成骨生长肽羧基端5肽OGP_(10-14)及其类似物G48A对大鼠骨代谢的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的 通过大鼠血清骨转换生化标志物检测、离体骨密度测定、骨组织形态计量学和生物力学试验综合评价了OGP_(10-14)及其类似物G48A对去势SD大鼠骨代谢的影响,并初步探讨了各项参数间的相关关系。方法 雌性SD大鼠86只,按体重随机分层分组:OP预防组和OP治疗组。其中OP预防组再分为以下7组:Ⅰ.假手术组(SHAM),Ⅱ.去势组(OVX),Ⅲ.阿伦膦酸钠组(ALEN),Ⅳ.G36G低剂量组(G36GL),V.G36G高剂量组(G36GH),Ⅵ.G48A低剂量组(G48AL),Ⅶ.G48A高剂量组(G48AH),每组8只,计56只。术后次日起,以上各组大鼠每日皮下给予各种处理因素:Ⅰ,Ⅱ组每日皮下注射磷酸盐缓冲液(PBS),Ⅲ,Ⅳ,Ⅴ,Ⅵ,Ⅶ组按体重每日皮下给予阿伦膦酸钠、低剂量G36G、高剂量G36G、低剂量G48A、高剂量G48A PBS溶液,干预9周后,处死大鼠;OP治疗组,再分为以下6组:Ⅷ.假手术组(SHAM-T),Ⅸ.去势组(OVX-T),X.利塞膦酸钠组(RISE-T),Ⅺ.G36G高剂量+利塞膦酸钠组(36GRI-T),Ⅻ.G36G高剂量组(G36G-T),ⅩⅢ.G48A高剂量组(G48A-T),均于造模术后15周起,每日皮下给予各种处理因素:Ⅷ,Ⅸ组每日皮下注射PBS,Ⅹ,Ⅺ,Ⅻ,ⅩⅢ组按体重每日皮下给予利塞膦酸钠、利塞瞵酸钠+高剂量G36G、高剂量G36G、高剂量G48A PBS溶液,治疗9周后处死大鼠。分离
    
     天津医别一火学疼士学位论文
    股骨、胫骨和腰椎Ll一。。双能X线骨密度仪(DExA)小动物软件测定各组大鼠
    腰椎L卜4和股骨远端干髓端、股骨全段骨密度。股骨与腰椎L,分别行三点弯
    曲试验及腰椎压缩试验检测其生物力学性质。近端胫骨干髓端制备不脱钙骨
    切片,行骨计量学测定。所得资料以SPSS10.O软件进行统计。结果(l)骨转
    换生化标志物:G36GH,G48AH组IGF一2水平显著高于SHAM组,ALEN,OVX
    组BGP显著低于G48AH组。G36G一T,G48A一T,RISE一T组BGP,IGF一2显著低
    于36GRI一T组。(2)股骨干重、灰重及骨密度:OVX,OVX一T组股骨全段、远端
    干箭端、腰椎L卜4三个部位的骨密度(BMD)及股骨灰重/干重比值(AW/DW)
    分别显著低于SHAM,S以M一T组;ALEN组上述各项指标均显著高于OVX组;
    G36GH,G36GL,G48AH,G48AL组AW/DW显著高于OVX组,三个部位骨密度均
    较OVx组有增高趋势,但无显著性差异。OVX一T组三个部位BMD值显著低于
    36GRI一T和SHAM一T组:G36G一T,G48A一T组显著低于SHAM一T组。(3)生物力学:
    股骨三点弯曲试验OVX,OVX一T组最大应变(£b),弯曲能量(U),弹性载荷
    (Fp)与SHAM,SHAM一T组无显著差异。腰椎压缩试验OVx组强度极限(ob)
    显著低于SHAM组,ALEN组显著高于OVX组、G48AH和G48AL组;OP
    各测试指标间无显著性差异。(4)骨计量学:
    OVX,OVX一T
    治疗组
    组骨小
    粱体积与全部骨组织体积之比(TBv/TTv)、骨小粱板厚度(MTPT)和密度(MT即)
    分别较S以M,SHAM一T组显著降低,骨小粱板间距(MTPS)较SHAM,SHAM一T
    组显著增加。G36GH,G48AH,G48AL组TBV/TTV,骨小粱体积与海绵骨体积
    之比(TBV/SBV),价PT均较OVX组显著增加,MTPS和骨小粱表面与体积之
    比(S/V)较OVX组下降。G36G一T,G48A一T,36GRI一T组TBV/TTv,TBv/SBV
    较OVX组显著增加,但显著低于SHAM一T组。动力学参数OVx组四环素双标
    表面{Sfract(d)}较SH胡组显著增加,类骨质表面占骨小粱表面百分比(TOS)
    低于SHAM组。ALEN组Sfraet(s),Sfra。t(d)均较OVX;组下降。G36GH,G36GL,
    GSAL组Sfraet(d)低于OVX组,TOS高于OVX和ALEN组。G48A一T组Sfraet(s)
     一3·
    
     及津医刊一大学唯士学位沦文
    显著高于OVX一T组。RISE一T,36GRI一组几乎无双标记。(5)相关分析:预防
    组股骨远端干髓端、股骨整体和腰椎L,一;BMD值与骨计量学参数TBV/TTV,MTPD
    之间呈显著正相关,与MTPS呈显著负相关。生物力学部分指标虽然与骨密度、
    骨计量参数有显著相关性,但从决定系数评价密切程度低,相关效率也较低。
    结论OGP(:0一14,及其类似物G48A可有效防治大鼠去势后的骨丢失,改善干髓
    端骨小梁的连接性,短期治疗对骨生物力学性质无明显影响。作为评价抗骨
    质疏松药物作用的指标,骨计量学与骨密度参数之间存在一定的关联,生物
    力学试验方法尚待进一步改进。
objective: To investigate the effects of OGP(10-14) and its analogue G48A on biochemical markers of bone turnover, bone mineral density(BMD), histomorphometry and biomechanical properties in ovariectomized rats while the relationships between BMD, biomechanics and histomorphometric parameters were explored. Methods: Eighty-six female SD rats, four months old, were divided into following groups by body weight randomly: OP-prevention group and OP-therapy group. The ovariectomized rats were used as a model for osteoporosis. The prevention group was further subdivided into seven groups(n= 8/group): shamed-operated group(SHAM), Ovariectomized group(OVX), Alendronate-therapy group(ALEN), G36G high dosage-therapy group (G36GH), G36G low dosage-therapy group (G36GL), G48A high dosage -therapy group (G48AH), G48A low dosage -therapy group (G48AL). The rats of prevention groups were injected subcutaneously with phosphate buffered saline (PBS) on SHAM and OVX group or G36G, G48A , alendronate on other groups once per day for 9 weeks one day after the ovariectomy
    
    
    
    separately, then sacrificed. The therapy group was further subdivided into six groups(n= 5/group) :shamed-operated group(SHAM-T), Ovariectomized group(OVX-T), Risedronate-therapy group(RISE-T), Risedronate with G36G therapeutic alliance group(36GRI-T), G36G high dosage-therapy group (G36G-T), G48A high dosage-therapy group (G48A-T). The rats of therapy groups were injected subcutaneously with PBS on SHAM and OVX group or G36G, G48A, Risedronate on other groups once per day for periods of 9 weeks initiated 15 weeks after ovariectomy separately, then sacrificed. Lumbar spine,the bilateral tibia and femur were dissected out. Serum BGP and IGF-2 levels were determined by radioimmunoassay , while The morphological and dynamic parameters for bone histomorphometry , biochemical markers for bone formation and other indices of bone metabolism were measured. Biomechanical property parameters of femora and lumbar spine (L5) were measured with the three point bending tests and compressive test. The BMD of total femur .distal femur metaphysis and L1-4 were measured by dual energy X-ray absorptiomtry (DEXA) using DMS equipment while histomorphometry of proximal tibia undecalcif ied specimen sections were performed which include trabecular volume, trabecular thickness, dynamic data , et al. The relationship between BMD, biomechanic characters and histormorphometry in OP-prevention group were investigated. These data were analyzed by SPSS 10. 0 software with analysis of variance and correlation. Results: Akaline phosphatase activity levels were not statistically significantly different in the prevention and therapy groups. An elevation of BGP serum level were observed in OVX and ALEN
    
    
    
    group as compared with G48AH group however the descent of IGF-2 serum level were determined in G36GH, G48AH group as compared with SHAM group. The results showed that both G36G and G48A had significant stimulation on bone formation as the tetracycline labeling on the trabecular bone surface and the rate of bone formation while no significant effect on the biomechanics, but both of them could not completely prevent bone loss in OVX rats. The ratio of femora ash weight to dry weight(AW/DW) and BMD of total femur, distal metaphysis , L1-4 in OVX and OVX-T group were significantly lower than in SHAM group, while the above-mentioned indices were remarkably increased in ALEN group than others. There was only an increased trend of BMD on the three sites of bone in G36GH, G36GL, G48AH, G48AL group as compared with OVX group. Bone histomorphometry in the OVX group was showed significant decrease on trabecular bone volume%total tissue (TBV/TTV), mean trabecular plate thickness(MTPT), mean trabecular plate density( MTPD) while mean trabecular plate spacing( MTPS) seemed to be higher than other groups. In the G36GH and G48AH groups, parameters of the TBV/TTV, trabecular bone volume%total sponge( TBV/SBV), MTPT were statistically increased and parameters of MTPS, trabecular surface%volume
引文
1 邱明才.骨质疏松研究的现状与展望.中华医学杂志,2001,81 (14) : 833-5
    2 Bab I, Gavish H, Namdar-Attar M, et al. Isolation of mitogenically active c-terminal truncated pentapeptide of osteogenic growth peptide from human plasma and culture medium of murine osteoblastic cells. J Pept Res,1999,54(5) :408-414.
    3 Consensus development conference: Diagnosis, Prophylaxis, and treatment of osteoporosis. Am J Med, 1993, 94(6) : 646-50
    4 Bab I, Gazit D, Chorev M, et al. Histone H4-related osteogenic growth peptide(OGP):a novel circulating stimulator of osteoblastic activity. EMBO J, 1992,11(5) :1867-1873.
    5 Milott JL, Green SS, Schapira MM, et al. Osteoporosis: evaluation and treatment. Compr Ther, 2000, 26(3) :183-9
    6 Raisz LG, Kream BE, Lorenzo JA, et al. Metabolic bone disease. Williams textbook of endocrinology. Philadelphia: WB Saunders Company, 1998: 1211-39
    7 Macedo JM, Macedo CR, Elkis H, et al. Meta-analysis about efficacy of anti-resorptive drugs in post-menopausal osteoporosis. J Clin Pharm Ther, 1998,23(5) : 345-52
    8 Miller PD. New possibilities for diagnosis and treatment of osteoporosis. Int j Fertil Womens Med, 2001, 46(4) : 215-21
    9 Me Clung B, McClung M. Pharmacologic therapy for the treatment and prevention of osteoporosis. Nurs Clin North Am, 2001, 36(3) :433-40
    10 Morley P, Whitfield JF, Willick GE, et al. Parathyroid hormone:an anabolic treatment for osteoporosis. Curr Pharm Des, 2001, 7(8) :671-87
    11 Gurevitch O, Slavin S, Muhlrad A, et al. Osteogenic growth peptide increases
    
    blood and bone marrow cellularity and enhances engraftment of bone marrow transplants in mice. Blood, 1996,88(12) : 4719-24
    12 Schapira D, Laton-miler R, Barzilai D, et al. The rat as a model for studies of the aging skeleton. Cells, 1992, (suppl)1: 181-8
    13 Kalu DN. The ovariectomized rat model of postmenopausal bone loss. Bone Miner, 1991,15(3) : 175-91
    14 韦永中,陶松年,杨国平,等.去势对不同月龄雌性大鼠丢失的影响.南京医科大学学报,1999,19 (3) : 203-5
    15 秦林林,陈金标,龚海洋,等.不同月龄雌性大鼠骨质疏松模型研究,中日友好医院学报, 1997, 11 (1) : 6-9
    16 Omi N, Ezawa I. The effect of ovariectomy on bone metabolism in rats. Bone, 1995, 17(4 suppl): 163-8.
    17 Seregni E, Martinetti A, Ferrari L, et al. Clinical utility of biochemical marker of bone remodeling in patients with bone metastases of solid tumors. Q J Nucl Med, 2001, 45(1) : 7-17
    18 Swallow DM, Povey S, Parkar M, et al. Mapping of the gene coding for the human liver /bone/kidney isozyme of alkaline phosphatase to chromosome . Ann Hum Genet,1986, 50(pt 3) : 229-35
    19 Milan JL. Oncodevelopmental expression and structure of alkaline phosphatase genes. Anticancer Res, 1988, 8(5A): 995-1004
    20 Cairns JR, Price PA. Direct demonstration that the vitamin K-dependent bone Gla protein is incompletely gamma-carboxylated in humans. J Bone Miner Res, 1994, 9(12) : 1989-97
    21 Njeh CF, Boivin CM, Langton CM. The role of ultrasound in the assessment of osteoporosis : a review. Osteoporos Int, 1997,7(1) :7-22
    
    
    22 Ruegsegger P, Roller B, Muller R. A microtomographic system for the nondestructive evaluation of bone architecture. Calcif Tissue Int, 1996,58(1) : 24-9
    23 Grifffen MG, Kimble R, Hopfer W , et al. Dual-energy X-ray absorptiometry of the rat: accuracy, precision and measurement of bone loss. J Bone Miner Res, 1993, 8(7) : 795-800
    24 Ammann P, Rizzoli R, Slosman D, et al. Sequential and precise in vivo measurement of bone mineral density in rats using dual-energy x-ray absorptiometry. J Bone Miner Res,1992,7(3) : 311-6
    25 Pastoureau P, Chomel A , Bonnet J. Specific evaluation of localized bone mass and bone loss in the rat using dual-energy X-ray absorptiometry. Subregional analysis. Osteoporosis Int, 1995, 5:143-9
    26 Pastoureau P, Chomel A, Bonnet J. Specific evaluation of localized bone mass and bone loss in the rat using dual-energy x-ray absorptiometry subregional analysis. Osteoporos Int, 1995, 5(3) : 143-9
    27 Libouban H, Moreau M, Legrand E, et al. Comparison insight dual x-ray absorptiometry (DXA), histomorphometry, ash weight, and morphometric indices for bone evaluation in an animal model (the orchidectomized rat) of male osteoporosis. Calcify Tissue Int,2001. 68(1) :31-7
    28 陈孟诗,赖胜祥,李良,等.大鼠的骨生物力学指标选取及测试.生物医学工程杂志,2001, 18 (4) : 547-51
    29 王以进.骨科生物力学,北京:人民军医出版社. 1985,21-86
    30 Ferretti JC, Capozza RF, Mondelo N, et al. Interrelationships between densitometric, geometric, and mechanical properties of rat femora: inferences concerning mechanical regulation of bone modeling .J Bone Miner Res,
    
    1993,8(11) :1389-96
    31 费琴明,崔大敷,陈统一,等.合成成骨生长肽的体内外成骨活性.生物化学与生物物理学报, 2001, 33 (4) : 415-20.
    32 Sun YQ, Ashhurst DE. Osteogenic growth peptide enhances the rate of fracture healing in rabbits. Cell Biol Int, 1998, 22(4) :313-9.
    33 Suda T, Nakamura I, Jimi E, et al. Regulation of osteoclast function. J Bone Miner Res, 1997,12(6) :869-79
    34 Abou-samra AB, Juppner H, Force T, et al. Expression cloning of a common receptor for parathyroid hormone and parathyroid hormone-related peptide from rat osteoblasts-like cells: a single receptor stimulates intracellular accumulation of both camp and inositol trisphosphates and increases intracellular free calcium. Proc natl acad sci USA 1992,89(7) : 2732-6
    35 Wong GL. Paracrine interactions in bone-secreted products of osteoblasts permits osteoclasts to respond to parathyroid hormone. J Biol Chem. 1984,259(7) : 4019-22
    36 Lee K, Deeds JD, Segre GV, et al. Expression of parathyroid hormone-related peptide and its receptor messenger ribonucleic acids during fetal developments of rats. Endocrinology, 1995, 136(2) : 453-63
    37 Karaplis AC, Luz A, Glowacki J, et al. Lethal skeletal dysplasia from targeted disruption of the parathyroid hormone-related peptide gene, Genes Dev, 1994, 8(3) : 277-89
    38 Fenton AJ, Martin TJ, Nicholson GC. Carboxyl-terminal parathyroid hormone-related protein inhibits bone resorption by isolated chicken osteoclasts. J Bone Miner Res, 1994, 9(4) : 515-9
    39 Muff R, Born W, Fisher JA, et al. Calcitonin, calcitonin gene-related peptide,
    
    adrenomedullin and amylin: homologous peptides, separate receptors and overlapping biological actions. Eur J Endocrinol, 1995, 133(1) : 17-20
    40 司徒镇强,吴军正.细胞培养,第一版,西安:世界图书出版公司.1996, 111-21,55-8,111-6
    41 Locklin RM, Williamson MC, Bereford JN, et al. In vitro effects of growth factors and dexamethasone on rat marrow stromal cells. Clin Orthop, 1995, 33(313) : 27-35
    42 Pereira RM, Delany AM, Canalis E, et al. Cortisol inhibits the differentiation and apoptosis of osteoblasts in culture. Bone, 2001, 28(5) : 484-90
    43 Coelho MJ , Fernandes MH . Human bone cell cultures in biocompatibility testing . part II: effect of ascorbic acid, beta-glycerophosphate and dexamethasone on osteoblastic differentiation. Biomaterials, 2000, 21(11) : 1095-102
    44 Lucas TS, Bab I, Lian JB, et al. Stimulation of systemic bone formation induced by experimental blood loss. Clin Orthop, 1997, (340) : 267-75.
    45 Robinson D, Bab I, Nevo Z. Osteogenic growth peptide regulates proliferation and osteogenic maturation of human and rabbit bone marrow stromal cells. J Bone Miner Res, 1995, 10(5) : 690-6.
    46 Greenberg Z, Gavish H, Muhlrad A, et al. Isolation of osteogenic growth peptide from osteoblastic MC3T3 Elcell cultures and demonstration of osteogenic growth peptide binding proteins. J Cell Biochem, 1997, 65(3) :359-67.
    47 Brager MA, Patterson MJ, Connolly JF, et al. Osteogenic growth peptide normally stimulated by blood and marrow ablation has local and systemic effects on fracture healing in rats. J Orthop Res, 2000, 18(1) : 133-9.
    48 Torii Y, Hitomi K, Tsukagoshi N, et al. Synergistic effect of BMP-2 and ascorbate on the phenotypic expression of osteoblastic MC3T3-E1 cells. Mol Cell
    
    Biochem, 1996,165(1) : 25-9
    49 Chen TL, Bates RL, Dudley A, et al. Bone morphogenetic protein-2b stimulation of growth and osteogenic phenotypes in rat osteoblast-like cells: comparison with TGF-beta 1. J Bone Miner Res, 1991,6(12) : 1387-93
    50 Thrailkill KM, Siddhanti SR, Fowlkes JL, et al. Differentiation of MC3T3-E1 osteoblasts is associated with temporal changes in the expression of IGF-1 and IGFBPs. Bone, 1995,17 (3) : 307-13
    51 Kingsley DM. The TGF-β superfamily : new members , new receptors and new genetic tests of function in different organisms. Genes Dev, 1994,8(2) : 133-46
    52 Sakou T. Bone morphogenetic proteins : from basic studies to clinical approaches, Bone,1998, 22(6) : 591-603
    53 Kimble RB, Matayoshi AB, Vannice JL, et al. Simultaneous block of interleukin-1 and tumor necrosis factor is required to completely prevent bone loss in the early postovariectomy period. Endocrinology , 1995, 136(7) : 3054-61
    54 Kitazawa R, Kimble RB, Vannice JL, et al. Interleukin-1 receptor antagonist and tumor necrosis factor binding protein decrease osteoclast formation and bone resorption in ovariectomized mice. J Clin Invest, 1994, 94: 2397-406
    55 Jilkarl, Hangoc G, Girasole G, et al. Increased osteoclast development after estrogen loss: mediation by interleukin-6. Science, 1992, 257(5066) : 88-91
    56 Calo L, Castrignano R, Davis PA, et al. Role of insulin-like growth factor-I in primary osteoporosis: a correlative study. J Endocrinol Invest, 2000, 23 (4) : 223-7
    57 Chen D, Harris MA, Rossini G, et al. Bone morphogenetic protein 2(BMP-2) enhances BMP-3, BMP-4, and bone cell differentiation marker gene expression during the induction of mineralized bone matrix formation in cultures of fetal
    
    rat calvarial osteoblasts. Calcif Tissue Int,1997, 60(3) : 283-90
    58 Komori T, Yagi H, Nomura S, et al. Targeted disruption of cbfal results in a complete lack of bone formation owing to maturational arrest of osteoblasts. Cell, 1997, 89 (5) : 755-64
    59 Hofbauer LC, Khosla S, Dunstan CR, et al. The roles of osteoprotegerin and osteoprotegrin ligand in the paracrine regulation of bone resorption. J Bone Miner Res, 2000,15(1) : 2-12
    60 Paul J Kostenuik, Casey C, Sean M, et al. OPG and PTH (1-34) have additive effects on bone density and mechanical strength in osteopenic ovariectomized rats. Endocrinology, 2001,142(10) : 4295-304
    61 Middleton J, Arnott N, Walsh S, et al. Osteoblasts and osteoclasts in adult human osteophyte tissue express the mRNAs for insulin-like growth factors I and II and the type I IGF receptor. Bone, 1995,16(3) : 287-93
    62 Rajaram S, Baylink DJ, Mohan S, et al. Insulin-like growth factor-binding proteins in serum and other biological fluids: regulation and functions. Endocr Rev,1997, 18(6) : 801-31
    63 Jehle PM, Schulten K, Schulz W, et al. Serum levels of insulin-like growth factor (IGF)-I and IGF binding protein (IGFBP)-1 to-6 and their relationship to bone metabolism in osteoporosis patients. Eur J Intern Med, 2003, 14(1) : 32-8
    64 Kassem M, Okazaki R , De Leon D, et al. Potential mechanism of estrogen-mediated decrease in bone formation : estrogen increase production of inhibitory insulin-like growth factor-binding protein-4 . Proc Assoc Am Physicians, 1996, 108(2) : 155-64
    65 Rosen CJ. IGF-I and osteoporosis. Clin Lab Med, 2000, 20(3) : 591-602
    66 Kveiborg M, Flyvbjerg A, Rattan SI, et al. Changes in the insulin-like growth
    
    factor-system may contribute to in vitro age-related impaired osteoblast functions. Exp Gerontol,2000, 35(8) : 1061-74
    67 Langlois JA, Rosen CJ, Visser M, et al. Association between insulin-like growth factor 1 and bone mineral density in older women and men: the Framingham heart study. J Clin Endocrinol Metab, 1998, 83(12) : 4257-62
    68 Seck T, Scheppach B, Scharla S, et al. Concentration of insulin-like growth factor(IGF)-I and-II in iliac crest bone matrix from pre-and postmenopausal women: relationship to age ,menopause ,bone turnover , bone volume and circulating IGFs. J Clin Endocrinol Metab, 1998,83(7) : 2331-7
    69 Linkhart TA, Mohan S. Parathyroid hormone stimulates release of insulin-like growth factor-I (IGF-I) and IGF-II from neonatal mouse calvaria in organ culture. Endocrinology, 1989, 125(3) : 1484-91
    70 Delany AM, Canalis E. Transcriptional repression of insulin-like growth factor 1 by glucocorticoids in rat bone cells. Endocrinology 1995,136(11) : 4776-81
    71 Hill PA,Tumber A .Meikle MC , et al. Multiple extracellular signals promote osteoblast survival and apoptosis . Endocrinology,1997,138(9) : 3849-58
    72 Peruzzi F, Prisco M, Dews M, et al. Multiple signaling pathways of the insulin-like-growth factor 1 receptor in protection from apoptosis. Mol Cell Biol,1999,19(10) : 7203-15
    73 Guicbeux J , Heymann D , Rousselle AV , et al. Growth hormone stimulatory effects on osteoclastic resorption are partly mediated by insulin-like growth factor I : in vitro study. Bone, 1998, 22(1) :25-31
    74 储诚兵,陈艺新.胰岛素样生长因子-1(IGF-1) 对成骨细胞的成骨影响.中国矫形外科杂志,2002,9(11) : 1104-5
    
    
    75 Shoshana Y, Clifford J, Rosen WG. Circulating levels of IGF-1 directly regulate bone growth and density.J Clin Invest, 2002,110(6):771-81
    76 Ostrowska Z, Kos-Kudla B, Marek B, et al. Dynamic pattern of IGF-I and chosen biochemical markers of bone metabolism in a rat model of postmenopausal osteoporosis.Endocr Regul,2002,36(1):9-17
    77 Nobuyuki U, Naoyuki T,Takuhiko A,et al. Origin of osteoclasts: mature monocytes and macrophages are capable of differentiating into osteoclasts under a suitable microenvironment prepared by bone marrow-derived stromal cells. Proc Natl Acad Sci USA,1990,87(18):7260-4
    78 于明香,金慰芳,王洪复,等.破骨细胞体外培养与形态观察.上海医科大学学报,1996,23(1):52-4
    79 王洪复 主编.骨细胞图谱与骨细胞体外培养技术,第一版,上海:上海科学技术出版社.2001,60-68
    80 Lowik CW,Van Der Pluijm G, Bloys H, et al. Parathyroid hormone (PTH) and PTH-like protein (PLP) stimulate interleukin-6 production by osteogenic cells: a possible role of interleukin-6 in osteoclastogenesis.Biochem Biophys Res Commun,1989,162(3):1546-52
    81 Reddy SV, Roodman GD. Control of osteoclast differentiation. Crit Rev Eukaryot Gene Expr, 1998,8(1):1-17
    82 Sells Galvin RJ, Gatlin CL, Horn JW, et al.TGF-beta enhances osteoclast differentiation in hematopoietic cell cultures stimulated with RANKL and M-CSF.Biochem Biophys Res Commun,1999,265(1):233-9
    83 Hsu H, Lacey DL,Dunstan CR, et al.Tumor necrosis factor receptor family member RANK mediates osteoclast differentiation and activation induced by osteoprotegerin ligand.Proc Natl Acad Sci USA, 1999,96(7):3540-5
    
    
    84 Manolagas SC. The role of IL-6 type cytokines and their receptors in bone. Ann N Y Acad Sci,1998, 840: 194-204
    85 Suda T, Takahashi N, Udagawa N, et al. Modulation of ostoclast differentiation and function by the new members of the tumor necrosis factor receptor and ligand families. Endocr Rev, 1999, 20(3) : 345-57
    86 May LG, Gay CV. Parathyroid hormone uses both adenylate cyclase and protein kinase C to regulate acid production in osteoclasts. J Cell Biochem , 1997, 65(4) : 565-73
    87 May LG,Gay CV. Multiple G-protein involvement in parathyroid hormone regulation of acid production by osteoclasts. J Cell Biochem , 1997, 64(1) : 161-70
    88 Carol V, Janet W. Regulation of differentiated osteoclasts. Crit Rev Eukaryot Gene Expression, 2000, 10(3-4) : 213-30
    89 Isogai Y, Akatsu T, Ishizuya T, et al. Parathyroid hormone regulates osteoblast differentiation positively or negatively depending on the differentiation stages. J Bone Miner Res, 1996, 11(10) : 1384-93
    90 Nakamura I, Pilkington MF, Lakkakorpi PT , et al. Role of alpha(v)beta(3) integrin in osteoclast migration and formation of the sealing zone. J Cell Sci,1999,112(pt 22) : 3985-93
    91 De Melker AA, Sonnenberg A. Integrins: alternative splicing as a mechanism to regulate ligand binding and integrin signaling events. Bioassays, 1999, 21 (6) : 499-509
    92 Duong LT, Rodan GA. Integrin-mediated signaling in the regulation of osteoclast adhesion and activation. Front Biosci, 1998, 3:757-68
    93 Ruoslahti E. RGD and other recognition sequences for integrins. Annu Rev Cell Dev Biol,1996,12: 697-715
    
    
    94 Simonet WS, Lacey DL , Dunstan CR, et al. Osteoprotegerin: a novel secreted protein involved in the regulation of bone density . Cell, 1997, 89(2) : 309-19
    95 Thomas GP, Baker SU, Eisman JA, et al. Changing RANKL/OPG mRNA expression in differentiating murine primary osteoblasts. J Endocrinol ,2001,170(2) : 451-60
    96 Burgess TL, Qian Y, Kaufman S, et al. The ligand for osteoprotegerin (OPGL) directly activates mature osteoclasts. J Cell Biol, 1999, 145(3) : 527-38
    97 Yasuda H, Shima N, Nakagawa N, et al. Osteoclast differentiation factor is a ligand for osteoprotegerin/oteoclastogenesis-inhibitory factor and is identical to TRANCE/RANKL. Proc Natl Acad Sci USA, 1998, 95(7) : 3597-602
    98 Nakamura I, Tanaka H, Rodan GA, et al. Echistatin inhibits the migration of murine prefusion osteoclasts and the formation of multinucleated osteoclast-like cells. Endocrinology, 1998,139(12) : 5182-93
    99 Muhugh KP, Hodivala-Dilke K, Zheng MH, et al. Mice lacking beta3 integrins are osteosclerotic because of dysfunctional osteoclasts. J Clin Invest, 2000,105(4) : 433-40
    100 Lee SK, Lorenzo JA. Parathyroid hormone stimulates TRANCE and inhibits osteoprotegerin messenger ribonucleic acid expression in murine bone marrow cultures: correlation with osteoclast-like cell formation. Endocrinology, 1999,140(8) : 3552-61
    101 Suzawa T, Miyaura C, Inada M, et al. The role of prostaglandin e receptor subtypes(EP1. EP2. EPS and EP4) in bone resorption : an analysis using specific agonist for the respective Eps. Endocrinology, 2000,141(4) : 1554-9
    102 Takami M, Takahashi N, Udagawa N, et al. Intracellular calcium and protein kinase C mediate expression of receptor activator of nuclear factor-kappa B
    
    ligand and osteoprotegerin in osteoblasts. Endocrinology, 2000,141(12) : 4711-9
    103 Jaiswal RK, Jaiswal N, Bruder SP,et al. Adult human mesenchymal stem cell differientiation to the osteogenic or adipogenic lineage is regulated by mitogen-activated protein kinase. J Biol Chem,2000, 275(13) :9645-9652.
    104 Ducy P, Zhang R, Geoffroy V, et al. Osf2/Cbfa1:A transcriptional activator of osteoblast differentiation. Cell,1997,89(5) : 747-54
    105 Drissi H, Luc Q, Shakoori R, et al. Transcriptional autoregulation of the bone related CBFA1/RUNX2 gene. J Cell Physiol, 2000, 184(3) : 341-50
    106 Shapiro IM. Discovery: Osf2/Cbfa1, a master gene of bone formation. Clin Orthod Res, 1999,2(1) : 42-6
    107 Gao YH, Shinki T, Yuasa T, et al. Potential role of cbfa1, an essential transcriptional factor for osteoblast differentiation, in osteoclastogenesis: regulation of mRNA expression of osteoclast differentiation factor (ODF).Biochem Biophys Res Commun, 1998, 252(3) :697-702
    108 Sambrook J,著.黄培堂,译.分子克隆实验指南,第三版,北京:科学出版社. 2002, 540-4
    109 Howell S, Caswell AM, Kenny AJ, et al. Membrane peptidases on human osteoblast-like cells in culture: hydrolysis of calcitonin and hormonal regulation of endopeptidase-24. 11. Biochem J, 1993, 290 (pt 1) : 159-64.
    110 Ruchon AF, Marcinkiewicz M, Ellefsen K , et al. Celluar localization of neprilysin in mouse bone tissue and putative role in hydrolysis of osteogenic peptides. J Bone miner Res, 2000,15(7) :1266-74
    111 Mundlos S, Otto F, Mundlos C, et al. Mutations involving the transcription factor CBFA1 cause cleidocranial dysplasia. Cell, 1997,89(5) : 773-9
    112 Ahn MY, Bae SC, Maruyama M, et al. Comparison of the human genomic structure
    
    of the Runt domain-encoding PEBP2/CBF alpha gene family. Gene, 1996,168(2) : 279-80
    113 Zeng C, Van Wijnen AJ, Stein JL, et al. Identification of a nuclear matrix targeting signal in the leukemia and bone-related AML/CB-@ transcription factors. Proc Natl Acad Sci USA, 1997, 94(13) : 6746-51
    114 Bae S, Ogawa E, Maruyama M, et al. PEBP2 alpha B/Mouse AML1 consists of multiple isoforms that possess differential transactivation potentials. Mol Cell Biol,1994, 14(5) : 3242-52
    115 Xiao ZS, Thomas R, Hinson TK, et al. Genomic structure and isoform expression of the mouse, rat and human Cbfa1/Osf2 transcription factor. Gene, 1998, 214(1-2) : 187-97
    116 Thirunavukkarasu K, Mahajan M, McLarren KW, et al. Two domains unique to osteoblast-specific transcription factor Osf2/Cbfa1 contribute to its transactivation function and its inability to heterodimerize with Cbfbeta. Mol Cell Biol, 1998,18(7) : 4197-208
    117 Rodan GA, Harada S. The missing bone. Cell,1997,89(5) : 677-80
    118 Ogawa E, Maruyama M, Kagoshima H, et al. PEBP2/PEA2 represents a family of transcription factors homologous to the products of the Drosophila runt gene and the human AML1 gene. Proc Natl Acad Sci USA, 1993, 90(14) : 6859-63
    119 Ducy P, Karsenty G. Two distinct osteoblast-specific cis-acting elements control expression of a mouse osteocalcin gene. Mol Cell Biol, 1995, 15:1858-69
    120 Craig AM, Denhardt DT. The murine gene encoding secreted phosphoprotein 1(osteopontin) : promoter structure, activity, and induction in vivo by estrogen and progesterone. Gene, 1991, 100: 163-71
    121 Thirunavukkarasu K, Halladay DL, Miles RR, et al. The osteoblast-specific
    
    transcription factor cbfa1 contributes to the expression of osteoprotegerin, a potent inhibitor of osteoclast differentiation and function, J Biol Chem, 2000, 275(33) : 25163-72
    122 Ducy P , Zhang R , Geoffrey V , et al. Osf2/Cbfa1: a transcriptional activator of osteoblast differentiation. Cell, 1997, 89(5) :747-54
    123 Ducy P, Starbuck M, Priemel M, et al. A cbfa1-dependent genetic pathway controls bone formation beyond embryonic development. Genes Dev 1999,13(8) : 1025-36
    124 Florian O, Anders PT , Tessa C , et al. Cbfa1, a candidate gene for cleidocranial dysplasia syndrome, is essential for osteoblast differentiation and bone development. Cell, 1997, 89(5) :765-71
    125 Yang S, Wei D, Wang D, et al. In vitro and in vivo synergistic interactions between the Runx2/Cbfa1 transcription factor and bone morphogenetic protein-2 in stimulating osteoblast differentiation. J Bone Miner Res, 2003 , 18(4) : 705-15
    126 Yamaguchi A, Komori T, Suda T. Regulation of osteoblast differentiation mediated by bone morphogenetic proteins, hedgehogs, and Cbfal. Endocr Rev 2000,21(4) : 393-411
    127 Krishnan V, Moore TL, Ma YL, et al. Parathyroid hormone bone anabolic action requires cbfal/runx2-dependent signaling. Mol Endocrinol, 2003, 17(3) :423-35
    128 Geoffroy V, Kneissel M, Fournier B, et al. High bone resorption in adult aging transgenic mice overexpressing cbfa1/runx2 in cells of the osteoblastic lineage. Mol Cell Biol, 2002, 22(17) : 6222-33
    129 Haruna SI, Kazunori M, Hidekiendoh, et al. A trans-acting enhancer modulates estrogen-mediated transcription of reporter genes in osteoblasts. J Bone Miner Res, 1999,14(2) : 248-55
    
    
    130 Xiao G , Jiang D, Thomas P, et al. MAPK pathways activate and phosphorylate the osteoblast-specific transcription factor, Cbfa1. J Biol Chem, 2000,275: 4453-9
    131 Xiao G, Wang D, Benson MD, et al. Role of the alpha2-integrin in osteoblast-specific gene expression and activation of the Osf2 transcription factor. J Biol Chem, 1998, 273(49) :32988-94

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700