自发性高血压大鼠心脏组织中甲羟戊酸途径的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景:
     法呢醇焦磷酸合成酶(FPPS)是甲羟戊酸途径中的一个重要酶,能催化合成异戊二烯中间产物,而后者在小GTP蛋白异戊二烯化过程中不可或缺。以往研究报道在年轻高血压大鼠中,FPPS的mRNA表达伴随着左室肥厚的发生和发展逐步增高。阿伦膦酸钠是临床上用于治疗骨质疏松症和转移性肿瘤的药物,被证实是临床上的药理作用主要是通过抑制FPPS的来实现的。
     目的:
     确认使用阿伦膦酸钠,能否改善自发性高血压大鼠心肌肥厚和纤维化,能否抑制心脏组织FPPS功能,并探讨其可能机制。
     方法:
     本实验取五周龄雄性大鼠24只,共分为四组。分别为正常血压对照组(WKY-C,每天生理盐水灌胃),自发性高血压大鼠组(SHR-C,每天生理盐水灌胃),自发性高血压大鼠+低剂量阿伦膦酸钠组(SLA,1 mg/kg/d)和自发性高血压大鼠+高剂量阿伦膦酸钠组(SHA,10 mg/kg/d),且每两周测一次尾动脉血压。用颈动脉插管方法测定大鼠血流动力学改变,检测全心重量、左心室重量计算来评价心脏肥厚程度,用检测羟脯氨酸含量来推断胶原含量,用Masson's染色的方法检测胶原分布比例,用pull-down方法测定心脏组织RhoA活性,用实时定量PCR的方法检测促心脏肥厚和纤维化的指标,用Western blot的方法测定ERK1/2磷酸化水平。
     结果:
     经过12周的治疗,阿伦磷酸钠可以降低自发性高血压大鼠左室体重比(LVW/BW),羟脯氨酸含量,胶原在间质内的沉积,左室心房肽、脑钠肽,Ⅰ型和Ⅲ型胶原前体的mRNA表达。而且长期法呢醇焦磷酸合成酶抑制剂的治疗显著地降低了自发性高血压大鼠左心室RhoA的活性、ERK1/2磷酸化水平和TGF-β1的mRNA表达,而在自发性高血压大鼠对照组中以上这些改变,明显高于正常血压大鼠对照组。
     结论:
     长期法呢醇焦磷酸合成酶抑制剂的治疗可以改善心脏肥厚和纤维化的进程,其机制可能是通过抑制RhoA活性从而减少ERK1/2磷酸化和TGF-β1表达来实现。
Background:
     Farnesyl pyrophosphate synthase (FPPS), an essential enzyme in the mevalonate pathway, catalyzes the synthesis of isoprenoid intermediates. The latter is needed for isoprenylation of small GTPase. FPPS was reported to be upregulated in young spontaneously hypertensive rats (SHR) when compared with Wistar-Kyoto (WKY) rats, and this was accompanied by development of left ventricular hypertrophy. Alendronate is used in the osteoporosis and cancer metastasis, and is confirmed to exert its pharmacological function by inhibition of FPPS.
     Aim:
     To determined whether chronic inhibition of FPPS can improve the cardiac hypertrophy and fibrosis in SHRs and explore its underlying mechanism.
     Methods:
     Eighteen male SHRs were randomly divided into three groups consisting of the distilled water group (SHR-C), the low-dose (1 mg/kg/d) alendronate group (SLA), and the high-dose (10 mg/kg/d) alendronate group (SHA). Six male age- and weight- matched WKY rats were housed as controls (WKY-C). Blood pressures were monitored by the tail-cuff method every other week. Hemodynamic was tested by carotid artery catheteration. Whole heart weight and left heart weight were obtained and calculated for evaluation of cardiac hypertrophy. Collagen content and distribution were evaluated by hydroxyproline content and Masson's trichrome. Active RhoA was tested by the RhoA pull-down kit, and phosphorylated ERK1/2 was obtained by Western blot. The marks of pro-hypertrophy and pro-fibrosis were determined by real-time polymerase chain reaction.
     Results:
     Twelve-weeks of alendronate treatment attenuated the left ventricular weight to body weight ratio (LVW/BW), hydroxyproline content, collagen deposition in the interstitia, and gene expression of atrial natriuretic peptide, B-type natriuretic peptide, and procollagen type I/III in the SHR left ventricle, all of which were significantly higher in SHRs than in WKY rats. Furthermore, long-term treatment with an FPPS inhibitor significantly reduced RhoA activation, ERK phosphorylation, and TGF-β1 expression in the SHR left ventricle, all of which were upregulated more in SHRs than in WKY rats. In conclusion, chronic treatment with an FPPS inhibitor attenuates the development of cardiac hypertrophy and fibrosis, and the suppression of ERK1/2 phosphorylation and TGF-β1 expression with inhibition of RhoA activation may be an important mechanism.
引文
[1] Berk BC, Fujiwara K, Lehoux S. ECM remodeling in hypertensive heart disease. J Clin Invest 2007; 117: 568-75.
    [2] Casale PN, Devereux RB, Milner M, Zullo G, Harshfield GA, Pickering TG,Laragh JH. Value of echocardiographic assessment of left ventricular mass in predicting cardiovascular morbid events in hypertensive men. Ann Intern Med 1986; 105:173-8.
    [3] Koren MJ, Devereux RB, Casale PN, Savage DD, Laragh JH. Relation of left ventricular mass and geometry to morbidity and mortality in uncomplicated essential hypertension. Ann Intern Med 1991; 114: 345-52.
    [4] Clerk A, Bogoyevitch MA, Anderson MB, Sugden PH. Differential activation of protein kinase C isoforms by endothelin-1 and phenylephrine and subsequent stimulation of p42 and p44 mitogen-activated protein kinases in ventricular myocytes cultured from neonatal rat hearts. J Biol Chem 1994; 269: 32848-57.
    [5] Bueno OF, De Windt LJ, Tymitz KM, Witt SA, Kimball TR, Klevitsky R, et al.The MEK1-ERK1/2 signaling pathway promotes compensated cardiac hypertrophy in transgenic mice. EMBO J 2000; 19: 6341-50.
    [6] Bueno OF, De Windt LJ, Lim HW, Tymitz KM, Witt SA, Kimball TR, Molkentin JD. The dual-specificity phosphatase MKP-1 limits the cardiac hypertrophic response in vitro and in vivo. Circ Res 2001; 88: 88-96.
    [7] Euler-Taimor G, Heger J. The complex pattern of SMAD signaling in the cardiovascular system. Cardiovasc Res 2006; 69: 15-25.
    [8] Khan R, Sheppard R. Fibrosis in heart disease: understanding the role of transforming growth factor-beta in cardiomyopathy, valvular disease and arrhythmia.Immunology 2006;118:10-24.
    [9]Aoki H,Richmond M,Izumo S,Sadoshima J.Specific role of the extracellular signal-regulated kinase pathway in angiotensin Ⅱ-induced cardiac hypertrophy in vitro.Biochem J 2000;347:275-84.
    [10]Mulder KM.Role of Ras and Mapks in TGF beta signaling.Cytokine Growth Factor Rev 2000;11:23-5.
    [11]Ishikawa Y,Nishikimi T,Akimoto K,Ishimura K,Ono H,Matsuoka H.Long-term administration of Rho-kinase inhibitor ameliorates renal damage in malignant hypertensive rats.Hypertension 2006;47:1075-83.
    [12]Hubchak SC,Runyan CE,Kreisberg JI,Schnaper HW.Cytoskeletal rearrangement and signal transduction in TGF-β1-stimulated mesangial cell collagen accumulation.J Am Soc Nephrol 2003;14:1969-80.
    [13]Roskoski R Jr.Protein prenylation:a pivotal posttranslational process.Biochem Biophys Res Commun 2003;303:1-7.
    [14]Casey PJ.Protein lipidation in cell signaling.Science 1995;268:221-5.
    [15]Chen GP,Yao L,Lu X,Li L,Hu SJ.Tissue-specific effects of atorvastatin on 3-hydroxy-3-methylglutarylcoenzyme A reductase expression and activity in spontaneously hypertensive rats.Acta Pharmacol Sin 2008;29:1181-6.
    [16]Li L,Hu SJ,Dong HT,Kang L,Chen NY,Fang YQ.Alterations in gene expression of series key enzymes in mevalonic acid pathway detected by RNA array in spontaneously hypertensive rats.Chinese Journal of Pathophysiology 2008;24:54-9.
    [17]Szkopinka A,Plochocka D.Farnesyl diphosphate synthase;regulation of product specificity.Acta Biochim Pol 2005;52:45-55.
    [18] Arai H, Nakao K, Saito Y, Morii N, Sugawara A, Yamada T, et al. Augmented expression of atrial natriuretic polypeptide gene in ventricles of spontaneously hypertensive rats (SHR) and SHR-stroke prone. Circ Res 1988; 62: 926-30.
    [19] Boluyt MO, Bing OH, Lakatta EG The aging spontaneously hypertensive rat as a model of the transition from stable compensated hypertrophy to heart failure. Eur Heart J 1995; 16 (Suppl N): 19-30.
    [20] Conrad CH, Brooks WW, Hayes JA, Sen S, Robinson KG, Bing OH. Myocardial fibrosis and stiffness with hypertrophy and heart failure in spontaneously hypertensive rat. Circulation 1995; 91: 161-70.
    [21] Palmer BM, Chen Z, Lachapelle RR, Hendley ED, LeWinter MM. Cardiomyocyte function associated with hyperactivity and/or hypertensive in genetic models of LV hypertrophy. Am J Physiol Heart Circ Physiol 2006; 290: H463-73.
    [22] Izumi Y, Kim S, Murakami T, Yamanaka S, Iwao H. Cardiac mitogen-activated protein kinase activities are chronically increased in stroke-prone hypertensive rats.Hypertension 1998; 31: 50-6.
    [23] Touyz RM, He G, Mabrouk ME, Schiffrin EL. p38 MAP kinase regulates vascular smooth muscle cell collagen synthesis by angiotensin II in SHR but not in WKY.Hypertension 2001; 37: 574-80.
    [24] Zhai YS, Gao XR, Wu QM, Peng LY, Lin J, Zuo ZY. Fluvastatin decreases cardiac fibrosis possibly though regulation of TGF-pi/Smad 7 expression in the spontaneously hypertensive rats. Eur J Pharmacol 2008; 587: 196-203.
    [25] Rogers MJ, Gordon S, Benford HL, Coxon FP, Luckman SP, Monkkonen J, Frith JC. Cellular and molecular mechanisms of action of bisphosphonates. Cancer 2000; 88: 2961-78.
    [26]Roelofs AJ,Thompson K,Gordon S,Rogers MJ.Molecular mechanisms of action of bisphosphonates:current status.Clin Cancer Res 2006;15(Suppl.12):6222-30.
    [27]Bergstrom JD,Bostedor RG,Masarachia PJ,Reszka AA,Rodan G.Alendronate is a specific,nanomolar inhibitor of farnesyl diphosphate synthase.Arch Biochem Biophys 2000;373:231-41.
    [28]Kubota Y,Umegaki K,Kagota S,Tanaka N,Nakamura K,Kunitomo M,Shinozuka K.Evaluation of blood pressure measured by tail-cuff methods (without heating) in spontaneously hypertensive rats.Biol Pharm Bull 2006;29:1756-8.
    [29]Sun YL,Hu SJ,Wang LH,Hu Y,Zhou JY.Effect of β-blockers on cardiac function and calcium handling protein in postinfarction heart failure rats.Chest 2005;I28:1812-2I.
    [30]Kang L,Ge C J,Hu SJ.Beneficial effect of atorvastatin on left ventricular remodeling in spontaneously hypertensive rats.Pharmacology 2007;80:120-6.
    [31]Cuspidi C,Ciulla M,Zanchetti A.Hypertensive myocardial fibrosis.Nephrol Dial Transplant 2006;21:20-3.
    [32]Sugden PH.Signaling in myocardial hypertrophy:life after calcineurin? Circ Res 1999;84:633-46.
    [33]Sugden PH,Clerk A.Stress-responsive mitogen-activated protein kinases(C-jun n-terminal kinases and p38 mitogen-activated protein kinases) in the myocardium.Circ Res 1998;83:345-52.
    [34]Border WA,Nobel NA.Transforming growth factor-β in tissue fibrosis.N Engl J Med 1994;331:1286-92.
    [35]Pauschinger M,Knopf D,Petschauer S,Doerner A,Poller W,Schwimmbeck PL, et al. Dilated cardiomyopathy is associated with significant changes in collagen type I/III ratio. Circulation 1999; 99: 2750-6.
    [36] Tomita H, Egashira K, Ohara Y, Takemoto M, Koyanaqi M, Katoh M, et al. Early induction of transforming growth factor-beta via angiotensin II type 1 receptors contributes to cardiac fibrosis induced by long-term blockade of nitric oxide synthesis in rats. Hypertension 1998; 32: 273-9.
    [37] Grotendorst GR. Connective tissue growth factor: a mediator of TGF-beta action on fibroblasts. Cytokine Growth Factor Rev 1997; 8:171-9.
    [38] Oemar BS, Werner A, Gamier JM, Do DD, Godoy N, Nauck M, et al. Human connective tissue growth factor is expressed in advanced atherosclerotic lesions.Circulation 1997; 95:831-9.
    [39] Ohnishi H, Oka T, Kusachi S, Nakanishi T, Takeda K, Nakahama M, et al.Increased expression of connective tissue growth factor in the infarct zone of experimentally induced myocardial infarction in rats. J Mol Cell Cardiol 1998; 30:2411-22.
    [40] Thorburn A, Thorburn J, Chen SY, Powers S, Shubeita HE, Feramisco JR, Chien KR. HRas-dependent pathways can activate morphological an genetic markers of cardiac muscle cell hypertrophy. J Biol Chem 1993; 268: 2244-9.
    [41] Sah VP, Hoshijima M, Chien KR, Brown JH. Rho is required for Gαq and α1-adrenergic receptor signaling in cardiomyocytes, dissociation of Ras and Rho pathway. J Biol Chem 1996; 271: 31185-90.
    [42] Moriki N, Ito M, Seko T, Kureishi Y, Okamoto R, Nakakuki T, et al. RhoA activation in vascular smooth muscle cells from stroke-prone spontaneously hypertensive rats. Hypertens Res 2004; 27: 263-70.
    [43]Seko T,Ito M,Kureishi Y,Okamato R,Moriki N,Onishi K,et al.Activation of RhoA and inhibition of myosin phosphatase as important components in hypertension in vascular smooth muscle.Circ Res 2003;92:411-8.
    [44]Laboureau J,Dubertret L,Lebreton-De Coster C,Coulomb B.ERK activation by mechanical strain is regulated by the small G proteins rat-1 and rhoA.Exp Dermatol 2004;13:70-7.
    [45]Aikawa R,Komuro I,Yamazaki T,Zou YZ,Kudoh S,Zhu WD,Kadowaki T,Yazaki Y.Rho family small G proteins play critical roles in mechanical stress-induced hypertrophic responses in cardiac myocytes.Circ Res 1999;84:458-66.
    [46]Rikitake Y,Oyama N,Wang CYC,Noma K,Satoh M,Kim HH,Liao JK.Decreased perivascular fibrosis but not cardiac hypertrophy in ROCK1~(+/-)haploinsufficient mice.Circulation 2005;112:2959-65.
    [47]Laufs U,Kilter H,Konkol C,Wassmann S,B(o|¨)hm M,Nickenig G.Impact of HMG CoA reductase inhibition on small GTPases in the heart.Circ Res 2002;53:911-20.
    [48]Tamura T,Said S,Harris J,Lu WY,Gerdes AM.Reverse remodeling of cardiac myocyte hypertrophy in hypertension and failure by targeting of the renin-angiotensin system.Circulation 2000;102:253-9.
    [49]Lee TM,Lin MS,Tsai CH,Chang NC.Effect of pravastatin on left ventricular mass in the two-kidney,one-clip hypertensive rats.Am J Physiol Heart Circ Physiol 2006;291:H2705-13.
    [50]Susie D,Varaqic J,Ahn J,Slama M,Frohlich ED.Beneficial pleiotropic vascular effects of rosuvastatin in two hypertensive models.J Am Coll Cardiol 2003;42: 1091-7.
    [51] Allen MR, Burr DB. Three years of alendronate treatment results in similar levels of vertebral microdamage as after one year of treatment. J Bone Miner Res 2007;22(11): 1759-65.
    [52] Pytlik M, Kaczmarczyk-Sedlak I, Sliwinski L, Janiec W, Rymkiewicz I. Effect of concurrent administration of alendronate sodium and retinal on development of changes in histomorphometric parameters of bones induced by ovariectomy in rats.Pol J Pharmacol 2004; 56(5): 571-9.
    [53] Anastasilakis AD, Goulis DG, Kita M, Avramidis A. Oral bisphosphonate adverse effects in 849 patients with metabolic bone diseases. Hormones (Athens) 2007;6(3): 233-41.
    [54] Finkelstein JS, Leder BZ, Burnett SM, Wyland JJ, Lee H, de la Paz AV, Gibson K,Neer RM. Effects of teriparatide, alendronate, or both on bone turnover in osteoporotic men. J Clin Endocrinol. Metab 2006; 91(8): 2882-7.
    [55] Peter C, Rodan GA. Preclinical safety profile of alendronate. Int J Clin Pract Suppl 1999; 101:3-8.
    [1]Gullberg B,Johnell O,Kanis JA.World-wide projections for hip fracture.Osteoporos Int 1997;7:407-13.
    [2]Witterman JCM,Kok FJ,van Saase JLM,Valkenburg HA.Aortic calcification as a predictor of cardiovascular mortality.Lancet 1986;ⅰ:1120-2.
    [3]Frye MA,Melton LJ,Bryant SC,Fitzpatrick LA,Wahner HW,Schwartz RS,et al.Osteoporosis and calcification of the aorta.Bone Mineral 1992;19:185-94.
    [4]Hak AE,Pols HAP,van Hemert AM,Hifman A,Witteman JCM.Progression of arortic calcification is associated with metacarpal bone loss during menopause.A population-based longitudinal study.Arterioscler Thromb Vasc Biol 2000;20:1926-31.
    [5]Ross R.Atherosclerosis-an inflammatory disease.N Engl J Med 1999;14:115-26.
    [6]Gallister TQ,Raggi P,Cooil B,Lippolis N J,Russo DJ.Effect of HMG-CoA reductase inhibitors on coronary artery disease as assessed by eletron-beanm computed tomography.N Engl J Med 1998;339:1972-8.
    [7]Davignon J,Laaksonen R.Low-density lipoprotein-independent effects of statins.Curr Opin Lipidol 1999;10:543-59.
    [8]Wilkinson IB,Cockcroft JR.Cholesterol,endothelial function and cardiovascular disease.Curr Opin Lipidol 1998;9:237-42.
    [9]Amin D,Cornell SA,Gustafson SK,Needle SJ,Ullrich JW,Bilder GE,et al.Bisphosphonates used for the treatment of bone disorders inhibit squalene synthase and cholesterol biosynthesis. J Lipid Res 1992; 33:1657-63.
    [10] Adami S, Braga V, Guidi G, Gatti D, Gerardi D, Fracassi E. Chronic intravenous aminobisphosphonate therapy increases high-density lipoprotein cholesterol and decreases low-density lipoprotein cholesterol. J Bone Mineral Res 2000; 15: 599-604.
    [11] Mundy G, Garrett R, Harris S, Chan J, Chen D, Rossini G, et al. Stimulation of bone formation in vitro and in rodents by statins. Science 1999; 286: 1946- 9.
    [12] Chan KA, Andrade SE, Boles M, Buist DSM, Chase GA, Donahue G, et al.Inhibitors of hydroxymethylglutaryl-coenzyme A reductase and risk of fracture among older women. Lancet 2000; 355: 2185- 8.
    [13] Meier CR, Schlienger RG, Kraenzlin ME, Schlegel B, Jick H. HMG-CoA reductase inhibitors and the risk of fractures. JAMA 2000; 283: 3205-10.
    [14] Wang PS, Solomon DH, Mogun H, Avorn J. HMG-CoA reductase inhibitors and the risk of hip fractures in elderly patients. JAMA 2000; 283: 3211- 6.
    [15] Chung YS, Lee MD, Lee SK, Kim HB, Fitzpatrick LA. HMG-CoA reductase inhibitors increase BMD in type 2 diabetes mellitus patients. J Clin Endocrinol Metab 2000;85:1137-42.
    [16] Rodan GA. Mechanisms of action of bisphosphonates. Annu Rev Pharmacol Toxicol 1998; 38: 375- 8.
    [17] van Beek E, Hoekstra M, van de Ruit M, Lowik C, Papapoulos S. Structural requirements for bisphosphonate actions in vitro. J Bone Mineral Res 1994; 9:1875-82.
    [18] Russell RGG, Rogers MJ, Frith JC, Luckman SP, Coxon FP, Benford HL, et al. The pharmacology of bisphosphonates and new insights into their mechanisms of action. J Bone Mineral Res 1999; 14: 53- 65.
    
    [19] Rogers MJ, Gordon S, Benford HL, Coxon FP, Luckman SP, Monkkonen J, et al.Cellular and molecular mechanisms of action of bisphosphonates. Cancer 2000; 88:2961-78.
    
    [20] Watts NB. Clinical utility of biochemical markers of bone remodeling. Clin Chem 1999; 45: 1359-68.
    
    [21] Garnero P, Sornay-Rendu E, Chapuy MC, Delmas PD. Increased bone turnover in late menopausal women is a major determinant of osteoporosis. J Bone Mineral Res 1996; 11: 337-49.
    
    [22] Garnero P, Shih WJ, Gineyts E, Karpf DB, Delmas PD. Comparison of new biochemical markers of bone turnover in late postmenopausal osteoporotic women in response to alendronate. J Clin Endocrinol Metab 1994; 79: 1693- 700.
    
    [23] Vitte C, Fleisch H, Guenther HL. Bisphosphonates induce osteoblasts to secrete an inhibitor of osteoclast-mediated resorption. Endocrinology 1996; 137: 2324- 33.
    
    [24] Luckman SP, Hughes DE, Coxon FP, Russell RGG, Rogers MJ. Nitrogen-containing bisphosphonates inhibit the mevalonate pathway and prevent post-translational prenylation of GTP-binding proteins, including ras. J Bone Mineral Res 1998; 13:581-9.
    
    [25] Frith JC, Monkkonen J, Auriola S, Monkkonen H, Rogers MJ. The molecular mechanism of action of the antiresorptive and antiinflammatory drug clodronate:evidence for the formation in vivo of a metabolite that inhibits bone resorption and causes osteoclast and macrophage apoptosis. Arthritis Rheum 2001; 44: 2201-10.
    [26] Rogers MJ, Chilton KM, Coxon FP, Lawry J, Smith MO, Suri S, et al.Bisphosphonates induce apoptosis in mouse macrophage-like cells in vitro by a nitric oxide-independent mechanism. J Bone Mineral Res 1996; 11: 1482- 91.
    
    [27] Luckman SP, Coxon FP, Ebetino FH, Russell RGG, Rogers MJ.Heterocycle-containing bisphosphonates cause apoptosis and inhibit bone resorption by preventing protein prenylation: evidence from structure-activity relationships in J774 macrophages. J Bone Mineral Res 1998; 13: 1668- 78.
    
    [28] Dunford JE, Thompson K, Coxon FP, Luckman SP, Hahn FM, Poulter CD, et al.Structure-activity relationships for inhibition of farnesyl diphosphate synthase in vitro and inhibition of bone resorption in vivo by nitrogen-containing bisphosphonates. J Pharmacol Exp Ther 2001; 296:235- 42.
    
    [29] Vlitalo R, Kalliovalkama J, Wu X, Kankaanranta H, Salenius JP, Sisto T, et al.Accumulation of bisphosphonates in human artery and their effects on human and rat arterial function in vitro. Pharmacol Toxicol 1998; 83: 125- 31.
    
    [30] Koshiyama H, Nakamura Y, Tanaka S, Minamikawa J. Decrease in carotid intima-media thickness after 1-year therapy with etidronate for osteopenia associated with type 2 diabetes. J Clin Endocrinol Metab 2000; 85: 2793- 6.
    
    [31] Hampton R, Dimster-Denk D, Rine J. The biology of HMG-CoA reductase: the pros of contra-regulation. Trends Biochem Sci 1996; 21: 140- 5.
    
    [32] Davignon J, Montigny M, Dufour R. HMG-CoA reductase inhibitors: a look back and a look ahead. Can J Cardiol 1992; 8: 843- 64.
    
    [33] Huff MW, Burnett JR. 3-Hydroxy-3-methylglutaryl coenzyme A reductase inhibitors and hepatic apolipoprotein B secretion. Curr Opin Lipidol 1997; 8: 138- 45.
    [34] Thompson GR, Naoumova RP, Watts GF. Role of cholesterol in regulating apolipoprotein B secretion by the liver. J Lipid Res 1996; 37: 439- 47.
    [35] Palinski W. New evidence for bene.cial effects of statins unrelated to lipid lowering. Arterioscler Thromb Vasc Biol 2001; 21:3-5.
    [36] Casey PJ. Protein lipidation in cell signaling. Science 1995; 268: 221- 5.
    [37] Kwak B, Mulhaupt F, Myit S, Mach F. Statins as a newly recognized type of immunosuppressor. Nat Med 2000; 6: 1399- 402.
    [38] Sugiyama M, Kodama T, Konishi K, Abe K, Asami S, Oikawa S. Compactin and simvastatin, but not pravastatin, induce bone morphogenetic protein-2 in human osteosarcoma cells. Biochem Biophys Res Commun 2000; 271: 688- 92.
    [39] Garrett IR, Gutierrez G, Mundy GR. Statins and bone formation. Curr Pharm Des 2001; 7:715-36.
    [40] Ohnaka K, Nawata H, Shimokawa H, Kaibuchi K, Iwamoto Y, Takayanagi R.Pitavastatin enhanced BMP-2 and osteocalcin expression by inhibition of Rho-associated kinase in human osteoblasts. Biochem Biophys Res Commun 2001; 287:337-42.
    [41] Maeda T, Matsunuma A, Kawane T, Horiuchi N. Simvastatin promotes osteoblast differentiation and mineralization in MC3T3-E1 cells. Biochem Biophys Res Commun 2001; 280: 874- 7.
    [42] Edwards CJ, Hart DJ, Spector TD. Oral statins and increased bonemineral density in postmenopausal women. Lancet 2000; 355: 2218- 9.
    [43] Wada Y, Nakamura Y, Koshiyama H. Lack of positive correlation between statin use and bone mineral density in Japanese subjects with type 2 diabetes. Arch Intern Med 2000; 160:2865.
    [44] Pedersen TR, Kjekshus J. Statin drugs and the risk of fracture. 4S Study Group.JAMA 2000; 284: 1921-2.
    [45] Reid IR, Hague W, Emberson J, Baker J, Tonkin A, Hunt D, et al. Effect of pravastatin on frequency of fracture in the LIPID study: secondary analysis of a randomised controlled trial. Lancet 2001; 357: 509-12.
    [46] Finkelstein JS, Klibanski A, Arnold AL, Toth TL, Hornstein MD, Neer RM.Prevention of estrogen de.ciency-related bone loss with human parathyroid hormone-(1-34): a randomized controlled trial. JAMA 1998; 280: 1067- 73.
    [47] Bjarnason NH, Riis BJ, Christiansen C. The effect of fluvastatin on parameters of bone remodeling. Osteoporos Int 2001; 12: 380- 4.
    [48] Stein EA, Farnier M, Waldstreicher J, Meskers SCJ, on behalf of the Simvastatin/Atorvastatin Study Group. Effects of statins on biomarkers of bone metabolism: a randomised trial. Nutr Metab Cardiovasc Dis 2001; 11: 84- 7.
    [49] Chan MH, Mak TW, Chiu RW, Chow C, Chan IH, Lam CW. Simvastatin increases serum osteocalcin concentration in patients treated for hypercholesterolaemia. J Clin Endocrinol Metab 2001; 86: 4556- 9.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700