胡黄连苷抑制乙型肝炎病毒共价闭合环状DNA作用的体外研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
[研究背景]共价闭合环状DNA(cccDNA)是乙型肝炎病毒(HBV)在细胞内复制过程的初始模板,也是病毒在宿主细胞核内形成的第一个复制中间体,它的形成标志着病毒在宿主细胞内感染状态的建立和复制循环的开始。HBV cccDNA在肝细胞核内形成含量相对稳定的池,目前绝大多数临床上应用的抗HBV药物均难以清除细胞内的cccDNA,被认为是抗病毒治疗后乙型肝炎复发的重要原因。HBV cccDNA的检测对抗HBV药物的研发和应用评价,以及慢性乙型肝炎(CHB)患者的病情监测和抗病毒疗效评估等具有十分重要的临床意义。就现有抗HBV药物的疗效看来,尚无能够迅速抑制或是清除被感染肝细胞内HBV cccDNA的治疗药物或方案,针对HBVcccDNA的药物研发和疗效监测工作尚未取得明显进展。本研究以我们实验室前期建立的一套特异、灵敏的HBV cccDNA检测技术为基础,在HepG2.2.15细胞平台上对胡黄连苷促进清除HBV cccDNA的作用效果和特点进行了对比评估,并试图对相关机制作出初步探讨。
     本研究共分为三个部分:(一)胡黄连苷促进清除HepG2.2.15细胞内HBVcccDNA的作用效果和特点研究。以阿德福韦酯为对照,分别观察胡黄连苷和阿德福韦酯作用后HepG2.2.15细胞培养上清中HBV DNA含量变化,定量检测细胞内HBVDNA、cccDNA和pgRNA水平并计算相应抑制率,比较胡黄连苷与阿德福韦酯作用的不同效果和特点。(二)胡黄连苷对HepG2.2.15细胞内HBV cccDNA超螺旋分布的影响。采用专门的二维凝胶电泳方法观察胡黄连苷作用前后HepG2.2.15细胞内HBV cccDNA超螺旋数量分布有无变化,并与阿德福韦酯作用结果相对比,利用非参数秩和检验方法进行统计分析,探寻胡黄连苷对HBV cccDNA超螺旋数量分布的影响。(三)胡黄连苷对HepG2.2.15细胞内OAS1、STAT2、ISGF3γ、MyD88、MxA等候选基因转录水平的影响。对于胡黄连苷作用后有明显差异转录的基因再以siRNA技术选择性沉默阻断,以反向验证相关基因参与胡黄连苷抗HBV作用的可能性。
     第一部分胡黄连苷对HepG2.2.15细胞内HBV cccDNA含量的影响
     目的观察胡黄连苷抑制HepG 2.2.15细胞内HBV cccDNA的作用效果及特点。方法分别用含胡黄连苷50μg/ml、胡黄连苷100μg/ml或阿德福韦酯5μg/ml的细胞培养液作用于HepG2.2.15细胞,加药后2d、5d收集细胞及培养上清液,用实时荧光定量PCR方法检测上清和细胞内HBV DNA、细胞内HBV cccDNA和pgRNA水平,分别计算抑制率。结果①胡黄连苷50μg/ml作用后2d和5d,上清HBV DNA抑制率分别为49.74%和79.48%;细胞内HBV cccDNA抑制率43.55%和56.43%,rcDNA抑制率43.39%和63.86%,pgRNA抑制率54.72%和56.08%。②胡黄连苷100μg/ml作用后2d和5d,上清HBV DNA抑制率分别为51.11%和82.07%;细胞内HBVcccDNA抑制率41.13%和57.59%,rcDNA抑制率45.09%和67.31%,pgRNA抑制率52.68%和52.47%。③阿德福韦酯作用后2d和5d,上清HBV DNA抑制率分别为25.56%和92.44%;细胞内HBV cccDNA抑制率18.54%和47.19%,rcDNA抑制率21.20%和71.47%,pgRNA抑制率11.14%和37.61%。结论胡黄连苷能够明显抑制HepG2.2.15细胞内HBV复制水平,对HBV cccDNA也具有抑制作用,而且在作用时相上早于阿德福韦酯,可能存在不同的作用机制。
     第二部分胡黄连苷对HepG2.2.15细胞内HBV cccDNA超螺旋分布的影响
     目的观察HepG2.2.15细胞内HBV cccDNA超螺旋数量分布规律及胡黄连苷、阿德福韦酯对其影响。方法实验共分3组,分别用含胡黄连苷50μg/ml、阿德福韦酯5μg/ml和空白细胞培养液作用于HepG2.2.15细胞,加药后2d、5d收集细胞,提取细胞内HBV cccDNA,经二维凝胶电泳分离含有不同超螺旋数量的cccDNA,转至硝酸纤维素膜与~(32)P-dCTP标记的HBV DNA探针杂交、放射显影。凝胶成像系统扫描A(0~5个超螺旋)、B(6~10个超螺旋)、C(11~15个超螺旋)、D(16~20个超螺旋)区域条带灰度值,计算各区域灰度积分值所占构成比,用非参数秩和检验方法分析组间差异。结果①用药2d时胡黄连苷组各区构成比中位值为A 14.94%、B 33.32%、C 35.96%、D 14.05%,阿德福韦酯组各区构成比中位值为A 13.00%、B20.04%、C 25.55%、D 39.04%,空白对照组各区构成比中位值为A 12.36%、B21.04%、C 23.22%、D 40.77%。其中胡黄连苷组分别与空白对照组和阿德福韦酯组cccDNA超螺旋分布有统计学差异(Nemenyi检验,x_(1,3)~2=12.86,x_(1,2)~2=8.28,P<0.01),而阿德福韦酯组与空白对照组cccDNA超螺旋分布差异无统计学意义(x_(2,3)~2=2.58,P>0.25)。②用药5d时胡黄连苷组各区构成比中位值为A 15.40%、B 33.48%、C 34.47%、D 15.07%,阿德福韦酯组各区构成比中位值为A 13.30%、B 20.52%、C 23.22%、D 42.12%,空白对照组各区构成比中位值为A 13.02%、B 21.24%、C 22.91%、D40.61%。其中胡黄连苷组分别空白对照组和阿德福韦酯组cccDNA超螺旋分布有统计学差异(Nemenyi检验,x_(1,3)~2=11.61,x_(1,2)~2=9.58,P<0.01),阿德福韦酯组与空白对照组cccDNA超螺旋分布差异无统计学意义(x_(2,3)~2=0.86,P>0.75)。③空白对照组HepG2.2.15细胞内HBV cccDNA分子所含超螺旋数量分布并不均匀,以D区所占比例最多(约40%),B区和C区次之(各约20%),A区最少,2d和5d间数据分布差异没有显著性(Mann-Whitney U检验,U=0.321,P=0.748)。结论HepG2.2.15细胞内HBV cccDNA超螺旋数量呈现相对固定的异质性分布状态,阿德福韦酯处理2d和5d均未改变分布规律;胡黄连苷能够减少HepG2.2.15细胞内HBV cccDNA内部超螺旋数量,可能导致cccDNA结构稳定性的减低,促进HBV cccDNA的清除。
     第三部分胡黄连苷对HepG2.2.15细胞内部分基因转录水平的影响
     目的观察胡黄连苷能否影响HepG2.2.15细胞内部分候选基因的转录,探讨其与抗HBV效应的关系。方法①选取既往报道的能够促进感染细胞内HBV pgRNA降解的部分基因如2',5'-寡腺苷酸合成酶1(OAS1)、信号转导与转录活化因子2(STAT2)、干扰素刺激基因因子3γ(ISGF3γ)、髓样细胞分化蛋白(MyD88)和MxA蛋白作为候选基因,实时荧光定量RT-PCR方法检测胡黄连苷作用后48h HepG2.2.15细胞内OAS1、STAT2、ISGF3γ、MyD88和MxA基因转录产物mRNA水平变化,以β-actin基因mRNA作为检测内参照。②用MyD88 siRNA诱导沉默HepG2.2.15细胞内MyD88基因转录,实时荧光定量PCR方法检测胡黄连苷作用下HepG2.2.15细胞内MyD88 mRNA、HBV pgRNA及培养上清中HBV DNA水平变化。③用MyD88siRNA诱导沉默HepG2.2.15细胞内MyD88基因转录,实时荧光定量PCR方法检测胡黄连苷作用下HepG2.2.15细胞内MyD88 mRNA、HBV cccDNA水平变化,二维电泳方法观察cccDNA超螺旋分布情况并作组间比较。结果①胡黄连苷作用后48hHepG2.2.15细胞内各候选基因转录水平与对照组的比值分别为1.17(OAS1)、0.87(STAT2)、0.93(ISGF3γ)、5.14(MyD88)和0.83(MxA),其中MyD88基因转录水平显著升高(P<0.01),其余各候选基因转录水平变化无显著性差异(P>0.05)。②MyD88 siRNA能够有效沉默胡黄连苷诱导的MyD88转录(沉默效率86.35%),同步检测胡黄连苷对培养上清中HBV DNA和细胞内pgRNA抑制率下降为5.02%、6.67%,而空转染组胡黄连苷对培养上清中HBV DNA和细胞内pgRNA抑制率为49.82%、51.36%,提示MyD88转录沉默后胡黄连苷抗HBV活性的部分阻断。③MyD88siRNA有效沉默MyD88基因转录后(沉默效率85.79%),胡黄连苷作用48h对HepG2.2.15细胞内HBV cccDNA抑制率为46.24%,空转染组抑制率为52.73%;MyD88 siRNA组cccDNA超螺旋数量分布为A 17.08%、B 33.82%、C 34.20%、D14.89%,空白对照组为A 13.82%、B 20.44%、C 23.14%、D 42.60%,MyD88 siRNA组与与空白对照组cccDNA超螺旋分布趋势仍有显著差别(Nemenyi检验,x_(1,3)~2=24.74,P<0.01)。结论胡黄连苷作用可以诱导HepG2.2.15细胞内MyD88基因活跃转录,并通过MyD88途径促进HBV pgRNA的降解。但是MyD88并未参与胡黄连苷早期抑制HBV cccDNA的过程,胡黄连苷体外抑制HBV cccDNA、减少HepG2.2.15细胞内cccDNA超螺旋数量的作用可能依赖其它宿主基因的参与。
Covalently closed circular DNA(cccDNA),serving as the original template of hepatitis B virus(HBV) replication,is the first replicative intermediate emerging during the life cycle of hepadnavirus,which indicates establishment of viral infection and origination of the replication cycle.A stable pool of cccDNA,has been found in each nucleus of persistently-infected hepatocyte,and is thought to be one of the main factors responsible for reoccurrence of chronic hepatitis B after withdrawal of antiviral agents. Therefore,determination of HBV cccDNA does not only play an vital role in the development and evaluation of aritiviral agents,but also may provide a useful guide to the efficacy of antiviral treatment and the likelihood of long-term response in patients with hepatitis B,and may aid in the decision of when to cease therapy.However,poor efficacy has been achieved aiming at clearance or inhibition of HBV cccDNA with current anti-HBV therapies,and few visible progresses were made in drug development and efficacy monitoring work against HBV cccDNA.In this research,we aimed to confirm the effectiveness and characteristics of picrosides inhibiting cccDNA in HepG2.2.15 cells,based on the specific and sensitive strategy developed earlier by our laboratory to determine HBV cccDNA.
     This research was composed of three parts:Ⅰ.Comparative study on the effectiveness and characteristics in inhibiting HBV cccDNA in HepG2.2.15 cells: picrosides versus adefovir dipivoxil.Ⅱ.Effect of picrosides on the supercoil configuration of HBV cccDNA molecules in HepG2.2.15 cells.Ⅲ.Effect of picrosides on the transcription of OAS1,STAT2,ISGF3γ,MyD88 and MxA genes in HepG2.2.15 cells
     PartⅠInhibitory Effect of Pierosides on Hepatitis B Virus Covalently Closed Circular DNA in HepG2.2.15 Cells
     Objectives To observe the effect of picrosides on HBV cccDNA in HepG2.2.15 cells.Materials and Methods HepG2.2.15 cells were separately incubated with culture medium containing 50μg/ml picrosides,100μg/ml picrosides or 5μg/ml adefovir dipivoxil for 2 and 5 days.HBV DNA in supernatant,intracellular cccDNA, intracellular relaxed circular DNA(rcDNA) and pregenomic RNA(pgRNA) were quantified by specific real-time PCR or RT-PCR.Results①Treatment with 50μg/ml picrosides for 2 and 5 days could reduce the production of HBV in the cell line,as shown by the decline of HBV DNA in the supernatant(49.74%and 79.48%). Intracellular synthesis of cccDNA had also been markedly lowered by 43.55%and 56.43%,and intracellular rcDNA decreased by 43.39%and 63.86%,as well as intracellular pgRNA decreased by 54.72%and 56.08%.②Treatment with 100μg/ml picrosides for 2 and 5 days resulted in decline of HBV DNA(51.11%and 82.07%) in the supernatant,as well as intracellular cccDNA(41.13%and 57.59%),rcDNA(45.09% and 67.31%) and pgRNA(52.68%and 52.47%).③Comparative treatment with adeforvir dipivoxil for 2 and 5 days resulted in decline of HBV DNA(25.56%and 92.44%) in the supernatant,cccDNA(18.54%and 47.19%),rcDNA(21.20%and 71.47%) and pgRNA(11.14%and 37.61%) in HepG2.2.15 cells.Conclusions Our research indicated that picrosides can interfere with the replication cycle of HBV, including the formation of cccDNA in HepG2.2.15 cells.The mechanism of picrosides on cccDNA may differ from adefovir dipivoxil's in its earlier inhibition phase.
     PartⅡImpact of Picrosides on the Distribution of Supercoils inside Hepatitis B Virus cccDNA in HepG2.2.15 Cells
     Objectives To observe the distribution of superhelixes inside HBV cccDNA molecules in HepG2.2.15 cells and the effect of picrosides or adefovir dipivoxil on such distribution.Materials and Methods HepG2.2.15 cells were divided into 3 groups: Cells of normal control group were incubated with fresh complete culture medium, while the other two groups were incubated with culture medium containing 50μg/ml picrosides or 5μg/ml adefovir dipivoxil respectively for 2 and 5 days.HBV cccDNA molecules were extracted from HepG2.2.15 cells by methods based on Hirt-fractionation and then divided into different groups according to the distinct number of innate superhelixes inside each cccDNA molecule through special two-dimensional gel electrophoresis process.Heterogeneous groups of cccDNA with different superhelix number were detected with ~(32)P-dCTP labeled cccDNA probe after transfer from gels to nitrocellulose blotting membranes by the Southern procedure. Integral gray values of different groups,named as A(containing 0-5 supercoils),B (containing 6-10 supercoils),C(containing 11-15 supercoils) and D(containing 16-20 supercoils) were converted into percentage value and then analyzed with nonparametric test.Results①The median percentage values of A to D distribution group in picrosides group on day 2 were 14.94%,33.32%,35.96%and 14.05%,respectively; while in adefovir dipivoxil group they were 13.00%,20.04%,25.55%and 39.04%and 12.36%,21.04%,23.22%and 40.77%in normal control group.The distribution of HBV cccDNA superhelixes in picrosides group were significantly different from that in adefovir dipivoxil group(Nemenyi Test,x_(1,2)~2=8.28,P<0.01) and normal control group(x_(1,3)~2=12.86,P<0.01),while no significant difference was found between adefovir dipivoxil group and normal control group(x_(2,3)~2=2.58,P>0.25).②The median percentage values of A to D in picrosides group on day 5 were 15.40%,33.48%, 34.47%and 15.07%,respectivel;while in adefovir dipivoxil group they were 13.30%, 20.52%,23.22%and 42.12%and 13.02%,21.24%,22.91%and 40.61%in normal control group.The distribution of HBV cccDNA superhelixes in picrosides group were significantly different from those of adefovir dipivoxil group(Nemenyi Test,x_(1,2)~2=9.58, P<0.01) and normal control group(x_(1,3)~2=11.61,P<0.01),but no significant difference was found between adefovir dipivoxil group and normal control group(x_(2,3)~2=0.86, P>0.75).③The distribution of superhelixes inside cccDNA molecules in HepG2.2.15 cells was found as a heterogeneous population,with group D showing the maximum percentage(about 40%),group B and C a less percentage(but both above 20%) and group A the least(less than 15%).No significant difference was found between data on day 2 and day 5(Mann-Whitney U test,U=0.321,P=0.748).Conclusions The distribution of superhelixes numbers inside cccDNA molecules in HepG2.2.15 cells exists as a heterogeneous population,treatment with adefovir dipivoxil for 2 days and 5 days imposed no significant effect on the distribution pattern.Treatment with picrosides reduced the number of innate supercoils inside HBV cccDNA in HepG2.2.15 cells. Such alteration may cause subsequent reduction of cccDNA molecular stability which facilitates the clearance of cccDNA in nucleus.
     PartⅢEffect of picrosides on the transcription of OAS1,STAT2,ISGF3γ, MyD88 and MxA genes in HepG2.2.15 cells
     Objectives To observe the effect of picrosides on the transcription of some host genes and its relationship with picrosides' anti-HBV activity in HepG2.2.15 Cells. Materials and Methods①A group of host genes including 2',5'-oligoadenylate synthetase 1(OAS1),interferon-stimulated gene factor 3-γ(ISGF3γ),signal transducer and activator of transcription-2(STAT-2),myeloid differentiation primary response gene 88(MYD88) and myxovirus resistance protein A(MxA) were selected as candidate genes according to their reported activity of decreasing pgRNA.Their mRNA levels with or without picrosides treatment were quantitated by realtime reverse transcriptase PCR(RT-PCR) withβ-actin mRNA as internal reference.②HepG2.2.15 cells were treated with picrosides,and effect of MyD88 gene being silenced by siRNA or not were assessed by quantifying intracellular HBV pgRNA and MyD88 mRNA level as well as total HBV DNA in supernatant by realtime PCR.③MyD88 gene being silenced by siRNA or not,intracellular HBV cccDNA and MyD88 mRNA level were quantitated by realtime PCR,while the distribution of superhelixes inside HBV cccDNA was evaluated by two-dimensional gel electrophoresis.Results①Ratio of those candidate gene mRNA levels to normal control were 1.17(OAS1),0.87(STAT2),0.93(ISGF3γ), 5.14(MyD88) and 0.83(MxA).The transcription of MyD88 gene was significantly activated by picrosides' treatment(P<0.01),while no significant difference were observed in the transcription of other candidate genes between groups with or without picrosides treatement(P>0.05).②MyD88 siRNA can effectively silence MyD88 gene transcription with a ratio up to 86.35%,while the inhibition rate of HBV DNA in supernatant and intracellular pgRNA by picrosides declined to 5.02%and 6.67% respectively on day 2,indicating the partial block of picrosides' anti-HBV activity by MyD88 siRNA.③The inhibition rate of intracellular cccDNA by 2 days' picrosides treatment in HepG2.2.15 cells remained as 46.24%in despite of silenced MyD88 gene transcription(with a ratio up to 85.79%),and the inhibition rate of intracellular cccDNA in mock-transfection HepG2.2.15 cells was 52.73%.The A,B,C and D distribution pattern of cccDNA superhelixes in MyD88 siRNA group were 17.08%,33.82%, 34.20%and 14.89%while in normal control group they were 13.82%,20.44%,23.14% and 42.60%,respectively.The distribution of HBV cccDNA superhelixes in MyD88 siRNA group were also significantly different from that of normal control group (Nemenyi Test,x_(1,3)~2=24.74,P<0.01).Conclusions Treatment with picrosides can activate transcription of MyD88 gene and may subsequently induce the degradation of pgRNA through MyD88 pathway,but MyD88 gene might not participate in the rapid, early inhibition of HBV cccDNA by picrosides.The inhibition effect of picrosides on HBV cccDNA in vitro and the reduction of superhelix number of cccDNA might rely on further activation of other host genes.
引文
1 张吕先.中和实验技术.见:黄祯祥,主编.医学病毒学基础及实验技术.第一版.北京:北京科技出版社,1990.143-144.
    2 Summers J,Smith PM,Horwich AL,et al.Hepadnavirus Envelope Proteins Regulate Covalently Closed Circular DNA Amplification.J Virol 1990;64:2819-2824.
    3 Kock J,Schlicht HJ.Analysis of the earliest steps of the hepadnavirus replication:Genome repair after infectious entry into hepatocytes does not depend on the viral polymerase activity.J Virol 1993;67:4867-4874.
    4 Singh M,Dicaire A,Wakil AE,et al.Quantitation of hepatitis B virus(HBV)covalently closed circular DNA(cccDNA) in the liver of HBV-infected patients by LightCyclerTM real-time PCR.J Virol Methods 2004;118:159-167.
    5 Sung JJ,Wong ML,Bowden S,et al.Intrahepatic hepatitis B virus covalently closed circular DNA can be a predictor of sustained response to therapy.Gastroenterology 2005;128:1890-1897.
    6 Werle-Lapostolle B,Bowden S,Locamini S,et al.Persistence of cccDNA during the natural history of chronic hepatitis B and decline during adefovir dipivoxil therapy.Gastroenterology 2004;126:1750-1758.
    7 Wong DK,Yuen MF,Ngai VW,et al.One-year entecavir or lamivudine therapy results in reduction of hepatitis B virus intrahepatic covalently closed circular DNA levels.Antivir Ther 2006;11:909-916.
    8 Wursthorn K,Lutgehetmann M,Dandri M,et al.Peginterferon alpha-2b plus adefovir induce strong cccDNA decline and HBsAg reduction in patients with chronic hepatitis B.Hepatology 2006;44:675-684.
    9 Zoulim F.Antiviral therapy of chronic hepatitis B:can we clear the virus and prevent drug resistance? Antivir Chem Chemother 2004;15:299-305.
    10 杨德刚,缪晓辉.对乙型肝炎病毒共价闭合环状DNA的再认识.中华医学杂志2007;87:1867-1869.
    11 赵克开,缪晓辉,徐文胜.HepG2.2.15细胞内乙型肝炎病毒cccDNA的定量检测.中华传染病杂志2005;23:6-9.
    12 郝勇,缪晓辉.慢性乙型肝炎患者外周血单个核细胞及肝组织中cccDNA定量检测.中华传染病杂志2007;25:15-17.
    13 Summers J,Smith PM,Horwich AL.Hepadnavirus envelope proteins regulate covalently closed circular DNA amplificatin.J Virol 1990;64:2819-2824.
    14 Littlejohn M,Bowden S,Jackson K,et al.Selective PCR for hepatitis B virus cccDNA:validation of real-time assays.Hepatology 2001;34:311A.
    15 Sells MA,Zelent AZ,Shvartsman M,et al.Replicative intermediates of hepatitis B virus in HepG2 cells that produce infectious virions.J Virol.1988;62:2836-2844.
    16 Acs G,Sells MA,Purcell RH,et al.Hepatitis B virus produced by transfected HepG2cells causes hepatitis in chimpanzees.Proc Natl Acad Sci USA 1987;84:4641-4644.
    17 Bock CT,Schwinn S,Locarnini S,et al.Structural organization of the hepatitis B virus minichromosome.J Mol Biol 2001;307:183-196.
    18 Noble S,Goa KL.Adefovir dipivoxil.Drugs 1999;58:479-487.
    19 Cundy KC,Fishback JA,Shaw JP,et al.Oral bioavailability of the antiretroviral agent 9-(2-phosphonylmethoxyethyl) adenine(PMEA) from three formulations of the prodrug bis-(pivaloyloxymethyl)-PMEA in fasted male cynomolgus monkeys.Pharm Res 1994;11:839-843.
    20 Srinivas RV,Robbins BL,Connelly MC,et al.Metabolism and in vitro antiretroviral activities of bis(pivaloyloxymethyl) prodrugs of acyclic nucleoside phosphonates.AntimicrobAgents Chemother 1993;37:2247-2250.
    21 Bock CT,Schranz P,Schroeder CH,et al.Hepatitis B virus genome is organized into nucleosomes in the nucleus of the infected cell.Virus Genes 1994;8:215-229.
    22 Newbold JE,Xin H,Tencza M,et al.The covalently closed duplex form of the hepadnavirus genome exists in situ as a heterogeneous population of viral minichromosomes.J Virol 1995;69:3350-3357.
    23 Bock CT, Schwinn S, Stephen L, et al. Structural organization of the hepatitis B virus mmichromosome. J Mol Biol 2001; 307: 183-196.
    1 Bock CT, Schranz P, Schroeder CH, et al. Hepatitis B virus genome is organized into nucleosomes in the nucleus of the infected cell. Virus Genes 1994; 8: 215-229.
    
    2 Newbold JE, Xin H, Tencza M, et al. The covalently closed duplex form of the hepadnavirus genome exists in situ as a heterogeneous population of viral minichromosomes. J Virol 1995; 69: 3350-3357.
    
    3 Bock CT, Schwinn S, Locarnini S, et al. Structural organization of the hepatitis B vims minichromosome. J Mol Biol 2001; 307: 183-196.
    
    4 Peck LJ, Wang JC. Energetics of B-to-Z transition in DNA. Proc Natl Acad Sci USA 1983;80: 6206-6210.
    
    5 Sherlock SD, Dooley J. 1996. Diseases of the Liver and Biliary System. 10th ed. Blackwell Science Ltd, London, England. p714.
    
    6 Bianchi L, Gudat F. 1980. in Vims and the Liver. MTP, Lancaster, UK. p197-204.
    
    7 Martin AN, Sebastian B, Andrew MH, et al. Viral dynamics in hepatitis B vims infection. Proc Natl Acad Sci USA 1996;93:4398-4402.
    
    8 Laras A, Koskinas J, Dimou E, et al. Intrahepatic levels and replicative activity of covalently closed circular hepatitis B vims DNA in chronically infected patients. Hepatology 2006; 44: 694-702.
    
    9 Pollicino T, Belloni L, Raffa G, et al. Hepatitis B vims replication is regulated by the acetylation status of hepatitis B vims cccDNA-bound H3 and H4 histones. Gastroenterology 2006; 130: 823-837.
    
    10 Addison WR, Walters KA, Wong WWS, et al. Half-life of the duck hepatitis B vims convalenly closed circular DNA pool in vivo following inhibition of viral replication. J Virol 2002; 76: 6356-6363.
    
    11 Zhu Y, Yamamoto T, Cullen J, et al. Kinetics of hepadnavirus loss from the liver during inhibition of viral DNA synthesis. J Virol 2001; 75: 311-322.
    
    12 Civitico GM, Locamini SA. The half-life of duck hepatitis B vims supercoiled DNA in congenitally infected primary hepatocyte cultures. Virology 1994; 203: 81-89.
    13 Guo JT, Melissa P, Wang XT, et al. Conditional replication of duck hepatitis B virus in hepatoma cells. J Virol 2003; 77: 1885-1893.
    14 Sung JJ, Wong ML, Bowden S, et al. Intrahepatic hepatitis B virus covalently closed circular DNA can be a predictor of sustained response to therapy. Gastroenterology 2005; 128: 1890-1897.
    15 Wong DK-H, Yuen MF, Ngai VWS, et al. One-year entecavir or lamivudine therapy results in reduction of hepatitis B virus intrahepatic covalently closed circular DNA levels. Antiviral Therapy 2006; 11: 909-916.
    16 Werle-Lapostolle B, Bowden S, Locarnini S, et al. Persistence of cccDNA during the natural history of chronic hepatitis B and decline during adefovir dipivoxil therapy. Gastroenterology 2004; 126: 1750-1758.
    17 Guidotti LG, Rochford R, Chung J, et al. Viral clearance without destruction of infected cells during acute HBV infection. Science 1999; 284: 825-829.
    18 Mason WS, Jilbert AR, Summers J. Clonal expansion of hepatocytes during chronic woodchuck hepatitis virus infection. Proc Natl Acad Sci USA 2005; 102:1139-1144.
    19 Guidotti LG, Chisari FV. Noncytolytic control of viral infections by the innate and adaptive immune response. Annu Rev Immunol 2001; 19: 65-91.
    20 Wieland SF, Spangenberg HC, Thimme R, et al. Expansion and contraction of the hepatitis B virus transcriptional template in infected chimpanzees. Proc Natl Acad Sci USA 2004; 101:2129-2134.
    21 Peck LJ, Wang JC. Energetics of B-to-Z transition in DNA. Proc Natl Acad Sci USA 1983;80:6206-6210.
    1 Q Zhang, Y Wang, L Wei, et al. Role of ISGF3 in modulating the anti-hepatitis B virus activity of interferon-alpha in vitro. J Gastroen Hepatol 2007; Published article online: 07 Jun 2007; doi: 10.1111/j. 1440-1746.2007.04985.x
    
    2 Patzwahl R, Meier V, Ramadori G, et al. Enhanced expression of interferon regulated genes in the liver of patients with chronic hepatitis C virus infection: detection by suppression-subtractive hybridization. J Virol 2001; 75:1332-1338.
    
    3 Arbour NC, Lorenz E, Schutte BC, et al. TLR4 mutations are associated with endotoxin hyporesponsiveness in humans. Nat Genet 2000; 25: 187-191.
    
    4 Bauer S, Wagner H. Bacterial CpG-DNA licenses TLR9. Curr Top Microbiol Immunol 2002; 270:145-154.
    
    5 Hemmi H, Kaisho T, Takeda K, et al. The roles of Toll-like receptor 9, MyD88 and DNA-dependent protein kinase catalytic subunit in the effects of two distinct CpG DNAs on dendritic cell subsets. J Immunol 2003; 170: 3059-3064.
    
    6 Hemmi H, Takeuchi O, Kawai T, et al. A Toll-like receptor recognizes bacterial DNA. Nature 2000; 408: 659-660.
    
    7 Adachi O, Kawai T, Takeda K, et al. Targeted disruption of the MyD88 gene results in loss of IL-1- and IL-18-mediated function. Immunity 1998; 9: 143-150.
    
    8 Bowie A and Oneill LA. The interleukin-1 receptor/Toll-like receptor superfamily: signal generators for pro-inflammatory interleukins and microbial products. J Leukoc Biol 2000; 67: 508-514.
    
    9 Oneill LA. Signal transduction pathways activated by the IL-1 receptor/toll-like receptor superfamily. Curr Top Microbiol Immunol 2002; 270: 47-61.
    
    10 Akira S, Takeda K, Kaisho T. Toll-like receptors: critical proteins linking innate and acquired immunity. Nat Immunol 2001; 2: 675-680.
    
    11 Horng T, Barton GM, Flavell RA, et al. The adaptor molecule TIRAP provides signalling specificity for Toll-like receptors. Nature 2002; 420: 329-333.
    
    12 W Xiong, X Wang, X Liu, et al. Interferon-inducible MyD88 Protein Inhibits Hepatitis B Virus Replication. Virology 2004; 319: 306-314.
    
    13 W Xiong, X Wang, X Liu, et al. Analysis of Gene Expression in Hepatitis B Virus Transfected Cell Line Induced by Interferon. Acta Biochim Biophys Sin 2003; 35: 1053-1060.
    
    14 Qaqish RB, Mattes KA, Ritchie DJ. Adefovir dipivoxil: a new antiviral agent forthe treatment of hepatitis B virus infection. Clin Ther 2003; 25: 3084-3099.
    
    15 Dando T, Plosker G. Adefovir dipivoxil: a review of its use in chronic hepatitis B. Drugs 2003; 63: 2215-2234.
    
    16 Schiff ER. Lamivudine for hepatitis B in clinical practice. J Med Virol 2000; 61: 386-391.
    
    17 Wieland SF, Spangenberg HC, Thimme R, et al. Expansion and contraction of the hepatitis B virus transcriptional template in infected chimpanzees. Proc Natl Acad Sci USA 2004; 101: 2129-2134.
    1 Ganem D,Alfred M.Hepatitis B vires infection-natural history and clinical consequences.N Engl J Med 2004;350:1118-1129.
    2 Tuttleman JS,Pourcel C,Summers J.Formation of the pool of covalently closed circular viral DNA in hepadnavirus-infected cells.Cell 1986;47:451-460.
    3 Wu TT,Coates L,Aldrich CE,et al.In hepatocytes infected with duck HBV,the template for viral RNA synthesis is amplified by an intracellular pathway.Virology 1990;175:255-261.
    4 Kock J,Schlicht HJ.Analysis of the earliest steps of hepadnavirus replication:genome repair after infectious entry into hepatocytes does not depend on viral polymerase activity.J Virol 1993,67:4867-4874.
    5 Mason WS,Halperm MS,England JM,et al.Experimental Transmission of duck hepatitis B vires.Virology 1983;131:375-384.
    6 Tagawa M,Omata M,Okuda K.Appearance of viral RNA transcripts in the early stage of duck hepatitis B virus infection.Virology 1986;152:477-482.
    7 Miller RH,Robinson WS.Hepatitis B virus DNA forms in nuclear and cytoplasmic fractions of infected human liver.Virology 1984;137:390-399.
    8 Yeh CT,Chiu HT,Chu CM,et al.G1 phase dependent nuclear localization of relaxed-circular hepatitis B virus DNA and aphidicolin-induced accumulation of covalently closed circular DNA.J Med Viral 1998;55:42-50.
    9 Borel C, Schorr O, Durand I, et al. Initial amplification of duck hepatitis B virus covalently closed circular DNA after in vitro infection of embryonic duck hepatocytes is increased by cell cycle progression. Hepatology 2001; 34:168-179.
    
    
    10 Petcu DJ, Aldrich CE, Coates L, et al. Suramin inhibits in vitro infection by duck hepatitis B virus, Rous sarcoma virus, and hepatitis delta virus. Virolgy 1988; 167: 385-392.
    
    11 Guidotti LG., Martinez V, Lor YT, et al. Hepatitis B virus nucleocapsid particles do not cross the hepatocyte nuclear membrane in transgenic mice. J Virol 1994; 68: 5469-5475.
    
    12 Yamaguchi M, Miyatsu Y, Mizokami H, et al.Translocation of hepatitis B virus core particles through nuclear pores in transformed yeast cells. J Electron Microsc 1996; 45: 321-324.
    
    13 Pante N, Kann M. Nuclear pore complex is able to transport macromolecules with diameters of 39 nm. Mol Biol Cell 2002; 13: 425-434.
    
    14 Rabe B, Vlachou A, Pante N, et al. Nuclear import of hepatitis B virus capsids and release of the viral genome. Proc Natl Acad Sci USA 2003; 100: 9849-9854.
    
    15 Summers J, Smith PM, Horwich AL. Hepadnavirus envelope proteins regulate covalently closed circular DNA amplification. J Virol 1990; 64: 2819-2824.
    
    16 Lenhoff R, Summers J. Coordinate regulation of replication and virus assembly by the large envelope protein of an avian hepadnavirus. J Virol 1994; 68: 4565-4571.
    
    17 Thermet A, Rollier C, Zoulim F, et al. Progress in DNA vaccine for prophylaxis and therapy of hepatitis B. Vaccine 2003; 21: 659-662.
    
    18 Bock CT, Schranz P, Schroeder CH, et al. The hepatitis B virus genome is organized into nucleosomes in the nucleus of the infected cell. Virus Genes 1994; 8: 215-229.
    
    19 Newbold JE, Xin H, Tencza M, et al. The covalently closed duplex form of the hepadnavirus genome exists in situ as a heterogeneous population of viral minichromosomes. J Virol 1995; 69: 3350-3357.
    
    20 Bock CT, Schwinn S, Locarnini S, et al. Structural organization of the hepatitis B virus minichromosome. J Mol Biol 2001; 307: 183-196.
    
    21 Sherlock SD, Dooley J. 1996. Diseases of the Liver and Biliary System. 10th ed. Blackwell Science Ltd, London, England. p714.
    
    22 Bianchi L, Gudat F. 1980. in Virus and the Liver. MTP, Lancaster, UK. p197-204.
    23 Martin AN, Sebastian B, Andrew MH, et al. Viral dynamics in hepatitis B virus infection. Proc Natl Acad Sci USA 1996;93:4398-4402.
    
    24 Jilbert AR,Wu TT, England JM, et al. Rapid resolution of duck hepatitis B virus infections occurs after massive hepatocellular involvement. J Virol 1992; 66: 1377-1388.
    
    25 Kajino K, Jilbert AR, Saputelli J, et al. Woodchuck hepatitis virus infections: very rapid recovery after a prolonged viremia and infection of virtually every hepatocyte. J Virol 1994; 68: 5792-5803.
    
    26 Dandri M, Burda MR, Will H, et al. Increased hepatocyte turnover and inhibition of woodchuck hepatitis B virus replication by adefovir in vitro do not lead to reduction of the closed circular DNA. Hepatology 2000; 32: 139-146.
    
    27 Addison WR, Wong WW, Fischer KP, et al. A quantitative competitive PCR assay for the covalently closed circular form of the duck hepatitis B virus. Antiviral Res 2000; 48: 27-37.
    
    28 Zhu Y, Yamamoto T, Cullen J, et al. Kinetics of hepadnavirus loss from the liver during inhibition of viral DNA synthesis. J Virol 2001; 75: 311-322.
    
    29 Zhang YY, Zhang BH, Theele D, et al. Single-cell analysis of covalently closed circular DNA copy numbers in a hepadnavirus-infected liver. Proc Natl Acad Sci USA 2003; 100: 12372-12377.
    
    30 Guidotti LG, Rochford R, Chung J, et al. Viral clearance without destruction of infected cells during acute HBV infection. Science 1999; 284: 825-829.
    
    31 Mason WS, Jilbert AR, Summers J. Clonal expansion of hepatocytes during chronic woodchuck hepatitis virus infection. Proc Natl Acad Sci USA 2005; 102:1139-1144.
    
    32 Guidotti LG, Chisari FV. Noncytolytic control of viral infections by the innate and adaptive immune response. Annu Rev Immunol 2001; 19: 65-91.
    
    33 Wieland SF, Spangenberg HC, Thimme R, et al. Expansion and contraction of the hepatitis B virus transcriptional template in infected chimpanzees. Proc Natl Acad Sci USA 2004; 101:2129-2134.
    
    34 Le Mire MF, Miller DS, Foster WK, et al. Covalently closed circular DNA is the predominant form of duck hepatitis B virus DNA that persists following transient infection. J Virol 2005; 79: 12242-12252.
    
    35 Yuen MF, Wong DK, et al. HBsAg seroclearance in chronic hepatitis B in the Chinese: virological, histological, and clinical aspects. Hepatology 2004; 39: 1694-1701.
    
    36 Mason AL, Xu L, Guo L, et al. Molecular basis for persistent hepatitis B virus infection in the liver after clearance of serum hepatitis B surface antigen. Hepatology 1998; 27: 1736-1742.
    
    37 Rehermann B, Ferrari C, Pasquinelli C, et al. The hepatitis B virus persists for decades after patients' recovery from acute viral hepatitis despite active maintenance of a cytotoxic T-lymphocyte response. Nat Med 1996; 2:1104 -1108.
    
    38 Rehermann B, Fowler P, Sidney J, et al. The cytotoxic T lymphocyte response to multiple hepatitis B virus polymerase epitopes during and after acute viral hepatitis. J Exp Med 1995; 181:1047-1058.
    
    39 Coffin CS, Michalak TI. Persistence of infectious hepadnavirus in the offspring of woodchuck mothers recovered from viral hepatitis. J. Clin. Invest 1999; 104: 203-212.
    
    40 Schultz U, Chisari FV. Recombinant duck interferon gamma inhibits duck hepatitis B virus replication in primary hepatocytes. J Virol 1999; 73:3162-3168.
    
    41 Wursthorn K, Lutgehetmann M, Dandri M, et al. Peginterferon alpha-2b plus adefovir induce strong cccDNA decline and HBsAg reduction in patients with chronic hepatitis B. Hepatology 2006; 44: 675-684.
    
    42 Sung JJ, Wong ML, Bowden S, et al. Intrahepatic hepatitis B virus covalently closed circular DNA can be a predictor of sustained response to therapy. Gastroenterology 2005; 128: 1890-1897.
    
    43 Danri M, Burda MR, ,Will H, et al. Increased hepatocytes turnover and inhibition of woodchuck hepatitis B virus replication by adefovir in vitro do not lead to reduction of the closed circular DNA. Hepatology 2000; 32: 139-146.
    
    44 Delmas J, Schorr O, Jamard C, et al. Inhibitory effect of adefovir on viral DNA synthesis and covalently closed circular DNA formation in duck hepatitis B virus-infected hepatocytes in vivo and in vitro. Antimicrob Agents Chemother 2002; 46: 425-433.
    
    45 Werle-Lapostolle B, Bowden S, Locarnini S, et al. Persistence of cccDNA during the natural history of chronic hepatitis B and decline during adefovir dipivoxil therapy. Gastroenterology 2004; 126: 1750-1758.
    
    46 Colonno RJ, Genovesi EV, Medina I, et al. Long-term entecavir treatment results in sustained antiviral efficacy and prolonged life span in the woodchuck model of chronic hepatitis infection. J Infect Dis 2001;184: 1236-1245.
    
    47 Wong DK, Yuen MF, Ngai VWS, et al. One-year entecavir or lamivudine therapy results in reduction of hepatitis B virus intrahepatic covalently closed circular DNA levels. Antiviral Therapy 2006; 11: 909-916.
    
    48 Civitico GM, Locarnini SA. The half-life of duck hepatitis B virus supercoiled DNA in congenitally infected primary hepatocyte cultures. Virology 1994; 203: 81-89.
    
    49 Delaney WE, Miller TG, et al. Use of the hepatitis B virus recombinant baculovirus-HepG2 system to study the effects of (-)-beta-2', 3'-dideoxy-3'-thiacytidine on replication of hepatitis B virus and accumulation of covalently closed circular DNA. Antimicrob Agents Chemother 1999; 43: 2017-2026.
    
    50 Guo JT, Melissa P, Wang XT, et al. Conditional replication of duck hepatitis B virus in hepatoma cells. J Virol 2003; 77:1885-1893.
    
    51 Addison WR, Walters KA, Wong WWS, et al. Half-life of the duck hepatitis B virus convalenly closed circular DNA pool in vivo following inhibition of viral replication. J Virol 2002; 76: 6356-6363.
    
    52 Cacciola I, Pollicino T, Squadrito G, et al. Quantification of intrahepatic hepatitis B virus (HBV) DNA in patients with chronic HBV infection. Hepatology 2000, 31: 507-512.
    
    53 Murray JM, Purcell RH, Wieland SF. The half-life of hepatitis B virions. Hepatology 2006; 44: 1117-1121.
    
    54 Nowak MA, Bonhoeffer S, Hill AM, et al. Viral dynamics in hepatitis B virus infection. Proc Natl Acad Sci USA 1996; 93: 4398-4402.
    
    55 Tsiang M, Rooney JF, Toole JJ, et al. Biphasic clearance kinetics of hepatitis B virus from patients during adefovir dipivoxil therapy. Hepatology 1999; 29: 1863-1869.
    
    56 Lien JM, Petcu D, Aldrich C, et al. Initiation and termination of duck hepatitis B virus DNA synthesis during virus maturation. J Virol 1987; 61: 3832-3840.
    
    57 Loeb D, Hirsch R, Ganem D. Sequence-independent RNA cleavages generate the primers for plus strand DNA synthesis in hepatitis B viruses: implications for other reverse transcribing elements. EMBO J 1991; 10:3533-3540.
    
    58 Staprans S, Loeb D, Ganem D. Mutations affecting hepadnavirus plus-strand synthesis dissociate primer cleavage from translocation and reveal the origin of linear viral DNA. J Virol 1991; 65: 1255-1262.
    59 Seeger C, Mason W. Hepatitis B virus biology. Microbiol Mol Biol Rev 2000; 64: 51-68.
    
    60 Yang W, Summers J. Illegitimate replication of linear hepadnavirus DNA through nonhomologous recombination. J Virol 1995; 69: 4029-4036.
    
    61 Yang W, Mason WS, Summers J. Convalently closed circular viral DNA formed from two types of linear DNA in woodchuck hepatitis virus-infected liver. J virol 1996; 70: 4567-4575.
    
    62 Wong DK, Yuen MF, Yuan HJ, et al. Quantitation of covalently closed circular hepatitis B virus DNA in chronic hepatitis B patients. Hepatology 2004; 40: 727-737.
    
    63 Shao JB, Chen Z, Ni WQet al. A quantitative method to detect HBV cccDNA by chimeric primer and real-time polymerase chain reaction. J Virol Methods 2003; 112: 45-52.
    
    64 Kock J, Theilmann L, Galle P, et al. Hepatitis B virus nucleic acids associated with peripheral blood mononuclear cells do not originate from replicating virus. Hepatology 1996; 32: 23405-23413.
    
    65 Simone SB, Reinald R, Dieter G, et al . Transcription of hepatitis B virus in peripheral blood mononuclear cells from persistently infected patients. J Virol 1997 , 71:5399-5407.
    
    66 Maria C, Javier B, Carlos C et al. Molecular Analysis of Hepatitis B Virus DNA in Serum and Peripheral Blood Mononuclear Cells From Hepatitis B Surface Antigen-Negative Cases. Hepatology 2000; 32: 116-123.
    
    67 Cabrerizo M, Bartolome J, Carren V et al. In vitro infection of human peripheral blood mononuclear cells by a defective hepatitis B virus with a deletion in the PreS1 region of the viral genome. J Vira Hepati. 2002; 9: 265-271.
    
    68 Torii N, Hasegawa K, Joh R, et al. Configuration and replication competence of hepatitis B virus DNA in peripheral blood mononuclear cells from chronic hepatitis B patients and patients who have recovered from acute self-limited hepatitis. Hepatol Res 2003; 25: 234-243.
    
    69 Chen Y, Sze J, He ML. HBV cccDNA in patients' sera as an indicator for HBV reactivation and an early signal of liver damage. World J Gastroenterol 2004; 10: 82-85.
    
    70 郝勇,苗千里,缪晓辉,等.慢性乙型肝炎患者外周血单个核细胞及肝组织中 HBV cccDNA定量检测.中华传染病杂志2007;25:48-52.
    71 刘茂昌,王贵强,朴文花.乙型肝炎病人外周血单个核细胞共价闭合环状DNA的检测.中华肝脏病杂志2004;12:249-250.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700