用户名: 密码: 验证码:
碳纳米管和石墨烯增强PBO复合纤维的制备及结构与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
PBO纤维是一种低密度、高强度、高模量、耐高温且阻燃的高性能有机纤维,在众多尖端领域中有着广泛的应用。然而如此优异的PBO纤维仍存在一些缺陷,如实际模量与理论模量存在很大差距,与树脂的粘结性能不好等缺点。本文以提高PBO纤维的力学性能、耐热性能及复合材料界面性能为主要目标,设计合成了碳纳米管和石墨烯增强PBO基体的两种复合纤维,着重分析了这两种复合纤维的结构和性能,为制备综合性能更为优异的复合纤维进行有益的探索。
     采用两种酸处理方法,浓硫酸/浓硝酸体系和含有20%三氧化硫的发烟硫酸/浓硝酸体系分别对单壁碳纳米管(SWCNTs)进行纯化、切短和氧化处理。采用化学接枝法对SWCNTs进行功能化接枝修饰处理,分别接枝上三种氨基二元羧酸,柔性链小分子的L-天门冬氨酸(I)、L-谷氨酸(II)和刚性链小分子的5-氨基间苯二甲酸(III),得到了三种功能化接枝修饰后的SWCNT I-III。接枝化修饰处理使SWCNTs酸化后的一元羧酸基团转变成二元羧酸基团,获得更多的羧酸活性基团参与到聚合反应中,在聚合体系中具有更好的分散性。
     采用化学改性Hummers法成功制备了氧化石墨烯,得到的氧化石墨烯没有进一步还原成石墨烯,而是保留了其表面的活性官能团,以便下一步功能化处理。采用独特的“复合内盐法”合成了DADHB-is-(GO/TPA)复合内盐。设计“复合内盐”的目的是为了实现GO在聚合体系中具有更好的分散性,并且参与到聚合反应中。研究发现,GO在复合内盐中能够均匀分散,同时GO在复合内盐中起到了结晶模板剂的作用,有效地阻止了GO的重新堆积,为GO在下一步聚合体系中均匀分散打下了基础。
     采用脱氯化氢原位聚合法制备了三种SWCNT I-III&PBO复合纤维,分析了SWCNT I-III&PBO复合纤维的化学组成、特性粘数及粘均分子量、复合纤维的表面和断面形貌、结晶行为及复合纤维中SWCNTs的分布情况,证明不同功能化处理SWCNTs的加入对PBO纤维的结构有很大影响,通过对复合纤维的拉伸强度、拉伸模量及断裂伸长率测试,研究三种不同功能化SWCNT I-III对PBO纤维力学性能的增强作用,发现复合纤维拉伸强度和模量都有相应的增加,其中添加SWCNT III增加最多。研究添加三种不同功能化SWCNT I-III对PBO纤维热稳定性的影响。这些研究结果表明接枝刚性链小分子的SWCNTs要比接枝柔性链小分子的SWCNTs在增强PBO纤维的力学性能和热稳定性的效果上要更好些。通过对复合纤维的浸润性和与树脂结合的界面剪切强度测试,研究添加功能化SWCNT I-III对PBO纤维复合材料界面性能的增强作用。
     采用一锅原位聚合复合内盐法制备了两种不同GO含量的GO-co-PBO复合纤维,对其结构和性能进行深入研究和系统分析,并且对GO增强PBO纤维的机理进行了初步的探讨。通过对GO-co-PBO(1%)和GO-co-PBO(3%)复合纤维的化学组成分析、特性粘数的测定及粘均分子量的计算、复合纤维的表面和断面形貌的观察、结晶行为研究及对复合纤维中GO的分布情况进行观察,研究添加不同的GO含量对PBO纤维结构的影响。通过对GO-co-PBO复合纤维的拉伸强度、拉伸模量及断裂伸长率测试,研究GO的不同含量对PBO纤维力学性能的增强作用,随着GO的添加量增加,GO-co-PBO复合纤维拉伸强度和模量增加,断裂伸长率降低。对GO-co-PBO复合纤维的耐热性能进行分析,GO的加入增强了PBO基体的热稳定性和阻燃性。通过对GO-co-PBO复合纤维的浸润性和与树脂的界面剪切强度测试,研究了添加GO对PBO纤维复合材料界面性能的增强作用。
Poly(p-phenylene-2,6-benzobisoxazole)(PBO) fiber is one of high-performanceorganic polymer fibers, which is characterized by low density, superior mechanicalproperties, excellent thermal and thermo-oxidative stability and good flameretardance. It is widely applied in various frontier fields. However, there are someflaws in PBO fibers, such as a large gap between the actual tensile modulus and thetheoretical tensile modulus, weak interfacial property with resin, et al. In this paper,the main aims are to improve the mechanical, thermal properties and interfacialproperty of PBO fibers. So, PBO composite fibers reinforced by SWCNTs orgraphene were designed and synthesized, the microstructure and the properties ofcomposite fibers were studied. The researches are beneficial to develop morecomposite fibers with excellent comprehensive performance.
     SWCNTs were acid-treated by the two methods, concentrated H2SO4/HNO3system or20%SO3oleum/concentrated HNO3system. The process is in order toachieve the purifying, cutting short and carboxylation of SWCNTs. Threefunctionalized SWCNT I-III were obtained through chemical grafting of aminodicarboxylic acid including L-Aspartic acid (I), L-glutamic acid (II) and5-amino-isophthalic acid (III) onto SWCNTs surface, respectively. The functionalizedSWCNTs (SWCNT I-III) is to overcome the issues of limited dispersivity andprocessibility of SWCNTs in polymerization system.
     Graphene oxide (GO) sheets were successfully prepared through modifiedHummers method. The obtained GO sheets have not been further deoxidized andstill retained the active groups for the next functional treatment. The DADHB-is-(GO/TPA) inner salts were synthesized through the special composite inner saltsmethod. DADHB-is-(GO/TPA) inner salts were designed to improve the dispersionof GO in polymerization system and processibility of GO with PBO matrix. Theresults show that GO sheets disperse well in the inner salts. GO sheets work as thenucleating template agents in the composite inner salts, which effectively avoid theaccumulation of GO sheets and lay a solid foundation for the dispersion of GO inthe following polymerization procedure.
     The SWCNT I-III&PBO composite fibers were synthesized through in situpolymerication of dehydrochlorinated monomers. The chemical composition,intrinsic viscosity and viscosity average molecular weight, surface and crosssection morphology, crystallization behaviors of the SWCNT I-III&PBOcomposite fibers and the SWCNTs distribution in composite fibers were analyzed.
     The results show the additions of functionalized SWCNTs (SWCNT I-III) have the obvious effects on the structures of PBO fibers. The mechanical enhancements ofPBO fibers by functionalized SWCNTs (SWCNT I-III) were investigated by tensilestrength, tensile modulus and elongation at break. The results indicate that tensilestrength and modulus of all composite fibers have a certain extent increment, inwhich adding SWCNT III into PBO matrix has increased by the largest margin.The effect of SWCNT I-III in the thermal stabilities for PBO fibers were studied.All the results indicate that the enhancement effects of SWCNTs graftedrigid-chain molecules on mechanical and thermal properties are much better thanthat of SWCNTs grafted flexible-chain molecules. The effects of adding SWCNTI-III on the interfacial properties of PBO fibers composite materials were evaluatedby surface wettability, surface free energy and interfacial shear strength.
     The GO-co-PBO composite fibers with different GO contents were synthesizedby in situ polymerization of a novel composite inner salts. The structures andproperties of GO-co-PBO composite fibers were lucubrated and systematicalanalyzed. The intensification mechanism of GO in PBO fibers is proposed andsimply discussed. The effects of different GO contents on PBO fibers structureswere evaluated by chemical composition, the intrinsic viscosity and viscosityaverage molecular weight, surface and cross section morphology, the crystalliz-ation behavior of the compositite fiber and the GO distributions in composite fiber.The mechanical enhancement of PBO fibers with differen GO contents werestudied by tensile strength, tensile modulus and elongation at break. Comparedwith PBO fibers, tensile strength and modulus of composite fibers have asignificant increments with GO content. The thermal stabilities of GO-co-PBOcomposite fibers were studied and it was found that the incorporation of GOimproved the thermal stabilities and flame retardancy of PBO fibers. The effects ofGO on the interfacial properties of PBO fibers composite materials were evaluatedby surface wettability, surface free energy and interfacial shear strength.
引文
[1]姜永恺.高性能纤维的现状及应用[J].棉纺织技术,2000,28(6):6-9.
    [2] Yoo E S, Gavrin A J, Farris R J, et al. Synthesis and characterization of thepolyhydroxyamide/polymethoxyamide family of polymers[J]. HighPerformance Polymers,2003,15(4):519-535.
    [3] Davies R J, Eichhorn S J, Riekel C, et al. Crystal lattice deformation in singlepoly(p-phenylene benzobisoxazole) fibres[J]. Polymer,2004,45(22):7693-7704.
    [4] Chae H G, Kumar S. Rigid-rod polymeric fibers[J]. Journal of appliedpolymer science,2006,100(1):791-802.
    [5]唐久英,陈成泗,徐向宇,等. PBO纤维常压低温等离子体处理可行性分析[J].材料科学与工程学报,2008,26(2).
    [6]谢雄军.21世纪超级纤维——PBO[J].中国个体防护装备,2002,3:3(10):21-22.
    [7]汪家铭. PBO纤维的发展与应用前景[J].石油化工技术与经济,2009,25(2):26-31.
    [8]汪家铭.聚对苯撑苯并二噁唑(PBO)纤维发展概况与应用前景[J].化工新型材料,2009,37(10):23-25.
    [9]汪家铭.聚对苯撑苯并二恶唑纤维发展概况与应用前景[J].高科技纤维与应用,2009,34(2):42-47.
    [10]江建明,李光,金俊弘,等.超高性能PBO纤维的最新研究进展[J].合成纤维,2008,37(1):5-9.
    [11] Wolfe, James F, Arnold F E. Rigid-rod Polymers:1, Synthesis and thermalproperties of para-aromatic polymers with2,6-benzobisoxazole units in themain chain [J]. Macromolecules,1981,14(4):909-915.
    [12] Choe E W, Kim S N. Synthesis, spinning, and fiber mechanical properties ofpoly (p-phenylenebenzobisoxazole)[J]. Macromolecules,1981,14(4):920-924.
    [13] Imai Y, Itoya K, Kakimoto M. Synthesis of aromatic polybenzoxazoles bysilylation method and their thermal and mechanical properties[J].Macromolecular Chemistry and Physics,2000,201(17):2251-2256.
    [14]金宁人,张燕峰,胡建民,刘晓锋.聚对亚苯基苯并二噁唑合成新路线及其制备新技术[J].化工学报,2006,57(6):1474-1481.
    [15] Wolfe J F. RIGID-ROD POLYMER SYNTHESIS: DEVELOPMENT OFMESOPHASE POLYMERIZATION IN STRONG ACID SOLUTIONSJAMES F. WOLFE[C]//The Materials Science and Engineering of Rigid-RodPolymers: Symposium Held November28-December2,1988, Boston,Massachusetts, USA. Materials Research Society,1989:83.
    [16] Sikkema D J. Design, synthesis and properties of a novel rigid rod polymer,PIPD or M5': high modulus and tenacity fibres with substantial compressivestrength[J]. Polymer,1998,39(24):5981-5986.
    [17]张春燕,史子兴,冷维,等.采用4,6-二氨基间苯二酚-对苯二甲酸盐合成聚苯撑苯并二噁唑[J].上海交通大学学报,2003,37(5):646-649.
    [18]李金焕,黄玉东,许辉. PBO纤维的合成,纺制,微相结构与性能研究进展[J].高分子材料科学与工程,2003,19(6):46-50.
    [19]林宏,黄玉东,宋元军,等.纺丝工艺参数对初生PBO纤维性能的影响[J].固体火箭技术,2008,31(6):646-649.
    [20]胡娜. PBO/SWNT复合纤维的制备及结构与性能研究[D].哈尔滨工业大学,2008.
    [21] Ran S, Burger C, Fang D, et al. In-situ synchrotron WAXD/SAXS studies ofstructural development during PBO/PPA solution spinning[J].Macromolecules,2002,35(2):433-439.
    [22] Nelson D S, Soane D S. Phase separation kinetics of rigid-rod polymersduring coagulation[J]. Polymer Engineering&Science,1993,33(24):1619-1626.
    [23] Nelson D S, Soane D S. The morphology of rigid-rod polymers andmolecular composites resulting from coagulation processing[J]. PolymerEngineering&Science,1994,34(12):965-974.
    [24] Hunsaker M E, Price G E, Bai S J. Processing, structure and mechanics offibres of heteroaromatic oxazole polymers[J]. Polymer,1992,33(10):2128-2135.
    [25] Kitagawa T, Yabuki K. A relationship between the stress distribution and thepeak profile broadening of meridional X-Ray diffraction from poly‐p‐phenylenebenzobisoxazole (PBO) fiber[J]. Journal of Polymer Science PartB: Polymer Physics,2000,38(22):2937-2942.
    [26] Cohen Y, Gartstein E, Arndt K F, et al. The effect of heat treatment on themicrofibrillar network of poly (p-phenylene benzobisthiazole)[J]. PolymerEngineering&Science,1996,36(10):1355-1359.
    [27]吴平平,张烯,韩哲文.液晶高分子聚苯撑苯并二噁唑的合成,结构与性能[J].功能高分子学报,1992,5(3):169-174.
    [28] Iijima S. Helical microtubules of graphitic carbon[J]. nature,1991,354(6348):56-58.
    [29] Ajayan P M, Schadler L S, Braun P V. Nanocomposite science andtechnology[M]. Wiley-Vch,2006.
    [30] Ajayan P M, Stephan O, Colliex C, et al. Aligned carbon nanotube arraysformed by cutting a polymer resin-nanotube composite[J]. Science,1994,265(5176):1212-1214.
    [31] Singh P, Campidelli S, Giordani S, et al. Organic functionalisation andcharacterisation of single-walled carbon nanotubes[J]. Chemical SocietyReviews,2009,38(8):2214-2230.
    [32] Bredeau S, Peeterbroeck S, Bonduel D, et al. From carbon nanotube coatingsto high-performance polymer nanocomposites[J]. Polymer International,2008,57(4):547-553.
    [33] Liu P. Modifications of carbon nanotubes with polymers[J]. EuropeanPolymer Journal,2005,41(11):2693-2703.
    [34] Byrne M T, Gun'ko Y K. Recent advances in research on carbon nanotube-polymer composites[J]. Advanced Materials,2010,22(15):1672-1688.
    [35] Banerjee S, Hemraj-Benny T, Wong S S. Covalent surface chemistry ofsingle-walled carbon nanotubes[J]. Advanced Materials,2005,17(1):17-29.
    [36] Feng J, Sui J, Cai W, et al. Microstructure and mechanical properties ofcarboxylated carbon nanotubes/poly (L-lactic acid) composite[J]. Journal ofcomposite materials,2008,42(16):1587-1595.
    [37] Zhao B, Wang J, Li Z, et al. Mechanical strength improvement ofpolypropylene threads modified by PVA/CNT composite coatings[J].Materials Letters,2008,62(28):4380-4382.
    [38] Gao J, Itkis M E, Yu A, et al. Continuous spinning of a single-walled carbonnanotube-nylon composite fiber[J]. Journal of the American ChemicalSociety,2005,127(11):3847-3854.
    [39] Gao J, Zhao B, Itkis M E, et al. Chemical engineering of the single-walledcarbon nanotube-nylon6interface[J]. Journal of the American ChemicalSociety,2006,128(23):7492-7496.
    [40] Sui G, Zhong W H, Yang X P, et al. Preparation and properties of naturalrubber composites reinforced with pretreated carbon nanotubes[J]. Polymersfor Advanced Technologies,2008,19(11):1543-1549.
    [41] Wong K K, Shi S Q, Lau A K T. Mechanical and thermal behavior of apolymer composite reinforced with functionalized carbon nanotubes[J]. KeyEngineering Materials,2007,334:705-708.
    [42] Satishkumar B C, Vogl E M, Govindaraj A, et al. The decoration of carbonnanotubes by metal nanoparticles[J]. Journal of physics D: Applied physics,1996,29(12):3173-3176.
    [43] Ruelle B, Felten A, Ghijsen J, et al. Functionalization of MWCNTs withatomic nitrogen[J]. Micron,2009,40(1):85-88.
    [44] Ruelle B, Peeterbroeck S, Gouttebaron R, et al. Functionalization of carbonnanotubes by atomic nitrogen formed in a microwave plasma Ar+N2andsubsequent poly (ε-caprolactone) grafting[J]. Journal of Materials Chemistry,2007,17(2):157-159.
    [45] Coleman J N, Khan U, Blau W J, et al. Small but strong: a review of themechanical properties of carbon nanotube–polymer composites[J]. Carbon,2006,44(9):1624-1652.
    [46] Coleman J N, Khan U, Gun'ko Y K. Mechanical reinforcement of polymersusing carbon nanotubes[J]. Advanced Materials,2006,18(6):689-706.
    [47] Zhou C, Wang S, Zhang Y, et al. In situ preparation and continuous fiberspinning of poly (p-phenylene benzobisoxazole) composites witholigo-hydroxyamide-functionalized multi-walled carbon nanotubes[J].Polymer,2008,49(10):2520-2530.
    [48] Zhou C, Wang S, Zhuang Q, et al. Enhanced conductivity inpolybenzoxazoles doped with carboxylated multi-walled carbon nanotubes[J].Carbon,2008,46(9):1232-1240.
    [49] Chen X, Tao F, Wang J, et al. Concise route to styryl-modified multi-walledcarbon nanotubes for polystyrene matrix and enhanced mechanical propertiesand thermal stability of composite[J]. Materials Science and Engineering: A,2009,499(1):469-475.
    [50] Sun L, Warren G L, O’reilly J Y, et al. Mechanical properties of surface-functionalized SWCNT/epoxy composites[J]. Carbon,2008,46(2):320-328.
    [51] Baskaran D, Mays J W, Bratcher M S. Noncovalent and nonspecificmolecular interactions of polymers with multiwalled carbon nanotubes[J].Chemistry of materials,2005,17(13):3389-3397.
    [52] Hirsch A. Functionalization of single-walled carbon nanotubes[J].Angewandte Chemie International Edition,2002,41(11):1853-1859.
    [53] Andrews R, Jacques D, Qian D, et al. Multiwall carbon nanotubes: synthesisand application[J]. Accounts of Chemical Research,2002,35(12):1008-1017.
    [54] Liu J, Bibari O, Mailley P, et al. Stable non-covalent functionalisation ofmulti-walled carbon nanotubes by pyrene–polyethylene glycol through π–πstacking[J]. New Journal of Chemistry,2009,33(5):1017-1024.
    [55] Coleman J N, Cadek M, Blake R, et al. High performance nanotube‐reinforced plastics: understanding the mechanism of strength increase[J].Advanced Functional Materials,2004,14(8):791-798.
    [56] Verdejo R, Barroso-Bujans F, Rodriguez-Perez M A, et al. Carbon nanotubesprovide self-extinguishing grade to silicone-based foams[J]. Journal ofMaterials Chemistry,2008,18(33):3933-3939.
    [57] O'Connor I, Hayden H, O'Connor S, et al. Kevlar coated carbon nanotubesfor reinforcement of polyvinylchloride[J]. Journal of Materials Chemistry,2008,18(46):5585-5588.
    [58] Shi D, Lian J, He P, et al. Plasma coating of carbon nanofibers for enhanceddispersion and interfacial bonding in polymer composites[J]. Applied PhysicsLetters,2003,83(25):5301-5303.
    [59] Jin L, Bower C, Zhou O. Alignment of carbon nanotubes in a polymer matrixby mechanical stretching[J]. Applied physics letters,1998,73:1197.
    [60] Shaffer M S P, Windle A H. Fabrication and characterization of carbonnanotube/poly(vinyl alcohol) composites[J]. Advanced Materials,1999,11(11):937-941.
    [61] Geng H, Rosen R, Zheng B, et al. Fabrication and properties of composites ofpoly (ethylene oxide) and functionalized carbon nanotubes[J]. Advancedmaterials,2002,14(19):1387-1390.
    [62] Li C Y, Li L, Cai W, et al. Nanohybrid shish-kebabs: Periodicallyfunctionalized carbon nanotubes[J]. Advanced Materials,2005,17(9):1198-1202.
    [63] Haggenmueller R, Gommans H H, Rinzler A G, et al. Aligned single-wallcarbon nanotubes in composites by melt processing methods[J]. ChemicalPhysics Letters,2000,330(3):219-225.
    [64] Jin Z, Pramoda K P, Xu G, et al. Dynamic mechanical behavior ofmelt-processed multi-walled carbon nanotube/poly(methyl methacrylate)composites[J]. Chemical Physics Letters,2001,337(1):43-47.
    [65] P tschke P, Fornes T D, Paul D R. Rheological behavior of multiwalledcarbon nanotube/polycarbonate composites[J]. Polymer,2002,43(11):3247-3255.
    [66] Jia Z, Wang Z, Xu C, et al. Study on poly(methyl methacrylate)/carbonnanotube composites[J]. Materials Science and Engineering: A,1999,271(1):395-400.
    [67] Velasco-Santos C, Martínez-Hernández A L, Fisher F T, et al. Improvementof thermal and mechanical properties of carbon nanotube composites throughchemical functionalization[J]. Chemistry of materials,2003,15(23):4470-4475.
    [68] Fan J, Wan M, Zhu D, et al. Synthesis, characterizations, and physicalproperties of carbon nanotubes coated by conducting polypyrrole[J]. Journalof applied polymer science,1999,74(11):2605-2610.
    [69] Downs C, Nugent J, Ajayan P M, et al. Efficient polymerization of aniline atcarbon nanotube electrodes[J]. Advanced Materials,1999,11(12):1028-1031.
    [70] Chen G Z, Shaffer M S P, Coleby D, et al. Carbon nanotube and polypyrrolecomposites: coating and doping[J]. Advanced Materials,2000,12(7):522-526.
    [71] Liu C H, Huang H, Wu Y, et al. Thermal conductivity improvement ofsilicone elastomer with carbon nanotube loading[J]. Applied Physics Letters,2004,84(21):4248-4250.
    [72] Qian D, Dickey E C, Andrews R, et al. Load transfer and deformationmechanisms in carbon nanotube-polystyrene composites[J]. Applied PhysicsLetters,2000,76:2868.
    [73] Biercuk M J, Llaguno M C, Radosavljevic M, et al. Carbon nanotubecomposites for thermal management[J]. Applied Physics Letters,2002,80(15):2767-2769.
    [74] Cadek M, Coleman J N, Barron V, et al. Morphological and mechanicalproperties of carbon-nanotube-reinforced semicrystalline and amorphouspolymer composites[J]. Applied Physics Letters,2002,81(27):5123-5125.
    [75] Thostenson E T, Chou T W. Aligned multi-walled carbon nanotube-reinforcedcomposites: processing and mechanical characterization[J]. Journal ofphysics D: Applied physics,2002,35(16): L77.
    [76] Gorga R E, Cohen R E. Toughness enhancements in poly (methylmethacrylate) by addition of oriented multiwall carbon nanotubes[J]. Journalof Polymer Science Part B: Polymer Physics,2004,42(14):2690-2702.
    [77] Andrews R, Weisenberger M C. Carbon nanotube polymer composites[J].Current Opinion in Solid State and Materials Science,2004,8(1):31-37.
    [78] Ruan S L, Gao P, Yang X G, et al. Toughening high performance ultrahighmolecular weight polyethylene using multiwalled carbon nanotubes[J].Polymer,2003,44(19):5643-5654.
    [79] Weisenberger M C, Grulke E A, Jacques D, et al. Enhanced mechanicalproperties of polyacrylonitrile/multiwall carbon nanotube composite fibers[J].Journal of nanoscience and nanotechnology,2003,3(6):535-539.
    [80] Dalton A B, Collins S, Munoz E, et al. Super-tough carbon-nanotube fibres[J].Nature,2003,423(6941):703-703.
    [81] Assouline E, Lustiger A, Barber A H, et al. Nucleation ability of multiwallcarbon nanotubes in polypropylene composites[J]. Journal of PolymerScience Part B: Polymer Physics,2003,41(5):520-527.
    [82] Blake R, Gun'ko Y K, Coleman J, et al. A generic organometallic approachtoward ultra-strong carbon nanotube polymer composites[J]. Journal of theAmerican Chemical Society,2004,126(33):10226-10227.
    [83] Gong X, Liu J, Baskaran S, et al. Surfactant-assisted processing of carbonnanotube/polymer composites[J]. Chemistry of Materials,2000,12(4):1049-1052.
    [84] Kashiwagi T, Grulke E, Hilding J, et al. Thermal degradation andflammability properties of poly (propylene)/carbon nanotube composites[J].Macromolecular Rapid Communications,2002,23(13):761-765.
    [85] Choi E S, Brooks J S, Eaton D L, et al. Enhancement of thermal andelectrical properties of carbon nanotube polymer composites by magneticfield processing[J]. Journal of Applied Physics,2003,94(9):6034-6039.
    [86] Eizenberg M, Blakely J M. Carbon monolayer phase condensation on Ni(111)[J]. Surface Science,1979,82(1):228-236.
    [87] Novoselov K S, Geim A K, Morozov S V, et al. Electric field effect inatomically thin carbon films[J]. Science,2004,306(5696):666-669.
    [88] Lee C, Wei X, Kysar J W, et al. Measurement of the elastic properties andintrinsic strength of monolayer graphene[J]. science,2008,321(5887):385-388.
    [89] Balandin A A, Ghosh S, Bao W, et al. Superior thermal conductivity ofsingle-layer graphene[J]. Nano letters,2008,8(3):902-907.
    [90] Du X, Skachko I, Barker A, et al. Approaching ballistic transport insuspended graphene[J]. Nature Nanotechnology,2008,3(8):491-495.
    [91] Bunch J S, Verbridge S S, Alden J S, et al. Impermeable atomic membranesfrom graphene sheets[J]. Nano letters,2008,8(8):2458-2462.
    [92] Kim H, Abdala A A, Macosko C W. Graphene/polymer nanocomposites[J].Macromolecules,2010,43(16):6515-6530.
    [93] Wang X, You H, Liu F, et al. Large-Scale Synthesis of Few-LayeredGraphene using CVD[J]. Chemical Vapor Deposition,2009,15(1-3):53-56.
    [94] Li N, Wang Z Y, Zhao K K, Shi Z J, Gu Z N, Xu S K. Large scale synthesis ofN-doped multi-layered graphene sheets by simple arc-discharge method[J].Carbon,2010,48(1):255–259.
    [95] Rollings E, Gweon G H, Zhou S Y, et al. Synthesis and characterization ofatomically thin graphite films on a silicon carbide substrate[J]. Journal ofPhysics and Chemistry of Solids,2006,67(9):2172-2177.
    [96] Carissan Y, Klopper W. Growing graphene sheets from reactions with methylradicals: A quantum chemical study[J]. ChemPhysChem,2006,7(8):1770-1778.
    [97] Kim C D, Min B K, Jung W S. Preparation of graphene sheets by thereduction of carbon monoxide[J]. Carbon,2009,47(6):1610-1612.
    [98] Kosynkin D V, Higginbotham A L, Sinitskii A, et al. Longitudinal unzippingof carbon nanotubes to form graphene nanoribbons[J]. Nature,2009,458(7240):872-876.
    [99] Zhang W, Cui J, Tao C, et al. A Strategy for Producing Pure Single‐LayerGraphene Sheets Based on a Confined Self‐Assembly Approach[J].Angewandte Chemie,2009,121(32):5978-5982.
    [100]Worsley K A, Ramesh P, Mandal S K, et al. Soluble graphene derived fromgraphite fluoride[J]. Chemical Physics Letters,2007,445(1):51-56.
    [101]Kelly T D, Matos G R, Buckingham D A, et al. Historical statistics formineral and material commodities in the United States[M]. Reston, VA: USGeological Survey,2005.
    [102]Bourlinos A B, Georgakilas V, Zboril R, et al. Liquid-Phase Exfoliation ofGraphite Towards Solubilized Graphenes[J]. Small,2009,5(16):1841-1845.
    [103]Hernandez Y, Nicolosi V, Lotya M, et al. High-yield production of grapheneby liquid-phase exfoliation of graphite[J]. Nature Nanotechnology,2008,3(9):563-568.
    [104]Liu N, Luo F, Wu H, et al. One-Step Ionic-Liquid-Assisted ElectrochemicalSynthesis of Ionic-Liquid-Functionalized Graphene Sheets Directly fromGraphite[J]. Advanced Functional Materials,2008,18(10):1518-1525.
    [105]Behabtu N, Lomeda J R, Green M J, et al. Spontaneous high-concentrationdispersions and liquid crystals of graphene[J]. Nature nanotechnology,2010,5(6):406-411.
    [106]Brodie B C. On the atomic weight of graphite[J]. Philosophical Transactionsof the Royal Society of London,1859,149:249-259.
    [107]Staudenmaier L. Method for the preparation of graphitic acid[J]. Ber DtschChem Ges,1898,31:1481-1487.
    [108]Hummers Jr W S, Offeman R E. Preparation of graphitic oxide[J]. Journal ofthe American Chemical Society,1958,80(6):1339-1339.
    [109]Park S, Ruoff R S. Chemical methods for the production of graphenes[J].Nature nanotechnology,2009,4(4):217-224.
    [110]Stankovich S, Dikin D A, Piner R D, et al. Synthesis of graphene-basednanosheets via chemical reduction of exfoliated graphite oxide[J]. Carbon,2007,45(7):1558-1565.
    [111]Wang H, Robinson J T, Li X, et al. Solvothermal reduction of chemicallyexfoliated graphene sheets[J]. Journal of the American Chemical Society,2009,131(29):9910-9911.
    [112]Stankovich S, Dikin D A, Dommett G H B, et al. Graphene-based compositematerials[J]. Nature,2006,442(7100):282-286.
    [113]Si Y, Samulski E T. Synthesis of water soluble graphene[J]. Nano Letters,2008,8(6):1679-1682.
    [114]PRUD'HOMME R, AKSAY I, ADAMSON D, et al. Thermally exfoliatedgraphite oxide: WIPO Patent2007047084[P].2007-4-27.
    [115]Steurer P, Wissert R, Thomann R, et al. Functionalized graphenes andthermoplastic nanocomposites based upon expanded graphite oxide[J].Macromolecular rapid communications,2009,30(4-5):316-327.
    [116]Schniepp H C, Li J L, McAllister M J, et al. Functionalized single graphenesheets derived from splitting graphite oxide[J]. The Journal of PhysicalChemistry B,2006,110(17):8535-8539.
    [117]McAllister M J, Li J L, Adamson D H, et al. Single sheet functionalizedgraphene by oxidation and thermal expansion of graphite[J]. Chemistry ofMaterials,2007,19(18):4396-4404.
    [118]Matsuo Y, Tahara K, Sugie Y. Structure and thermal properties ofpoly(ethylene oxide)-intercalated graphite oxide[J]. Carbon,1997,35(1):113-120.
    [119]Hirata M, Gotou T, Horiuchi S, et al. Thin-film particles of graphite oxide1::High-yield synthesis and flexibility of the particles[J]. Carbon,2004,42(14):2929-2937.
    [120]Kim H, Miura Y, Macosko C W. Graphene/polyurethane nanocomposites forimproved gas barrier and electrical conductivity[J]. Chemistry of Materials,2010,22(11):3441-3450.
    [121]Liang J, Xu Y, Huang Y, et al. Infrared-triggered actuators from graphene-based nanocomposites[J]. The Journal of Physical Chemistry C,2009,113(22):9921-9927.
    [122]Das B, Prasad K E, Ramamurty U, et al. Nano-indentation studies on polymermatrix composites reinforced by few-layer graphene[J]. Nanotechnology,2009,20(12):125705.
    [123]Stankovich S, Piner R D, Chen X, et al. Stable aqueous dispersions ofgraphitic nanoplatelets via the reduction of exfoliated graphite oxide in thepresence of poly (sodium4-styrenesulfonate)[J]. Journal of MaterialsChemistry,2006,16(2):155-158.
    [124]Liu P, Gong K, Xiao P, et al. Preparation and characterization of poly (vinylacetate)-intercalated graphite oxide nanocomposite[J]. Journal of MaterialsChemistry,2000,10(4):933-935.
    [125]Jang J Y, Kim M S, Jeong H M, et al. Graphite oxide/poly (methylmethacrylate) nanocomposites prepared by a novel method utilizingmacroazoinitiator[J]. Composites Science and Technology,2009,69(2):186-191.
    [126]Wang S, Tambraparni M, Qiu J, et al. Thermal expansion of graphenecomposites[J]. Macromolecules,2009,42(14):5251-5255.
    [127]Du X S, Xiao M, Meng Y Z, et al. Direct synthesis of poly(arylenedisulfide)/carbon nanosheet composites via the oxidation withgraphite oxide[J]. Carbon,2005,43(1):195-213.
    [128]AngeláRodriguez-Perez M, de Saja J A, AngeláLopez-Manchado M.Functionalized graphene sheet filled silicone foam nanocomposites[J].Journal of Materials Chemistry,2008,18(19):2221-2226.
    [129]Lee Y R, Raghu A V, Jeong H M, et al. Properties of waterbornepolyurethane/functionalized graphene sheet nanocomposites prepared by anin situ method[J]. Macromolecular Chemistry and Physics,2009,210(15):1247-1254.
    [130]Yang Y, Wang J, Zhang J, et al. Exfoliated graphite oxide decorated byPDMAEMA chains and polymer particles[J]. Langmuir,2009,25(19):11808-11814.
    [131]Salavagione H J, Gómez M A, Martínez G. Polymeric modification ofgraphene through esterification of graphite oxide and poly (vinyl alcohol)[J].Macromolecules,2009,42:6331-6334.
    [132]Kim H, Macosko C W. Processing-property relationships of polycarbonate/graphene composites[J]. Polymer,2009,50(15):3797-3809.
    [133]Kim H, Macosko C W. Morphology and properties of polyester/exfoliatedgraphite nanocomposites[J]. Macromolecules,2008,41(9):3317-3327.
    [134]Wakabayashi K, Pierre C, Dikin D A, et al. Polymer-graphite nanocomposites:Effective dispersion and major property enhancement via solid-state shearpulverization[J]. Macromolecules,2008,41(6):1905-1908.
    [135]Gómez-Navarro C, Burghard M, Kern K. Elastic properties of chemicallyderived single graphene sheets[J]. Nano letters,2008,8(7):2045-2049.
    [136]Rafiee M A, Rafiee J, Wang Z, et al. Enhanced mechanical properties ofnanocomposites at low graphene content[J]. ACS nano,2009,3(12):3884-3890.
    [137]Ramanathan T, Abdala A A, Stankovich S, et al. Functionalized graphenesheets for polymer nanocomposites[J]. Nature Nanotechnology,2008,3(6):327-331.
    [138]Zhao X, Zhang Q, Chen D, et al. Enhanced mechanical properties ofgraphene-based poly (vinyl alcohol) composites[J]. Macromolecules,2010,43(5):2357-2363.
    [139]Song P, Cao Z, Cai Y, et al. Fabrication of exfoliated graphene-basedpolypropylene nanocomposites with enhanced mechanical and thermalproperties[J]. Polymer,2011,52(18):4001-4010.
    [140]Khan U, May P, O’Neill A, et al. Development of stiff, strong, yet toughcomposites by the addition of solvent exfoliated graphene to polyurethane[J].Carbon,2010,48(14):4035-4041.
    [141]Bortz D R, Heras E G, Martin-Gullon I. Impressive fatigue life and fracturetoughness improvements in graphene oxide/epoxy composites[J].Macromolecules,2011,45(1):238-245.
    [142]Chatterjee S, Nüesch F A, Chu B T T. Comparing carbon nanotubes andgraphene nanoplatelets as reinforcements in polyamide12composites[J].Nanotechnology,2011,22(27):275714.
    [143]Shin M K, Lee B, Kim S H, et al. Synergistic toughening of composite fibresby self-alignment of reduced graphene oxide and carbon nanotubes[J].Nature Communications,2012,3:650.
    [144]Gao Y, Liu L Q, Zu S Z, et al. The effect of interlayer adhesion on themechanical behaviors of macroscopic graphene oxide papers[J]. ACS nano,2011,5(3):2134-2141.
    [145]Mohiuddin T M G, Lombardo A, Nair R R, et al. Uniaxial strain in grapheneby Raman spectroscopy: G peak splitting, Grüneisen parameters, and sampleorientation[J]. Physical Review B,2009,79(20):205433.
    [146]Higginbotham A L, Lomeda J R, Morgan A B, et al. Graphite oxideflame-retardant polymer nanocomposites[J]. ACS Applied Materials&Interfaces,2009,1(10):2256-2261.
    [147]Verdejo R, Saiz-Arroyo C, Carretero-Gonzalez J, et al. Physical properties ofsilicone foams filled with carbon nanotubes and functionalized graphenesheets[J]. European Polymer Journal,2008,44(9):2790-2797.
    [148]Salavagione H J, Martínez G, Gómez M A. Synthesis of poly (vinylalcohol)/reduced graphite oxide nanocomposites with improved thermal andelectrical properties[J]. Journal of Materials Chemistry,2009,19(28):5027-5032.
    [149]Fang M, Wang K, Lu H, et al. Covalent polymer functionalization ofgraphene nanosheets and mechanical properties of composites[J]. Journal ofMaterials Chemistry,2009,19(38):7098-7105.
    [150] Prasad K E, Das B, Maitra U, et al. Extraordinary synergy in the mechanicalproperties of polymer matrix composites reinforced with2nanocarbons[J].Proceedings of the National Academy of Sciences,2009,106(32):13186-13189.
    [151]Liang J, Huang Y, Zhang L, et al. Molecular-Level Dispersion of Grapheneinto Poly (vinyl alcohol) and Effective Reinforcement of theirNanocomposites[J]. Advanced Functional Materials,2009,19(14):2297-2302.
    [152]Serge B, Xavier F, Bertrand R. Characterisation of poly(p-phenylenebenzobisoxazole) fibres by solid state NMR[J]. European Polymer Journa,2002,38(8):1645-1651.
    [153]Hu H, Bhowmik P, Zhao B, et al. Determination of the acidic sites of purifiedsingle-walled carbon nanotubes by acid–base titration[J]. Chemical PhysicsLetters,2001,345(1):25-28.
    [154]Li Y, Gao W, Ci L, et al. Catalytic performance of Pt nanoparticles onreduced graphene oxide for methanol electro-oxidation[J]. Carbon,2010,48(4):1124-1130.
    [155]马文石,周俊文,程顺喜.石墨烯的制备与表征[J].高校化学工程学报,2010,24(004):719-722.
    [156] Kumar S, Dang T D, Arnold F E, et al. Synthesis, Structure, and Properties ofPBO/SWNT Composites[J]. Macromolecules,2002,35(24):9039-9043.
    [157]Kobashi K, Chen Z, Lomeda J, et al. Copolymer of single-walled carbonnanotubes and poly (p-phenylene benzobisoxazole)[J]. Chemistry ofmaterials,2007,19(2):291-300.
    [158]Li X, Huang Y D, Liu L, et al. Preparation of multiwall carbonnanotubes/poly (p-phenylene benzobisoxazole) nanocomposites and analysisof their physical properties[J]. Journal of applied polymer science,2006,102(3):2500-2508.
    [159]Li J, Chen X, Li X, et al. Synthesis, structure and properties of carbonnanotube/poly (p-phenylene benzobisoxazole) composite fibres[J]. Polymerinternational,2006,55(4):456-465.
    [160]Park C, Ounaies Z, Watson K A, et al. Dispersion of single wall carbonnanotubes by in situ polymerization under sonication[J]. Chemical physicsletters,2002,364(3):303-308.
    [161] Paul R, Kumbhakar P, Mitra A K. Blue–green luminescence bySWCNT/ZnO hybrid nanostructure synthesized by a simple chemicalroute[J]. Physica E: Low-dimensional Systems and Nanostructures,2010,43(1):279-284.
    [162]Uchida T, Kumar S. Single wall carbon nanotube dispersion and exfoliationin polymers[J]. Journal of applied polymer science,2005,98(3):985-989.
    [163]Bokobza L. Multiwall carbon nanotube elastomeric composites: A review[J].Polymer,2007,48(17):4907-4920.
    [164] Yeh M K, Tai N H, Liu J H. Mechanical behavior of phenolic-basedcomposites reinforced with multi-walled carbon nanotubes[J]. Carbon,2006,44(1):1-9.
    [165] Hu Z, Li J, Tang P, et al. One-pot preparation and continuous spinning ofcarbon nanotube/poly(p-phenylene benzobisoxazole) composite fibers[J].Journal of Materials Chemistry,2012,22(37):19863-19871.
    [166]Qi X Y, Yan D, Jiang Z, et al. Enhanced electrical conductivity inpolystyrene nanocomposites at ultra-low graphene content[J]. ACS AppliedMaterials&Interfaces,2011,3(8):3130-3133.
    [167]Bao C, Song L, Wilkie C A, et al. Graphite oxide, graphene, andmetal-loaded graphene for fire safety applications of polystyrene[J]. Journalof Materials Chemistry,2012,22(32):16399-16406.
    [168]Affdl J C, Kardos J L. The Halpin-Tsai equations: a review[J]. PolymerEngineering&Science,1976,16(5):344-352.
    [169]Zhang C, Tjiu W W, Fan W, et al. A novel approach for transferring water-dispersible graphene nanosheets into organic media[J]. Journal of MaterialsChemistry,2012,22(23):11748-11754.
    [170]Shi Y, Li L J. Chemically modified graphene: flame retardant or fuel forcombustion?[J]. Journal of Materials Chemistry,2011,21(10):3277-3279.
    [171]Huang G, Gao J, Wang X, et al. How can graphene reduce the flammability ofpolymer nanocomposites?[J]. Materials Letters,2012,66(1):187-189.
    [172]周磊,郑来云,李冬泽,等. PP纳米复合材料阻燃性研究[J].塑料工业,2012,40(11):103-106.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700