纯钛硬组织植入体表面膜层的仿生构建及其生物学行为研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纯钛硬组织植入体因具有优良的生物相容性、力学性能、耐腐蚀性和可加工性而在临床上得到广泛应用。但其表面缺乏优异的生物学性能,植入体内后无法形成牢固的植入体-骨组织结合界面。本研究以改善纯钛硬组织植入体表面生物学性能为目的,从植入体-骨组织结合界面入手,结合微弧氧化(MAO)技术、去细胞化技术和点击反应技术,创新性地在纯钛基植入体表面仿生构建了与骨组织成分相似且可利用点击反应接枝生物活性分子的细胞外基质-微弧氧化膜层(clickable ECM-MAO膜层),显著地改善了细胞在纯钛硬组织植入体表面的多项生物学行为。
     膜层中的MAO膜层由金红石、锐钛矿和磷灰石晶体组成。该膜层对阿伦膦酸钠具有50小时以上的控释能力。另外,载有PAMAM Dendrimer的MAO膜层在PBS缓冲液中具有30天以上的稳定性,且在对人骨髓间充质干细胞(HBMSC)表现出优良的生物相容性和促进成骨生物活性的同时,还对临床常见的致病细菌绿脓杆菌和金黄色葡萄球菌表现出一定的抗菌性。膜层中的ECM膜层是在去细胞化膜层模型基础上构建的。去细胞化膜层模型主要成分是人血管内皮细胞(HUVEC)所分泌的细胞外基质,模型相比于对照组可以有效地促进HUVEC体外的粘附、增殖和成血管分化。在该模型基础上仿生构建的HUVEC和HBMSC两种ECM-MAO膜层相比于MAO膜层表现出更加优异的生物学性能,对HBMSC体外增殖及其成骨基因Col-I、OPN的表达具有显著的促进作用。
     仿生构建的膜层中含有大量细胞外基质成分,所以应用于膜层的接枝化学反应必须具有高生物相容性。铜催化叠氮-炔基Husigen环加成反应(CuAAC反应)是具有优异生物相容性的一类点击反应。本文在系统研究反应条件对反应速率和生物相容性影响规律的基础上,通过该CuAAC反应技术利用荧光染料BN和CN以及自主设计合成的荧光染料BCN标记三种活细胞并首次标记无合成缺陷的细菌。经处理的细胞和细菌不但呈现明显的荧光,而且保持了很好的活性。同时,BCN相比于BN和CN,实现了一种荧光染料双重标记细胞的效果。该技术为在仿生构建的膜层表面接枝生物活性分子的研究提供了重要的技术支持。
     最后,本研究创新性地利用新陈代谢方法在ECM膜层中引入炔基基团,构建了可进行点击反应的去细胞化膜层模型(clickable ECM模型)。在利用点击反应接枝多肽QK之后,模型对HUVEC体外成血管化的促进作用得到明显提升。在该模型的基础上仿生构建的clickable ECM-MAO膜层接枝多肽QK之后,对HBMSC体外成骨分化具有更好地促进作用。另外,在氮气环境中接枝QK多肽的膜层对HBMSC第一天成骨分化具有更加明显的促进作用。
As hard tissue implants, pure titanium is widely used due to its advantages inbiocompatibility, mechanical properties, corrosion resistance, and light weight.However, the application of pure titanium is limited in clinic because of its lowbiological property, which leads to the poor interface of the implant-bone tissue. Inthis research, the clickable ECM-MAO film, which could improve the biologicalproperties of the pure titanium hard tissue implant, was biomimetic constructed onthe implant surface by using micro-arc oxidation, decellularization and click reaction.
     In the ECM-MAO film, the MAO film is mainly formed by anatase, rutile andapatite. This MAO film could load the allen sodium phosphate (AL) and control therelease of AL up to50h. On the other hand, it could also load the antimicrobial drugPAMAM Dendrimer stably up to30days in PBS solution. The MAO film withPAMAM Dendrimer could exhibit the antimicrobial activity to bacteria P. aeruginosaand S. Aureus while keeping excellent biocompatibility and bioactivity to HBMSC(Human Bone Mesenchymal Stem Cells). The ECM film in the ECM-MAO film isconstructed from the decellularized film model. The decellularized model is form bythe extracellular matrix (ECM) secreted by HUVEC (Human Umbilical VeinEndothelial Cells), which could improve the adhesion, proliferation and angiogenesisof HUVEC in vitro compared to the control groups. The ECM-MAO film which isbiomimetic constructed from this model and formed by ECM secreted by HUVEC orHBMSC shows better biological behavior than MAO film. It could improveHBMSC’s proliferation and expression of Col-I and OPN in vitro.
     For ECM-MAO film, the high biocompatibility of the chemistry method is required toprotect the bioactive molecular in ECM while integrating bioactive molecular on it.Cu(I)-catalyzed azide-alkyne cycloaddition (CuAAC) is one kind of the click reactions withhigh biocompatibility. After researched the effect of reactive condition on the reactive rateand biocompatibility, we use CuAAC to stain the live cell and bacteria with dye BN, CN andthe new dye BCN designed by us. After reaction, the cell and bacteria could exhibitfluorescence while keeping alive. At the same time, compared to BN and CN, the BCN could exhibit two kinds of fluorescence. This click reaction supports a kind of method to integratebioactive molecular on the clickable ECM-MAO film.
     Finally, we import the alkyl group into the ECM film to construct the clickable ECMmodel. After integrated QK with click reaction, the model could improve the angiogenesis ofHUVEC evidently. The clickable ECM-MAO biomimetic film is biomimetic constructedfrom this model, which could show better biological behavior for improving the expression ofosteogenic gene of HBMSC after integrated with QK by click reaction. In addition, comparedthe film integrated QK peptide in air, the film integrated QK peptide in nitrogen has bettereffect on improving the expression of osteogenic gene of HBMSC at the first day.
引文
[1] Geetha M., Singh A. K., Asokamani R., et al. Ti based biomaterials, the ultimate choicefor orthopaedic implants-A review [J]. Progress in Materials Science,2009,54(3):397-425.
    [2]浦素云.金属植入材料及腐蚀[M].北京航空航天大学出版社,1990.
    [3]钱九红.外科植入物用纯钛及其合金[J].稀有金属,2001,25(4):303-6.
    [4] Hench L. L., Splinter R. J., Allen W. C., et al. Bonding mechanisms at the interface ofceramic prosthetic materials [J]. Journal of Biomedical Materials Research,1971,5(6):117-41.
    [5] Hench L. L., Wilson J. Surface-active biomaterials [J]. Science (New York, NY),1984,226(4675):630-6.
    [6] Oonishi H., Hench L. L., Wilson J., et al. Quantitative comparison of bone growthbehavior in granules of Bioglass (R), A-W glass-ceramic, and hydroxyapatite [J]. Journalof Biomedical Materials Research,2000,51(1):37-46.
    [7] Hamadouche M., Meunier A., Greenspan D. C., et al. Long-term in vivo bioactivity anddegradability of bulk sol-gel bioactive glasses [J]. Journal of Biomedical MaterialsResearch,2001,54(4):560-6.
    [8] Urist M. R., Lietze A., Mizutani H., et al. A bovine low molecular weight bonemorphogenetic protein (BMP) fraction [J]. Clinical Orthopaedics and Related Research,1982,162):219-32.
    [9]余耀庭,张兴栋.生物医学材料[M].天津大学出版社,2000.
    [10]崔福斋,冯庆玲.生物材料学[M].科学出版社:科学出版社,1999.
    [11] Yong W., Zitelli J. P., Tenhuisen K. S., et al. Differential response of Staphylococci andosteoblasts to varying titanium surface roughness [J]. Biomaterials,2011,32(4):951-960960.
    [12] Bigerelle M., Anselme K., Noel B., et al. Improvement in the morphology of Ti-basedsurfaces: a new process to increase in vitro human osteoblast response [J]. Biomaterials,2002,23(7):1563-77.
    [13] Yang C. W., Lui T. S. Microstructural healing with interfacial reaction layers on theadhesive strength enhancement of plasma-sprayed hydroxyapatite coating [J]. Int J ModPhys B,2010,24(1-2):76-84.
    [14] Yikai C., Xuebin Z., Baoe L., et al. In vitro bioactivity, cytotoxicity and bloodcompatibility of anti-bacterial vacuum plasma sprayed titanium coatings [J]. Mater SciForum,2010,658(511-514514.
    [15] Gueorguiev B., Iordanova I., Sprecher C. M., et al. Plasma-spraying methods forapplications in the production of quality biomaterials for modern medicine and dentistry[J]. J Optoelectron Adv Mater,2009,11(9):1331-4.
    [16] Chen C. C., Huang T. H., Kao C. T., et al. Characterization of functionally gradedhydroxyapatite/titanium composite coatings plasma-sprayed on Ti alloys [J]. J BiomedMater Res Part B,2006,78B(1):146-52.
    [17] Ning C. Y., Wang Y. J., Chen X. F., et al. Mechanical performances and microstructuralcharacteristics of plasma-sprayed bio-functionally gradient HA-ZrO2-Ti coatings [J].Surf Coat Technol,2005,200(7):2403-8.
    [18] Feng X. G., Sun M. R., Ma X. X., et al. Structure and tribological performance bynitrogen and oxygen plasma based ion implantation on Ti6Al4V alloy [J]. Appl Surf Sci,2011,257(23):9904-8.
    [19] Diaz C., Lutz J., Mandl S., et al. Improved bio-tribology of biomedical alloys by ionimplantation techniques [J]. Nucl Instrum Methods Phys Res Sect B-Beam InteractMater Atoms,2009,267(8-9):1630-3.
    [20] Turcio-Ortega D., Rodil S. E., Muhl S. Electrochemical behavior of titanium thin filmsobtained by magnetron sputtering [J]. Mater Sci-Medzg,2008,14(1):15-9.
    [21] Lee I. S., Zhao B., Lee G. H., et al. Industrial application of ion beam assisted depositionon medical implants [J]. Surf Coat Technol,2007,201(9-11):5132-7.
    [22] Wang C., Chen Z. Design of HA/Ti biomedical implants with the use ofion-beam-assisted deposition [J]. Sheng wu yi xue gong cheng xue za zhi=Journal ofbiomedical engineering=Shengwu yixue gongchengxue zazhi,1999,16(2):140-2,6.
    [23] Kim H. M., Miyaji F., Kokubo T., et al. Preparation of bioactive Ti and its alloys viasimple chemical surface treatment [J]. Journal of Biomedical Materials Research,1996,32(3):409-17.
    [24] Wen H. B., Wolke J. G. C., Dewijn J. R., et al. Fast precipitation of calcium phosphatelayers on titanium induced by simple chemical treatments [J]. Biomaterials,1997,18(22):1471-8.
    [25] Takadama H., Kim H. M., Kokubo T., et al. TEM-EDX study of mechanism of bonelikeapatite formation on bioactive titanium metal in simulated body fluid [J]. Journal ofBiomedical Materials Research,2001,57(3):441-8.
    [26] Wen H. B., De Wijn J. R., Cui F. Z., et al. Preparation of calcium phosphate coatings ontitanium implant materials by simple chemistry [J]. Journal of Biomedical MaterialsResearch,1998,41(2):227-36.
    [27] Tsukimura N., Ueno T., Iwasa F., et al. Bone integration capability of alkali-andheat-treated nanobimorphic Ti-15Mo-5Zr-3Al [J]. Acta biomaterialia,2011,7(12):4267-77.
    [28] Lee M. H., Park H. H., Kim B. I. Biocompatibility of alkali treated titanium and titaniumalloy [J]. J Jpn Inst Met,2000,64(7):578-83.
    [29] Li Y. C., Xiong J. Y., Wong C. S., et al. Bioactivating the Surfaces of Titanium bySol-Gel Process [M]//LU J. Advanced Materials Science and Technology. Stafa-Zurich;Trans Tech Publications Ltd.2009:67-71.
    [30] Wu C. T., Ramaswamy Y., Gale D., et al. Novel sphene coatings on Ti-6Al-4V fororthopedic implants using sol-gel method [J]. Acta biomaterialia,2008,4(3):569-76.
    [31] Lee M. H., Park I. S., Min K. S., et al. Evaluation of in vitro and in vivo tests forsurface-modified titanium by H2SO4and H2O2treatment [J]. Met Mater-Int,2007,13(2):109-15.
    [32] Jansson E., Kalltorp M., Thomsen P., et al. Ex vivo PMA-induced respiratory burst andTNF-alpha secretion elicited from inflammatory cells on machined and porous bloodplasma clot-coated titanium [J]. Biomaterials,2002,23(13):2803-15.
    [33]黄立业,憨勇,许可为.电化学沉积-水热合成法制备羟基磷灰石生物涂层的工艺研究[J].硅酸盐学报,1998,26(1):87-91.
    [34] Ban S., Maruno S. Effect of temperature on electrochemical deposition of calciumphosphate coatings in a simulated body fluid [J]. Biomaterials,1995,16(13):977-81.
    [35] Shirkhanzadeh M. Bioactive calcium phosphate coatings prepared by electrodeposition[J]. Journal of Materials Science Letters,1991,10(23):
    [36] Ban S., Maruno S., Arimoto N., et al. Effect of electrochemically deposited apatitecoating on bonding of bone to the HA-G-Ti composite and titanium [J]. Journal ofBiomedical Materials Research,1997,36(1):9-15.
    [37] De Jonge L., Leeuwenburgh S., Wolke J., et al. Organic–Inorganic Surface Modificationsfor Titanium Implant Surfaces [J]. Pharm Res,2008,25(10):2357-69.
    [38] Bierbaum S., Hempel U., Geissler U., et al. Modification of Ti6Al4V surfaces usingcollagen I, III, and fibronectin. II. Influence on osteoblast responses [J]. Journal ofBiomedical Materials Research Part A,2003,67A(2):431-8.
    [39] Ku Y., Chung C. P., Jang J. H. The effect of the surface modification of titanium using arecombinant fragment of fibronectin and vitronectin on cell behavior [J]. Biomaterials,2005,26(25):5153-7.
    [40] Hubbell J. A. Bioactive biomaterials [J]. Current Opinion in Biotechnology,1999,10(2):123-9.
    [41]Morra M. Biochemical modification of titanium surfaces: Peptides and ECM proteins [J].Eur Cells Mater,2006,12(1-15.
    [42]Shin H., Jo S., Mikos A. G. Biomimetic materials for tissue engineering [J]. Biomaterials,2003,24(24):4353-64.
    [43] Massia S. P., Hubbell J. A. An RGD spacing of440nm is sufficient for integrin alpha Vbeta3-mediated fibroblast spreading and140nm for focal contact and stress fiberformation [J]. The Journal of cell biology,1991,114(5):1089-100.
    [44] Grzesik W. J., Robey P. G. Bone matrix RGD glycoproteins: immunolocalization andinteraction with human primary osteoblastic bone cells in vitro [J]. Journal of bone andmineral research: the official journal of the American Society for Bone and MineralResearch,1994,9(4):487-96.
    [45] Lebaron R. G., Athanasiou K. A. Extracellular matrix cell adhesion peptides: Functionalapplications in orthopedic materials [J]. Tissue Engineering,2000,6(2):85-103.
    [46] Rezania A., Thomas C. H., Branger A. B., et al. The detachment strength andmorphology of bone cells contacting materials modified with a peptide sequence foundwithin bone sialoprotein [J]. Journal of Biomedical Materials Research,1997,37(1):9-19.
    [47] Tashiro K., Sephel G. C., Weeks B., et al. A synthetic peptide containing the IKVAVsequence from the A chain of laminin mediates cell attachment, migration, and neuriteoutgrowth [J]. The Journal of biological chemistry,1989,264(27):16174-82.
    [48] Dee K. C., Andersen T. T., Bizios R. Design and function of novel osteoblast-adhesivepeptides for chemical modification of biomaterials [J]. Journal of Biomedical MaterialsResearch,1998,40(3):371-7.
    [49] Rezania A., Healy K. E. Biomimetic peptide surfaces that regulate adhesion, spreading,cytoskeletal organization, and mineralization of the matrix deposited by osteoblast-likecells [J]. Biotechnology Progress,1999,15(1):19-32.
    [50] Gabriel M., Nazmi K., Veerman E. C., et al. Preparation of LL-37-grafted titaniumsurfaces with bactericidal activity [J]. Bioconjugate Chemistry,2006,17(2):548-50.
    [51] Li Y., Santos C. M., Kumar A., et al."Click" Immobilization on Alkylated SiliconSubstrates: Model for the Study of Surface Bound Antimicrobial Peptides [J].Chemistry-a European Journal,2011,17(9):2656-65.
    [52] Lieberman J. R., Daluiski A., Einhorn T. A. The role of growth factors in the repair ofbone-Biology and clinical applications [J]. Journal of Bone and Joint Surgery-AmericanVolume,2002,84A(6):1032-44.
    [53] Duan K., Wang R. Z. Surface modifications of bone implants through wet chemistry [J].Journal of Materials Chemistry,2006,16(24):2309-21.
    [54] Babensee J. E., Mcintire L. V., Mikos A. G. Growth factor delivery for tissue engineering[J]. Pharm Res,2000,17(5):497-504.
    [55] Solheim E. Growth factors in bone [J]. International Orthopaedics,1998,22(6):410-6.
    [56] Hall J., Sorensen R. G., Wozney J. M., et al. Bone formation at rhBMP-2-coated titaniumimplants in the rat ectopic model [J]. Journal of Clinical Periodontology,2007,34(5):444-51.
    [57] Jennissen H. P. Accelerated and improved osteointegration of implants biocoated withbone morphogenetic protein2(BMP-2)[M]//SIPE J D K C A M L A. ReparativeMedicine: Growing Tissues and Organs.2002:139-42.
    [58] Bentz H., Schroeder J. A., Estridge T. D. Improved local delivery of TGF-beta2bybinding to injectable fibrillar collagen via difunctional polyethylene glycol [J]. Journal ofBiomedical Materials Research,1998,39(4):539-48.
    [59] De Groot K. Carriers that concentrate native bone morphogenetic protein in vivo [J].Tissue Engineering,1998,4(4):337-41.
    [60] Uludag H., D'augusta D., Palmer R., et al. Characterization of rhBMP-2pharmacokinetics implanted with biomaterial carriers in the rat ectopic model [J].Journal of Biomedical Materials Research,1999,46(2):193-202.
    [61] Werner M. H., Gronenborn A. M., Clore G. M. Intercalation, DNA kinking, and thecontrol of transcription [J]. Science (New York, NY),1996,271(5250):778-84.
    [62] Tretinnikov O. N., Kato K., Ikada Y. In vitro hydroxyapatite deposition onto a filmsurface-grated with organophosphate polymer [J]. Journal of Biomedical MaterialsResearch,1994,28(11):1365-73.
    [63] Inoue Y., Fukushima T., Hayakawa T., et al. Antibacterial characteristics of newlydeveloped amphiphilic lipids and DNA-lipid complexes against bacteria [J]. Journal ofBiomedical Materials Research Part A,2003,65A(2):203-8.
    [64] Siebers M. C., Walboomers X. F., Leewenburgh S. C. G., et al. Transforming growthfactor-beta1release from a porous electrostatic spray deposition-derived calciumphosphate coating [J]. Tissue Engineering,2006,12(9):2449-56.
    [65] Morra M., Cassinelli C., Cascardo G., et al. Surface engineering of titanium by collagenimmobilization. Surface characterization and in vitro and in vivo studies [J].Biomaterials,2003,24(25):4639-54.
    [66] Anselme K. Osteoblast adhesion on biomaterials [J]. Biomaterials,2000,21(7):667-81.
    [67] Fan Y. W., Duan K., Wang R. Z. A composite coating by electrolysis-induced collagenself-assembly and calcium phosphate mineralization [J]. Biomaterials,2005,26(14):1623-32.
    [68] Hu K., Yang X., Cai Y., et al. Comparison of physical characteristics and cell culture testof hydroxyapatite/collagen composite coating on NiTi SMA: electrochemical depositionand chemically biomimetic growth [J]. Frontiers of Materials Science in China,2007,1(3):
    [69] Schliephake H., Scharnweber D., Dard M., et al. Biological performance of biomimeticcalcium phosphate coating of titanium implants in the dog mandible [J]. Journal ofBiomedical Materials Research Part A,2003,64A(2):225-34.
    [70] Liu Y., De Groot K., Hunziker E. B. BMP-2liberated from biomimetic implant coatingsinduces and sustains direct ossification in an ectopic rat model [J]. Bone,2005,36(5):745-57.
    [71] Liu Y., Huse R. O., De Groot K., et al. Delivery mode and efficacy of BMP-2inassociation with implants [J]. Journal of Dental Research,2007,86(1):84-9.
    [72] Lv G. H., Chen H., Gu W. C., et al. Effects of current frequency on the structuralcharacteristics and corrosion property of ceramic coatings formed on magnesium alloyby PEO technology [J]. J Mater Process Technol,2008,208(1-3):9-13.
    [73] Li L. H., Kong Y. M., Kim H. W., et al. Improved biological performance of Ti implantsdue to surface modification by micro-arc oxidation [J]. Biomaterials,2004,25(14):2867-75.
    [74] Li Y., Lee I.-S., Cui F.-Z., et al. The biocompatibility of nanostructured calciumphosphate coated on micro-arc oxidized titanium [J]. Biomaterials,2008,29(13):2025-32.
    [75] Song W. H., Jun Y. K., Han Y., et al. Biomimetic apatite coatings on micro-arc oxidizedtitania [J]. Biomaterials,2004,25(17):3341-9.
    [76] Sul Y. T., Johansson C., Byon E., et al. The bone response of oxidized bioactive andnon-bioactive titanium implants [J]. Biomaterials,2005,26(33):6720-30.
    [77] Wang Y. J., Wang L., Zheng H. D., et al. Effect of frequency on the structure and cellresponse of Ca-and P-containing MAO films [J]. Appl Surf Sci,2010,256(7):2018-24.
    [78] A Gntherchlze H. B. Neue Untersuchungen uber die elektrolytiche Ventilwirkung [J].ZPhys,1932,78(196-210.
    [79] A Gntherchlze H. B. Die Elektronenstromungin Isolatorebeiextremen Feldstarken [J]. ZPhys,1934,91(70-96.
    [80] Kadary V., Klein N. Electrical breakdown. I. During the anodic growth of tantalumpentoxide [J]. Journal of the Electrochemical Society,1980,127(1):
    [81] F.J. Burger J. C. W. Dielectric breadown in electrolytic capacitors [J]. J Electrochem Soc,1971,118(12):2039-42.
    [82] Ohtsuki C., Iida H., Hayakawa S., et al. Bioactivity of titanium treated with hydrogenperoxide solutions containing metal chlorides [J]. Journal of Biomedical MaterialsResearch,1997,35(1):39-47.
    [83]薛文斌,王超,邓志威,等.钛合金表面交流微弧氧化膜的研究[J].无机材料学报,2002,17(2):326-31.
    [84]黄平,憨勇,许可为.用微弧氧化技术处理医用钛合金表面的研究[J].稀有金属材料与工程,2002,31(4):308-31.
    [85]南开辉.钛基种植体活性表面的构建及其仿生矿化性能研究[D].华南理工大学博士学位论文,2005.
    [86]黄勇.钛基种植体表面生物活性膜层构建及其生物学特征研究[D].华南理工大学博士学位论文,2007.
    [87]赵树萍.钛及其合金微弧氧化镀层的形成及性质[J].钛工业进展,2002,3:5-8.
    [88] Yahalom J., Zahavi J. Experimental evaluation of some electrolytic breakdownhypotheses [J]. Electrochimica Acta,1971,16(5):603-7.
    [89] Wood G. C., Pearson C. Dielectric breakdown of anodic oxide films on valve metals [J].Corrosion Science,1967,7(2):119-25.
    [90] Gilbert T. W., Sellaro T. L., Badylak S. F. Decellularization of tissues and organs [J].Biomaterials,2006,27(19):3675-83.
    [91] Allen R. A., Seltz L. M., Jiang H., et al. Adrenal Extracellular Matrix Scaffolds SupportAdrenocortical Cell Proliferation and Function In Vitro [J]. Tissue Eng Part A,2010,16(11):3363-74.
    [92] Ott H. C., Matthiesen T. S., Goh S.-K., et al. Perfusion-decellularized matrix: usingnature's platform to engineer a bioartificial heart [J]. Nat Med,2008,14(2):213-21.
    [93] Ross E. A., Williams M. J., Hamazaki T., et al. Embryonic Stem Cells Proliferate andDifferentiate when Seeded into Kidney Scaffolds [J]. Journal of the American Society ofNephrology,2009,20(11):2338-47.
    [94] Tu Q. F., Zhao Y. C., Xue X. Q., et al. Improved Endothelialization of Titanium VascularImplants by Extracellular Matrix Secreted from Endothelial Cells [J]. Tissue Eng Part A,2010,16(12):3635-45.
    [95] Decaris M. L., Leach J. K. Design of Experiments Approach to Engineer Cell-SecretedMatrices for Directing Osteogenic Differentiation [J]. Ann Biomed Eng,2011,39(4):1174-85.
    [96] Datta N., Holtorf H. L., Sikavitsas V. I., et al. Effect of bone extracellular matrixsynthesized in vitro on the osteoblastic differentiation of marrow stromal cells [J].Biomaterials,2005,26(9):971-7.
    [97] Datta N., Pham Q. P., Sharma U., et al. In vitro generated extracellular matrix and fluidshear stress synergistically enhance3D osteoblastic differentiation [J]. Proceedings ofthe National Academy of Sciences of the United States of America,2006,103(8):2488-93.
    [98] Jackson D. W., Grood E. S., Arnoczky S. P., et al. Cruciate reconstruction using freezedried anterior cruciate ligament allograft and a ligament augmentation device (LAD). Anexperimental study in a goat model [J]. The American journal of sports medicine,1987,15(6):528-38.
    [99] Jackson D. W., Grood E. S., Arnoczky S. P., et al. Freeze dried anterior cruciate ligamentallografts. Preliminary studies in a goat model [J]. The American journal of sportsmedicine,1987,15(4):295-303.
    [100] Freytes D. O., Badylak S. F., Webster T. J., et al. Biaxial strength of multilaminatedextracellular matrix scaffolds [J]. Biomaterials,2004,25(12):2353-61.
    [101] Lin P., Chan W. C. W., Badylak S. F., et al. Assessing porcine liver-derived biomatrixfor hepatic tissue engineering [J]. Tissue Engineering,2004,10(7-8):1046-53.
    [102] Schenke-Layland K., Vasilevski O., Opitz F., et al. Impact of decellularization ofxenogeneic tissue on extracellular matrix integrity for tissue engineering of heart valves[J]. Journal of Structural Biology,2003,143(3):201-8.
    [103] Grauss R. W., Hazekamp M. G., Oppenhuizen F., et al. Histological evaluation ofdecellularised porcine aortic valves: matrix changes due to different decellularisationmethods [J]. European Journal of Cardio-Thoracic Surgery,2005,27(4):566-71.
    [104] Burugapalli K., Thapasimuttu A., Chan J. C. Y., et al. Scaffold with a naturalmesh-like architecture: Isolation, structural, and in vitro characterization [J].Biomacromolecules,2007,8(3):928-36.
    [105] Hodde J. P., Record R. D., Tullius R. S., et al. Retention of endothelial cell adherenceto porcine-derived extracellular matrix after disinfection and sterilization [J]. TissueEngineering,2002,8(2):225-34.
    [106] Badylak S., Liang A., Record R., et al. Endothelial cell adherence to small intestinalsubmucosa: an acellular bioscaffold [J]. Biomaterials,1999,20(23-24):2257-63.
    [107] Dahl S. L. M., Koh J., Prabhakar V., et al. Decellularized native and engineeredarterial scaffolds for transplantation [J]. Cell Transplant,2003,12(6):659-66.
    [108] Kolb H. C., Finn M. G., Sharpless K. B. Click chemistry: Diverse chemical functionfrom a few good reactions [J]. Angewandte Chemie-International Edition,2001,40(11):2004-+.
    [109] Moses J. E., Moorhouse A. D. The growing applications of click chemistry [J].Chemical Society Reviews,2007,36(8):1249-62.
    [110] Tornoe C. W., Christensen C., Meldal M. Peptidotriazoles on solid phase:1,2,3-triazoles by regiospecific copper(I)-catalyzed1,3-dipolar cycloadditions of terminalalkynes to azides [J]. Journal of Organic Chemistry,2002,67(9):3057-64.
    [111] Gierlich J., Burley G. A., Gramlich P. M. E., et al. Click chemistry as a reliablemethod for the high-density postsynthetic functionalization of alkyne-modified DNA [J].Organic Letters,2006,8(17):3639-42.
    [112] Franke R., Doll C., Eichler J. Peptide ligation through click chemistry for thegeneration of assembled and scaffolded peptides [J]. Tetrahedron Letters,2005,46(26):4479-82.
    [113] Wu P., Feldman A. K., Nugent A. K., et al. Efficiency and fidelity in aclick-chemistry route to triazole dendrimers by the copper(I)-catalyzed ligation of azidesand alkynes [J]. Angewandte Chemie-International Edition,2004,43(30):3928-32.
    [114] Mahmud I. M., Zhou N., Wang L., et al. Triazole-linked dendro60fullerenes:modular synthesis via a 'click' reaction and acidity-dependent self-assembly on thesurface [J]. Tetrahedron,2008,64(50):11420-32.
    [115] Collman J. P., Devaraj N. K., Chidsey C. E. D."Clicking" functionality ontoelectrode surfaces [J]. Langmuir,2004,20(4):1051-3.
    [116] Ciampi S., Bocking T., Kilian K. A., et al. Click chemistry in mesoporous materials:Functionalization of porous silicon rugate filters [J]. Langmuir,2008,24(11):5888-92.
    [117] Gole A., Murphy C. J. Azide-derivatized gold nanorods: Functional materials for"Click" chemistry [J]. Langmuir,2008,24(1):266-72.
    [118] Mynar J. L., Yamamoto T., Kosaka A., et al. Radially diblock nanotube:Site-selective functionalization of a tubularly assembled hexabenzocoronene [J]. Journalof the American Chemical Society,2008,130(5):1530-+.
    [119] Li Y., Zhao M. R., Wang J., et al. Biofunctionalization of a "Clickable" OrganicLayer Photochemically Grafted on Titanium Substrates [J]. Langmuir,2011,27(8):4848-56.
    [120] Kumar A., Li K., Cai C. Anaerobic conditions to reduce oxidation of proteins and toaccelerate the copper-catalyzed "Click" reaction with a water-soluble bis(triazole) ligand[J]. Chemical Communications,2011,47(11):3186-8.
    [121] Laughlin S. T., Bertozzi C. R. In Vivo Imaging of Caenorhabditis elegans Glycans [J].Acs Chemical Biology,2009,4(12):1068-72.
    [122] Laughlin S. T., Baskin J. M., Amacher S. L., et al. In vivo imaging ofmembrane-associated glycans in developing zebrafish [J]. Science,2008,320(5876):664-7.
    [123] Hong V., Steinmetz N. F., Manchester M., et al. Labeling Live Cells byCopper-Catalyzed Alkyne-Azide Click Chemistry [J]. Bioconjugate Chemistry,2010,21(10):1912-6.
    [124] Del Amo D. S., Wang W., Jiang H., et al. Biocompatible Copper(I) Catalysts for inVivo Imaging of Glycans [J]. Journal of the American Chemical Society,2010,132(47):16893-9.
    [125] Link A. J., Vink M. K. S., Tirrell D. A. Presentation and detection of azidefunctionality in bacterial cell surface proteins [J]. Journal of the American ChemicalSociety,2004,126(34):10598-602.
    [126] Rodan G. A. Mechanisms of action of bisphosphonates [J]. Annual Review ofPharmacology and Toxicology,1998,38(375-88.
    [127] Huang W., Shi X., Ren L., et al. PHBV microspheres-PLGA matrix compositescaffold for bone tissue engineering [J]. Biomaterials,2010,31(15):4278-85.
    [128] Shi X., Wang Y., Varshney R. R., et al. In-vitro osteogenesis of synovium stem cellsinduced by controlled release of bisphosphate additives from microspherical mesoporoussilica composite [J]. Biomaterials,2009,30(23-24):3996-4005.
    [129] Calabretta M. K., Kumar A., Mcdermott A. M., et al. Antibacterial activities ofpoly(amidoamine) dendrimers terminated with amino and poly(ethylene glycol) groups[J]. Biomacromolecules,2007,8(6):1807-11.
    [130] Lopez A. I., Reins R. Y., Mcdermott A. M., et al. Antibacterial activity andcytotoxicity of PEGylated poly(amidoamine) dendrimers [J]. Molecular Biosystems,2009,5(10):1148-56.
    [131] Zhang M. Y., Ye C., Erasquin U. J., et al. Laser Engineered Multilayer Coating ofBiphasic Calcium Phosphate/Titanium Nanocomposite on Metal Substrates [J]. AcsApplied Materials&Interfaces,2011,3(2):339-50.
    [132] Kuljanin J., Jankovic I., Nedeljkovic J., et al. Spectrophotometric determination ofalendronate in pharmaceutical formulations via complex formation with Fe(III) ions [J].Journal of Pharmaceutical and Biomedical Analysis,2002,28(6):1215-20.
    [133] Pham M. T., Reuther H., Matz W., et al. Surface induced reactivity for titanium byion implantation [J]. Journal of Materials Science-Materials in Medicine,2000,11(6):383-91.
    [134] Krysmann W., Kurze P., Dittrich K. H., et al. Process characteristics and parametersof anodic oxidation by spark discharge (ANOF)[J]. Crystal Research and Technology,1984,19(7):
    [135] Yerokhin A. L., Nie X., Leyland A., et al. Plasma electrolysis for surface engineering[J]. Surf Coat Technol,1999,122(2-3):73-93.
    [136] Klapkiv M. D. State of an electrolytic plasma in the process of synthesis of oxidesbased on aluminum [J]. Materials Science,1996,31(4):494-9.
    [137] Peng J. H., Han B., Li W. F., et al. Study on the microstructural evolution of BaTiO(3)on titanium substrate during MAO [J]. Mater Lett,2008,62(12-13):1801-4.
    [138] Wei D. Q., Zhou Y., Wang Y. M., et al. Characteristic of microarc oxidized coatingson titanium alloy formed in electrolytes containing chelate complex and nano-HA [J].Appl Surf Sci,2007,253(11):5045-50.
    [139] Wei D. Q., Zhou Y., Jia D. C., et al. Effect of heat treatment on the structure and invitro bioactivity of microarc-oxidized (MAO) titania coatings containing Ca and P ions[J]. Surf Coat Technol,2007,201(21):8723-9.
    [140] Frauchiger V. M., Schlottig F., Gasser B., et al. Anodic plasma-chemical treatment ofCP titanium surfaces for biomedical applications [J]. Biomaterials,2004,25(4):593-606.
    [141] Russell R. G. G., Watts N. B., Ebetino F. H., et al. Mechanisms of action ofbisphosphonates: similarities and differences and their potential influence on clinicalefficacy [J]. Osteoporosis International,2008,19(6):733-59.
    [142] Ebetino F. H., Francis M. D., Rogers M. J., et al. Mechanisms of action of etidronateand other bisphosphonates [J]. Reviews in Contemporary Pharmacotherapy,1998,9(4):233-43.
    [143] Gunter P. L. J., Gijzeman O. L. J., Niemantsverdriet J. W. Surface roughness effectsin quantitative XPS: magic angle for determining overlayer thickness [J]. Appl Surf Sci,1997,115(4):342-6.
    [144] Cumpson P. J. Estimation of inelastic mean free paths for polymers and other organicmaterials: use of quantitative structure-property relationships [J]. Surf Interface Anal,2001,31(1):23-34.
    [145] Svenson S., Tomalia D. A. Commentary-Dendrimers in biomedical applications-reflections on the field [J]. Advanced Drug Delivery Reviews,2005,57(15):2106-29.
    [146] Qin G. T., Zhang R., Makarenko B., et al. Highly stable, protein resistant thin filmson SiC-modified silicon substrates [J]. Chemical Communications,2010,46(19):3289-91.
    [147] Kazemzadeh-Narbat M., Kindrachuk J., Duan K., et al. Antimicrobial peptides oncalcium phosphate-coated titanium for the prevention of implant-associated infections [J].Biomaterials,2010,31(36):9519-26.
    [148] Sculco T. P. The economic impact of infected joint arthroplasty [J]. Orthopedics,1995,18(9):871-3.
    [149] Hancock R. E. W., Sahl H.-G. Antimicrobial and host-defense peptides as newanti-infective therapeutic strategies [J]. Nature Biotechnology,2006,24(12):1551-7.
    [150] Jaiswal N., Haynesworth S. E., Caplan A. I., et al. Osteogenic differentiation ofpurified, culture-expanded human mesenchymal stem cells in vitro [J]. Journal ofCellular Biochemistry,1997,64(2):295-312.
    [151] Zhang J. Y., Doll B. A., Beckman E. J., et al. Three-dimensional biocompatibleascorbic acid-containing scaffold for bone tissue engineering [J]. Tissue Engineering,2003,9(6):1143-57.
    [152] Blumberg P., Brenner R., Budny S., et al. Increased turnover of small proteoglycanssynthesized by human osteoblasts during cultivation with ascorbate andbeta-glycerophosphate [J]. Calcified Tissue International,1997,60(6):554-60.
    [153] Fratzl-Zelman N., Fratzl P., Horandner H., et al. Matrix mineralization in MC3T3-E1cell cultures initiated by beta-glycerophosphate pulse [J]. Bone,1998,23(6):511-20.
    [154]杨春蓉.生物活性骨组织工程支架的仿生制备及生物分子的调控作用研究[D].华南理工大学博士学位论文,2006.
    [155] Wang D. A., Williams C. G., Yang F., et al. Bioresponsive phosphoester hydrogels forbone tissue engineering [J]. Tissue Engineering,2005,11(1-2):201-13.
    [156] Tu Q., Zhao Y., Xue X., et al. Improved Endothelialization of Titanium VascularImplants by Extracellular Matrix Secreted from Endothelial Cells [J]. Tissue Eng Part A,2010,16(12):3635-45.
    [157] Taipale J., Keskioja J. Growth factors in the extracellular matrix [J]. Faseb Journal,1997,11(1):51-9.
    [158] Clyman R. I., Mauray F., Kramer R. H. Beta-1and Beta-3Integrins Have DifferentRoles in the Adhesion and Migration of Vascular Smooth-Muscle Cells onExtracellular-Matrix [J]. Experimental Cell Research,1992,200(2):272-84.
    [159] Didangelos A., Yin X., Mandal K., et al. Proteomics Characterization of ExtracellularSpace Components in the Human Aorta [J]. Molecular&Cellular Proteomics,2010,9(9):2048-62.
    [160] Sottile J. Regulation of angiogenesis by extracellular matrix [J]. Biochimica EtBiophysica Acta-Reviews on Cancer,2004,1654(1):13-22.
    [161] Mayr-Wohlfart U., Waltenberger J., Hausser H., et al. Vascular endothelial growthfactor stimulates chemotactic migration of primary human osteoblasts [J]. Bone,2002,30(3):472-7.
    [162] Liu B., Li X., Liang G., et al. VEGF expression in mesenchymal stem cells promotesbone formation of tissue-engineered bones [J]. Molecular Medicine Reports,2011,4(6):1121-6.
    [163] Steinbrech D. S., Mehrara B. J., Saadeh P. B., et al. Hypoxia regulates VEGFexpression and cellular proliferation by osteoblasts in vitro [J]. Plastic andReconstructive Surgery,1999,104(3):738-47.
    [164] Hoganson D. M., Owens G. E., O'doherty E. M., et al. Preserved extracellular matrixcomponents and retained biological activity in decellularized porcine mesothelium [J].Biomaterials,2010,31(27):6934-40.
    [165] Strieth S., Weger T., Bartesch C., et al. Biocompatibility of porous polyethyleneimplants tissue-engineered by extracellular matrix and VEGF [J]. Journal of BiomedicalMaterials Research Part A,2010,93A(4):1566-73.
    [166] Li S., Tu Q., Zhang J., et al. Systemically transplanted bone marrow stromal cellscontributing to bone tissue regeneration [J]. Journal of Cellular Physiology,2008,215(1):204-9.
    [167] Xu B., Zhang J., Brewer E., et al. Osterix Enhances BMSC-associatedOsseointegration of Implants [J]. Journal of Dental Research,2009,88(11):1003-7.
    [168] Vandamme K., Holy X., Bensidhoum M., et al. In vivo molecular evidence ofdelayed titanium implant osseointegration in compromised bone [J]. Biomaterials,2011,32(14):3547-54.
    [169] Raines A. L., Olivares-Navarrete R., Wieland M., et al. Regulation of angiogenesisduring osseointegration by titanium surface microstructure and energy [J]. Biomaterials,2010,31(18):4909-17.
    [170] Wang D. S., Miura M., Demura H., et al. Anabolic effects of1,25-dihydroxyvitaminD-3on osteoblasts are enhanced by vascular endothelial growth factor produced byosteoblasts and by growth factors produced by endothelial cells [J]. Endocrinology,1997,138(7):2953-62.
    [171] Hurley M. M., Abreu C., Gronowicz G., et al. Expression and Regulation of BasicFibroblast Growth-Factor Messenger-Rna Levels in Mouse Osteoblastic Mc3t3-E1Cells[J]. Journal of Biological Chemistry,1994,269(12):9392-6.
    [172] Mayer H., Bertram H., Lindenmaier W., et al. Vascular endothelial growth factor(VEGF-A) expression in human mesenchymal stem cells: Autocrine and paracrine roleon osteoblastic and endothelial differentiation [J]. Journal of Cellular Biochemistry,2005,95(4):827-39.
    [173] Kaemmerer P. W., Heller M., Brieger J., et al. Immobilisation of Linear and CyclicRgd-Peptides on Titanium Surfaces and Their Impact on Endothelial Cell Adhesion andProliferation [J]. Eur Cells Mater,2011,21(364-72.
    [174] Scardina G. A., Pisano T., Messina M., et al."In vivo" evaluation of the vascularpattern in oral peri-implant tissues [J]. Arch Oral Biol,2011,56(2):148-52.
    [175] Burkhardt R., Kettner G., Bohm W., et al. Changes in Trabecular Bone,Hematopoiesis and Bone-Marrow Vessels in Aplastic-Anemia, Primary Osteoporosis,and Old-Age-a Comparative Histomorphometric Study [J]. Bone,1987,8(3):157-64.
    [176] Glowacki J. Angiogenesis in fracture repair [J]. Clinical Orthopaedics and RelatedResearch,1998,355): S82-S9.
    [177] Hausman M. R., Schaffler M. B., Majeska R. J. Prevention of fracture healing in ratsby an inhibitor of angiogenesis [J]. Bone,2001,29(6):560-4.
    [178] Carano R. a. D., Filvaroff E. H. Angiogenesis and bone repair [J]. Drug DiscoveryToday,2003,8(21):980-9.
    [179] Zhang W., Wang X., Wang S., et al. The use of injectable sonication-induced silkhydrogel for VEGF(165) and BMP-2delivery for elevation of the maxillary sinus floor[J]. Biomaterials,2011,32(35):9415-24.
    [180] Jiang J., Fan C.-Y., Zeng B.-F. Experimental Construction of BMP2and VEGF GeneModified Tissue Engineering Bone in Vitro [J]. International Journal of MolecularSciences,2011,12(3):1744-55.
    [181] Peng H. R., Wright V., Usas A., et al. Synergistic enhancement of bone formation andhealing by stem cell-expressed VEGF and bone morphogenetic protein-4[J]. Journal ofClinical Investigation,2002,110(6):751-9.
    [182]袁捷,崔磊,刘伟,等.血管内皮细胞生长因子促进成骨作用的研究进展[J].中国生物工程杂志,2004,24(7):8-11.
    [183] Rostovtsev V. V., Green L. G., Fokin V. V., et al. A stepwise Huisgen cycloadditionprocess: Copper(I)-catalyzed regioselective "ligation" of azides and terminal alkynes [J].Angewandte Chemie-International Edition,2002,41(14):2596-+.
    [184] Baskin J. M., Prescher J. A., Laughlin S. T., et al. Copper-free click chemistry fordynamic in vivo imaging [J]. Proceedings of the National Academy of Sciences of theUnited States of America,2007,104(43):16793-7.
    [185] Beatty K. E., Xie F., Wang Q., et al. Selective dye-labeling of newly synthesizedproteins in bacterial cells [J]. Journal of the American Chemical Society,2005,127(41):14150-1.
    [186] Sunden F., Hakansson L., Ljunggren E., et al. Bacterial interference-is deliberatecolonization with Escherichia coli83972an alternative treatment for patients withrecurrent urinary tract infection?[J]. International Journal of Antimicrobial Agents,2006,28(S26-S9.
    [187] Sivakumar K., Xie F., Cash B. M., et al. A fluorogenic1,3-dipolar cycloadditionreaction of3-azidocoumarins and acetylenes [J]. Organic Letters,2004,6(24):4603-6.
    [188] Lopez A. I., Kumar A., Planas M. R., et al. Biofunctionalization of silicone polymersusing poly(amidoamine) dendrimers and a mannose derivative for prolonged interferenceagainst pathogen colonization [J]. Biomaterials,2011,32(19):4336-46.
    [189] Solomon E. I., Chen P., Metz M., et al. Oxygen binding, activation, and reduction towater by copper proteins [J]. Angewandte Chemie-International Edition,2001,40(24):4570-90.
    [190] Niraikulam A., Hyungdon Y., Sun-Gu L. Role of Chaperon Co-Expression System inthe Production of Recombinant Unnatural Proteins in Escherichia Coli [J]. ResearchJournal of Biotechnology,2010,5(3):49-53.
    [191] Ayyadurai N., Neelamegam R., Nagasundarapandian S., et al. Importance ofexpression system in the production of unnatural recombinant proteins in Escherichiacoli [J]. Biotechnology and Bioprocess Engineering,2009,14(3):257-65.
    [192] D'andrea L. D., Iaccarino G., Fattorusso R., et al. Targeting angiogenesis: Structuralcharacterization and biological properties of a de novo engineered VEGF mimickingpeptide [J]. Proceedings of the National Academy of Sciences of the United States ofAmerica,2005,102(40):14215-20.
    [193] Leslie-Barbick J. E., Saik J. E., Gould D. J., et al. The promotion of microvasculatureformation in poly(ethylene glycol) diacrylate hydrogels by an immobilizedVEGF-mimetic peptide [J]. Biomaterials,2011,32(25):5782-9.
    [194] Bennett N. T., Schultz G. S. Growth-Factors and Wound-Healing-Biochemical-Properties of Growth-Factors and Their Receptors [J]. American Journal ofSurgery,1993,165(6):728-37.
    [195] Bhora F. Y., Dunkin B. J., Batzri S., et al. Effect of Growth-Factors onCell-Proliferation and Epithelialization in Human Skin [J]. Journal of Surgical Research,1995,59(2):236-44.
    [196] Rozengurt E. Growth factors and cell proliferation [J]. Current opinion in cellbiology,1992,4(2):161-5.
    [197] Rivas L., Roman Luque-Ortega J., Andreu D. Amphibian antimicrobial peptides andProtozoa: Lessons from parasites [J]. Biochimica Et Biophysica Acta-Biomembranes,2009,1788(8):1570-81.
    [198] Costa F., Carvalho I. F., Montelaro R. C., et al. Covalent immobilization ofantimicrobial peptides (AMPs) onto biomaterial surfaces [J]. Acta biomaterialia,2011,7(4):1431-40.
    [199] Steven M. D., Hotchkiss J. H. Covalent Immobilization of an Antimicrobial Peptideon Poly(ethylene) Film [J]. Journal of Applied Polymer Science,2008,110(5):2665-70.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700