molecules involved [J]. J Neurosci Res,2004,76(5):593-8.
    [34]PIAO F Y, KITABATAKE M, XIE X K, et al. Effects of various post-treatment byphenylmethylsulfonyl fluoride on delayed neurotoxicity induced by leptophos [J]. JToxicol Sci,1995,20(5):609-17.
    [35]PIAO F Y, XIE X K, YAMAMOTO H, et al. Effect of phenylmethylsulfonylfluoride administration prior to and following leptophos administration onelectrolyte concentration and enzyme activity in hen serum [J]. Environ HealthPrev Med,1996,1(1):44-50.
    [36]POPE C N, PADILLA S. Potentiation of organophosphorus-induced delayedneurotoxicity by phenylmethylsulfonyl fluoride [J]. J Toxicol Environ Health,1990,31(4):261-73.
    [37]MASSICOTTE C, INZANA K D, EHRICH M, et al. Neuropathologic effects ofphenylmethylsulfonyl fluoride (PMSF)-induced promotion and protection inorganophosphorus ester-induced delayed neuropathy (OPIDN) in hens [J].Neurotoxicology,1999,20(5):749-59.
    [38]LOTTI M, CAROLDI S, CAPODICASA E, et al. Promotion oforganophosphate-induced delayed polyneuropathy by phenylmethanesulfonylfluoride [J]. Toxicol Appl Pharmacol,1991,108(2):234-41.
    [39]ABOU-DONIA M B. Organophosphorus ester-induced chronic neurotoxicity [J].Arch Environ Health,2003,58(8):484-97.
    [40]HOU W Y, LONG D X, WANG H P, et al. The homeostasis ofphosphatidylcholine and lysophosphatidylcholine was not disrupted duringtri-o-cresyl phosphate-induced delayed neurotoxicity in hens [J]. Toxicology,2008,252(1-3):56-63.
    [41]HOU W Y, LONG D X, WU Y J. Effect of inhibition of neuropathy target esterasein mouse nervous tissues in vitro on phosphatidylcholine andlysophosphatidylcholine homeostasis [J]. Int J Toxicol,2009,28(5):417-24.
    [42]DAVIS S L, TANAKA D, JR., AULERICH R J, et al. Organophosphorus-inducedneurotoxicity in the absence of neuropathy target esterase inhibition: the effects oftriphenyl phosphine in the European ferret [J]. Toxicol Sci,1999,49(1):78-85.
    [43]CHOUDHARY S, GILL K D. Protective effect of nimodipine ondichlorvos-induced delayed neurotoxicity in rat brain(1)[J]. Biochem Pharmacol,2001,62(9):1265-72.
    [44]MASOUD A, KIRAN R, SANDHIR R. Modulation of dopaminergic system andneurobehavioral functions in delayed neuropathy induced by organophosphates [J].Toxicol Mech Methods,2011,21(1):1-5.
    [45]EL-FAWAL H A, EHRICH M F. Calpain activity in organophosphorus-induceddelayed neuropathy (OPIDN): effects of a phenylalkylamine calcium channelblocker [J]. Ann N Y Acad Sci,1993,679:325-9.
    [46]QIAN Y, VENKATRAJ J, BARHOUMI R, et al. Comparative non-cholinergicneurotoxic effects of paraoxon and diisopropyl fluorophosphate (DFP) on humanneuroblastoma and astrocytoma cell lines [J]. Toxicol Appl Pharmacol,2007,219(2-3):162-71.
    [47]SHARMA S K, BHATTACHARYA B K. Altered glycine transport by cerebraltissue and decreased Na+and Ca++pump activities duringorganophosphorus-ester-induced delayed neurotoxicity development period [J]. JBiochem Toxicol,1995,10(5):233-8.
    [48]EMERICK G L, EHRICH M, JORTNER B S, et al. Biochemical, histopathologicaland clinical evaluation of delayed effects caused by methamidophos isoforms andTOCP in hens: ameliorative effects using control of calcium homeostasis [J].Toxicology,2012,302(1):88-95.
    [49]EMERICK G L, PECCININI R G, DE OLIVEIRA G H.Organophosphorus-induced delayed neuropathy: a simple and efficient therapeuticstrategy [J]. Toxicol Lett,2010,192(2):238-44.
    [50]PIAO F, YAMAUCHI T, MA N. The effect of Calcicol as calcium tonic ondelayed neurotoxicity induced by organophosphorus compounds [J]. Toxicol Lett,2003,143(1):65-71.
    [51]VOSLER P S, BRENNAN C S, CHEN J. Calpain-mediated signaling mechanismsin neuronal injury and neurodegeneration [J]. Mol Neurobiol,2008,38(1):78-100.
    [52]EL-FAWAL H A, CORRELL L, GAY L, et al. Protease activity in brain, nerve,and muscle of hens given neuropathy-inducing organophosphates and a calciumchannel blocker [J]. Toxicol Appl Pharmacol,1990,103(1):133-42.
    [53]SONG F, HAN X, ZENG T, et al. Changes in beclin-1and micro-calpainexpression in tri-ortho-cresyl phosphate-induced delayed neuropathy [J]. ToxicolLett,2012,210(3):276-84.
    [54]SUWITA E, LAPADULA D M, ABOU-DONIA M B. Calcium andcalmodulin-enhanced in vitro phosphorylation of hen brain cold-stablemicrotubules and spinal cord neurofilament triplet proteins after a single oral doseof tri-o-cresyl phosphate [J]. Proc Natl Acad Sci U S A,1986,83(16):6174-8.
    [55]ABOU-DONIA M B, VIANA M E, GUPTA R P, et al. Enhanced calmodulinbinding concurrent with increased kinase-dependent phosphorylation ofcytoskeletal proteins following a single subcutaneous injection of diisopropylphosphorofluoridate in hens [J]. Neurochem Int,1993,22(2):165-73.
    [56]GUPTA R P, ABOU-DONIA M B. Tau phosphorylation by diisopropylphosphorofluoridate (DFP)-treated hen brain supernatant inhibits its binding withmicrotubules: role of Ca2+/Calmodulin-dependent protein kinase II in tauphosphorylation [J]. Arch Biochem Biophys,1999,365(2):268-78.
    [57]GUPTA R P, BING G, HONG J S, et al. cDNA cloning and sequencing ofCa2+/calmodulin-dependent protein kinase IIalpha subunit and its mRNAexpression in diisopropyl phosphorofluoridate (DFP)-treated hen central nervoussystem [J]. Mol Cell Biochem,1998,181(1-2):29-39.
    [58]WANG Y P, MOU D L, SONG J F, et al. Aberrant activation of CDK5is involvedin the pathogenesis of OPIDN [J]. J Neurochem,2006,99(1):186-97.
    [59]GUPTA R P, ABOU-DONIA M B. Enhanced activity and level of protein kinaseA in the spinal cord supernatant of diisopropyl phosphorofluoridate (DFP)-treatedhens. Distribution of protein kinases and phosphatases in spinal cord subcellularfractions [J]. Mol Cell Biochem,2001,220(1-2):15-23.
    [60]MASSICOTTE C, KNIGHT K, VAN DER SCHYF C J, et al. Effects oforganophosphorus compounds on ATP production and mitochondrial integrity incultured cells [J]. Neurotox Res,2005,7(3):203-17.
    [61]MASOUD A, KIRAN R, SANDHIR R. Impaired mitochondrial functions inorganophosphate induced delayed neuropathy in rats [J]. Cell Mol Neurobiol,2009,29(8):1245-55.
    [62]XIN X, ZENG T, DOU D D, et al. Changes of mitochondrial ultrastructures andfunction in central nervous tissue of hens treated with tri-ortho-cresyl phosphate(TOCP)[J]. Hum Exp Toxicol,2011,30(8):1062-72.
    [63]DAMODARAN T V, ATTIA M K, ABOU-DONIA M B. Early differential celldeath and survival mechanisms initiate and contribute to the development ofOPIDN: a study of molecular, cellular, and anatomical parameters [J]. ToxicolAppl Pharmacol,2011,256(3):348-59.
    [64]SONG F, ZOU C, HAN X, et al. Reduction of retrograde axonal transportassociated-proteins motor proteins, dynein and dynactin in the spinal cord andcerebral cortex of hens by tri-ortho-cresyl phosphate (TOCP)[J]. Neurochem Int,2012,60(2):99-104.
    [65]MASOUD A, SANDHIR R. Increased oxidative stress is associated with thedevelopment of organophosphate-induced delayed neuropathy [J]. Hum ExpToxicol,2012,31(12):1214-27.
    [66]EL-FAWAL H A, JORTNER B S, EHRICH M. Modification of phenyl saligeninphosphate-induced delayed effects by calcium channel blockers: in vivo and invitro electrophysiological assessment [J]. Neurotoxicology,1990,11(4):573-92.
    [67]WU Y J, LI M, LI Y X, et al. Verapamil abolished the enhancement of proteinphosphorylation of brainstem mitochondria and synaptosomes from the hens dosedwith tri-o-cresyl phosphate [J]. Environ Toxicol Pharmacol,2007,24(1):67-71.
    [68]PIAO F, MA N, YAMAMOTO H, et al. Effects of prednisolone and complex ofvitamin B1, B2, B6and B12on organophosphorus compound-induced delayedneurotoxicity [J]. J Occup Health,2004,46(5):359-64.
    [69]BAKER T, STANEC A. Methylprednisolone treatment of anorganophosphorus-induced delayed neuropathy [J]. Toxicol Appl Pharmacol,1985,79(2):348-52.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700