全麦苏打饼干烘焙品质改良以及水分迁移机制的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
全麦粉富含蛋白质、膳食纤维、维生素、矿物质、酚类和植物化学素等功能性营养成分。近几年,随着全麦食品逐渐深入人心,全麦苏打饼干作为一种营养、健康、方便的新型食品,正受到越来越多消费者的认可与喜爱。本论文对全麦苏打饼干和大麦苏打饼干的制作配方及加工工艺条件分别进行了优化确定,并对终产品的堆垛重量、堆积高度、比容和断裂力等指标进行测定。全麦苏打饼干的品质评价结果表明,全麦粉对饼干的烘焙品质特征造成了严重破坏(尤其降低了苏打饼干的烘焙体积)。因此,本论文采用内切木聚糖酶、活性小麦面筋和阿拉伯胶对全麦苏打饼干的品质进行改良;分别采用阿拉伯胶、瓜尔胶和黄原胶对大麦苏打饼干进行品质改良,并研究了这些品质改良剂对全麦饼干粉理化特性及流变学特性的影响。最后,利用低场核磁技术对全麦面团体系中的水分迁移现象进行了研究,证明了影响全麦苏打饼干烘焙品质差的内在机理原因是全麦面团中的阿拉伯木聚糖与面筋蛋白网状结构之间存在竞争性吸水,使得面筋蛋白无法吸水形成网状结构,使之持气性降低,导致全麦苏打饼干烘焙体积减小。具体实验结果如下:
     全麦苏打饼干的堆垛重量、堆积高度、比容和断裂力值都随着全麦粉添加量的增加而减小;大麦苏打饼干的堆垛重量和断裂力值随大麦粉添加量的增加而增大,堆积高度和比容值随着大麦粉添加量的增加而减小。随着全麦粉添加量的增加,全麦饼干粉的吸水率SRC值、面团的P和P/L值、G′′模量和蛋白质弱化度升高,而L和W值、G′模量则随之减小,且全麦粉抑制了淀粉的糊化和回生速率。
     内切木聚糖酶的加入可降低全麦粉的W-SRC和Suc-SRC值、P和P/L值;提高了全麦面团的L值。随着阿拉伯胶添加量的增加,降低了全麦粉的SRC值、P、W和P/L值;提高了全麦面团的L值。活性小麦面筋可提高全麦粉的P、L、W值和全麦苏打饼干的堆积高度、堆垛重量、比容和断裂力值。全麦面团的G′和G′′模量都随着内切木聚糖酶、活性小麦面筋和阿拉伯胶添加量的增加而增大。全麦苏打饼干的堆积高度和比容值随内切木聚糖酶和阿拉伯胶添加量的增加而升高;全麦苏打饼干改良剂最优复配比为:0.035%的内切木聚糖酶、1.5%的活性小麦面筋和1.5%的阿拉伯胶
     阿拉伯胶降低了大麦饼干粉的SRC值和蛋白质弱化度,提高了大麦苏打饼干的堆积高度和比容值;降低了大麦饼干粉的P和W值,提高了L和P/L值。瓜尔胶和黄原胶增加了大麦饼干粉的SRC值,降低了大麦苏打饼干的堆积高度和比容值;提高了大麦饼干粉的P和P/L值,而降低了L和W值。阿拉伯胶、瓜尔胶和黄原胶降低了大麦粉中淀粉的糊化和回生速率。
     随着小麦麸皮颗粒度的增加,对小麦面筋蛋白网状结构的剪切稀释作用越强,使得小麦面筋蛋白中α-螺旋,β-折叠,β-转角和β-反平行的含量减小,无规则卷曲的含量增加。在全麦面团的T2弛豫时间曲线中,T21代表AX凝胶的吸水峰,T22代表面筋蛋白-淀粉复合物的吸水峰,T23为自由水峰。内切木聚糖酶和阿拉伯胶降低了全麦面团的RT21,增加了RT22,RT23变化不显著。全麦面团醒发后,内切木聚糖酶和阿拉伯胶使T21和T22峰左移;T23峰位置没有显著位移。LF-NMR实验结果表明,内切木聚糖酶和阿拉伯胶可使全麦面团体系中的水分从AX凝胶迁移至面筋蛋白-淀粉的网状结构中去。
Whole wheat flour is riched in protein, dietary fiber, vitamin, minerals, polyphenol, andphytochemicas. In recent years, with the whole wheat food go into the customers’ heartsdeeply, the whole wheat crackers becoming a novel products as nutrient, health, convenientare accepted by more and more people. In this study, the formula and processing craft ofproducing whole wheat saltine crackers and barley saltine crackers were optimized,respectively. Also, the stack weight, stack height, specific volume, and breaking strength weremeasured to evaluate the baking quality of end products. The results of quality evaluation ofwhole wheat saltine crackers showed that the whole wheat flour had a detrimental effect onthe baking quality attributes of whole wheat saltine crackers, especially in reducing the ovenspring of the end products. Therefore, the endoxylanases, vital wheat gluten, and arabic gumwere utilized to improve the baking quality of whole wheat saltine crackers; arabic gum, guargum, and xanthan gum were employed to modify the baking quality of barley saltine crackers.In addition, the effects of these modifiers on the physicochemical characteristics andrheological properties of whole wheat flour were observed. Finally, the low-field nuclearmagnetic resonance was performed to determine the water migration in whole wheat doughsystem. The LF-NMR data proved that the mechanism of resulting in inferior baking qualityof whole wheat saltine crackers was the water competition between arabinoxylans matrix andgluten-starch network in whole wheat dough system. The gluten network was unable to formdue to lack of water, which led to reduce the puffiness of whole wheat saltine crackers sincethe weak gas retention ability of dough.
     The stack weight, stack height, specific volume, and breaking strength of whole wheatsaltine crackers were all reduced with increased the addition levels of whole wheat flour. Thestack weight and breaking strength were increased, and the stack height and specific volumeof barley saltine crackers were reduced with increased the addition levels of whole barleyflour. With increasing the addition levels of whole wheat flour, the water absorption of wholewheat cracker flour, the P and P/Lvalues, G′′modulus of whole wheat dough, and proteinweakening were all increased, and L and W values, G′modulus were reduced. Besides, thegeltinization rate and retrogradation rate of starch were reduced by the whole wheat flour.
     The W-SRC, Suc-SRC, P, and P/L values were reduced, and L value of whole wheatflour was increased with the presence of endoxylanases. With increased addition levels ofarabic gum, the SRC values, P, W and P/L values were reduced, and L value of whole wheatflour was enhanced. The P, L, W values of whole wheat dough and the stack weight, stackheight, specific volume, and breaking strength of whole wheat saltine crackers were allincreased with the presence of vital wheat gluten. The G′and G′′moduli of whole wheatdough were increased with increased addition levels of endoxylanases, vital wheat gluten, andarabic gum. The stack height and specific volume of whole wheat saltine crackers wereincreased with increased addition levels of endoxylanases and arabic gum. The optimum of combined modifiers of whole wheat saltine crackers is:0.035%endoxylanased,1.5%vitalwheat gluten, and1.5%arabic gum.
     Arabic gum reduced the SRC, P, W values, and protein weakening of barley cracker flour,and increased the L and P/L values of barley cracker flour and stack height and specificvolume of barley saltine crackers. The SRC, P, P/L values of barley cracker flour wereincreased, L and W values of barley cracker dough and stack height and specific volume ofbarley saltine crackers were reduced with the presence of guar gum and xanthan gum. Thegeltinization rate and retrogradation rate of starch in barley cracker flour were all reduced bythe arabic gum, guar gum, and xanthan gum.
     With increased the particle size of whole wheat flour, the dilute and shearing effects onwheat gluten network were enhanced. The content of α-helix, β-sheet, β-turn, andβ-anti-parallel of whole wheat dough were reduced, and the content of random coil wasincreased. In T2relaxation time distribution curve, peak T21represents the water absorption ofAX matrix, T22represents the water absorption by gluten-starch network, and T23is free water.The RT21of whole wheat dough was reduced, and RT22was increased by the endoxylanasesand arabic gum. RT23changed insignificantly. After dough resting, the peak T21and T22wereshifed left with the presence of endoxylanases and arabic gum. Resultes of Low field-NMRshowed that the water was migrated from arabinoxylanas matrix into gluten-starch networkunder the action of endoxylanases and arabic gum.
引文
[1] AACCI.1999, Whole Grains Task Force.1999. Definition of Whole Grain.http://www.aaccnet.org/news/pdfs/wgPR.pdf.
    [2] USDA.2011, http://www.choosemyplate.gov/.
    [3] USDA.2003, http://www.fda.gov/Food/LabelingNutrition/LabelClaims/FDAModernizationActFDAMAClaims/ucm073634.htm.
    [4] USDA.2005, Dietary Guidelines for Americans2005. USDA Human NutritionInformation Service Hyattsville, MD.
    [5] Surget, and Barron. Histologie Du Grain De Blé [J]. Industrie des Céréales,2005,145:3-7.
    [6] Liu, R. H. Whole grain phytochemicals and health [J]. Journal of Cereal Science,2007,46:207–219.
    [7] Okarter, N., and Liu, R. H. Health benefits of whole grain phytochemicals [J]. CriticalReviews in Food Science and Nutrition,2010,50:193–208.
    [8] Marquart, L., Slavin, J. L., and Fulcher, R. G. Whole-grain foods in health and disease.2002, Minnesota: American Association of Cereal Chemists.
    [9] Bhatty, R. S. Extraction and enrichment of (1-3),(1-4)-β-D-glucan from barley and oatbrans [J]. Cereal Chemistry,1993,70:73-77.
    [10] Terrence Madhujith, Marta Izydorczyk, and Fereidoon Shahidi. Antioxidant properties ofpearled barley fractions [J]. Journal of Agriculture and Food Chemistry,2006,54:3283–3289.
    [11] Slavin, J., Jacobs, D., and Marquardt, L. Grain processing and nutrition [J]. CriticalReviews in Food Science and Nutrition,2000,4:309–326.
    [12] Bamforth, C.W. Barley β-glucans. Their role in malting and brewing [J]. Brew. Dig.1982,57:22-35.
    [13] Newman, C. W., and Newman, R. K. Nutrition aspects of barley seed structure andcompodition. In P. R. Shewry (Eds.), Barley: Genetics, Biochemistry, Molecular Biology,and Biochemistry, UK: CBA International,1992:351–362.
    [14] Wood, P. J., and Beer, M. U. Functional oat products. in: Functional Foods—Biochemicaland Processing Aspects. G. Mazza, ed. Technomic: Lancaster, PA,1998:1-37.
    [15] Wang, L., Behr, S. R., Newman, R. K., and Newman, C. W. Comparativecholesterol-lowering effects of barley β-glucan and barley oil in golden Syrian hamsters[J]. Nutrition Research,1997,17:77-88.
    [16] Wood, P. J., Braaten, J. T., Fraser, W. S., Riedel, D., and Poste, L. Comparisons of theviscous properties of oat gum and guar gum and the effects of these and oat bran onglycemic index [J]. Journal of Agriculture and Food Chemistry,1990,38:753-757.
    [17] Wood, P. J., Braaten, F. W., Scott, F. W., Riedel, K. D., Wolynetz, M. S., and Collins, M.W. Effect of dose and modification of viscous properties of oat gum on plasma glucoseand insulin following an oral glucose load [J]. British Journal of Nutrition,1994,72:731-743.
    [18] USDA.2008, Nutrient content of whole grain and enriched wheat flour.http://www.nal.usda.gov/fnic/foodcomp/search.
    [19] Wang, L., Gaziano, J. M., Liu, S. M., Manson, J. E., Buring, J. E. and Sesso, H. D.Whole-and refined-grain intakes and the risk of hypertension in women [J]. AmericanJournal of Clinical Nutrition,2007,86:472–479.
    [20] Esmaillzadeh, A., Mirmiran, P., Azizi, F. Whole-grain consumption and themetabolicsyndrome, a favorable association in Tehranian adult [J]. European Journal of ClinicNutrition,2005,59(3):353–62.
    [21] Appel, L. J., Moore, T. J., Obarzanek, E., Vollmer, W. M., Svetkey, L. P., et al. Aclinicaltrial of the effects of dietary patterns on blood pressure [J]. DASH CollaborativeResearch Group. N. Engl. J. Med.,1997,336(16):1117–24.
    [22] Anderson, J. W. Whole-grains intake and risk for coronary heart disease. In Whole Grainsin Health and Disease, ed. L Marquart, JL Slavin, G Fulcher, St. Paul, MN: Am. Assoc.of Cereal Chemistry,2002,100–114.
    [23] Lee, Y. P., Puddey, I. B., Hodgson, J. M. Protein, fibre and blood pressure: potentialbenefit of legumes [J]. Clin. Exp. Pharmacol. Physiol.,2008,35(4):473–76.
    [24] Pins, J. J., Geleva, D., Keenan, J. M., Frazel, C., O’Connor P. J., Cherney, L. M. Dowhole-grain oat cereals reduce the need for antihypertensive medications and improveblood pressure control?[J]. Fam. Pract.,2002,51(4):353–59.
    [25] Lockheart, M. S., Steffen, L. M., Rebnord, H. M., Fimreite, R. L., Ringstad, J., Thelle, D.S., Pedersen, J. I. and Jacobs, D. R., Jr. Dietary patterns, food groups and myocardialinfarction: A case-control study. Br J. Nutr.,2007,98:380–387.
    [26] Fraser, G. E. Associations between diet and cancer, ischemic heart disease and all-causemortality in non-Hispanic white California Seventh-day Adventists [J]. Am.J.Clin.Nutr.,1999,70:532S–538S.
    [27] Pietinen, P., Rimm, E. B.,Korhonen, P.,Hartman,A.M.,Willett,W. C.,Albanes, D. andVirtamo, J. Intake of dietary fiber and risk of coronary heart disease in a cohort ofFinnish men. The Alpha-Tocopherol, Beta-Carotene Cancer Prevention Study.Circulation.,1996,94:2720–2727.
    [28] Jacobs, D. R., Jr., Meyer, K. A., Kushi, L. H. and Folsom, A. R. Whole-grain intake mayreduce the risk of ischemic heart disease death in post-menopausal women: The IowaWomen’s Health Study [J]. Am.J.Clin.Nutr.,1998,68:248–257.
    [29] Liu, S., Stampfer, M. J., Hu, F. B., Giovannucci, E., Rimm, E., Manson, J. E., Hennekens,C. H. and Willett, W. C. Whole-grain consumption and risk of coronary heart disease:Results from the Nurses’ Health Study [J]. Am. J. Clin. Nutr.,1999,70:412–419.
    [30] Wolk, A., Manson, J. E., Stampfer, M. J., Colditz, G. A., Hu, F. B., Speizer, F. E.,Hennekens, C. H. and Willett, W. C. Long-term intake of dietary fiber and decreased riskof coronary heart disease among women [J]. Jama.,1999,281:1998–2004.
    [31] Anderson, J. W., Hanna, T. J., Peng, X. and Kryscio, R. J. Whole grain foods and heartdisease risk [J]. J. Am. Coll. Nutr.,2000,19:291S–299S.
    [32] Pereira, M. A., O’Reilly, E., Augustsson, K., Fraser, G. E., Goldbourt, U., Heitmann, B.L., Hallmans, G., Knekt, P., Liu, S., Pietinen, P., Spiegelman, D., Stevens, J., Virtamo, J.,Willett, W. C. and Ascherio. A. Dietary fiber and risk of coronary heart disease: A pooledanalysis of cohort studies [J]. Arch. Intern. Med.,2004,164:370–376.
    [33] Bazzano, L. A., Song, Y. Q., Bubes, V., Good, C. K., Manson, J. E. and Liu, S. M.Dietary intake of whole and refined grain breakfast cereals and weight gain in men [J].Obesity Research.,2005,13:1952–1960.
    [34] Liu, R. H., Health benefits of fruits and vegetables are from additive and synergisticcombination of phytochemicals [J]. Am. J. Clin. Nutr.,2003,78:517S-520S.
    [35] Meyer, K. A.,Kushi, L. H., Jacobs, D. R., Jr., Slavin, J., Sellers, T. A. and Folsom, A. R.Carbohydrates, dietary fiber and incident type2diabetes in older women [J].Am.J.Clin.Nutr.,2000,71:921–930.
    [36] Montonen, J., Knekt, P., Jarvinen, R., Aromaa, A. and Reunanen, A. Whole-grain andfiber intake and the incidence of type2diabetes [J]. Am. J. Clin. Nutr.,2000,77:622–629.
    [37] Schulze, M. B., Liu, S. M., Rimm, E. B., Manson, J. E., Willett, W. C. and Hu, F. B.Glycemic index, glycemic load and dietary fiber intake and incidence of type2diabetesin younger and middle-aged women [J]. American Journal of Clinical Nutrition,2004,80:348–356.
    [38] van Dam, R. M., Rimm, E. B., Willett, W. C., Stampfer, M. J. and Hu, F. B. Dietarypatterns and risk for type2diabetes mellitus in U. S. men [J]. Ann. Intern. Med.2000,136:201–209.
    [39] Salmerón, J.,Ascherio,A.,Rimm, E.B.,Colditz,G.A., Spiegelman,D., Jenkins, D. J.,Stampfer, M. J., Wing, A. L. and Willett, W. C. Dietary fiber, glycemic load and risk ofNIDDM in men [J]. Diabetes Care,1997,20:545–550.
    [40] Liu, S., Manson, J. E., Stampfer, M. J., Hu, F. B., Giovannucci, E., Colditz, G. A.,Hennekens, C. H. and Willett, W. C. A prospective study of whole-grain intake and riskof type2diabetes mellitus in US women [J]. Am. J. Public Health,2000,90:1409–1415.
    [41] Munter, J. S. L. d., Hu, F. B., Spiegelman, D., Franz, M. and Dam, R. M. v. Whole grain,bran and germ intake and risk of type2diabetes: a prospective cohort study andsystematic review [J]. PLoS Medicine,2007,4:e261.
    [42] Schatzkin, A., Mouw, T., Park, Y., Subar, A. F., Kipnis, V., Hollenbeck, A., Leitzmann, M.F. and Thompson, F. E. Dietary fiber and whole-grain consumption in relation tocolorectal cancer in the NIH-AARP Diet and Health Study [J]. Am.J.Clin.Nutr.,2007,85:1353–1360.
    [43] Pietinen, P., Malila, N., Virtanen, M., Hartman, T. J., Tangrea, J. A., Albanes, D. andVirtamo, J. Diet and risk of colorectal cancer in a cohort of Finnish men [J]. CancerCauses Control,1999,10:387–396.
    [44] Jacobs, D. R., Jr., Slavin, J. and Marquart, L. Whole grain intake and cancer: A review ofthe literature [J]. Nutr. Cancer,1995,24:221–229.
    [45] Rohan, T. E., Hiller, J. E. and McMichael, A. J. Dietary factors and survival from breastcancer [J]. Nutr. Cancer,1993,20:167–177.
    [46] Nicodemus, K. K., Jacobs, D. R., Jr. and Folsom, A. R. Whole and refined grain intakeand risk of incident postmenopausal breast cancer (United States)[J]. Cancer CausesControl,2001,12:917–925.
    [47] Kasum, C. M., Nicodemus, K., Harnack, L. J., Jacobs, D. R. and Folsom, A. R. Wholegrain intake and incident endometrial cancer: The Iowa Women’s Health Study [J].Nutrition and Cancer-an International Journal,2001,39:180–186.
    [48] Adlercreutz, H. and Mazur, W. Phyto-oestrogens andWestern diseases [J]. Ann. Med.,1997,29:95–120.
    [49] Larsson, S. C., Giovannucci, E., Bergkvist, L. andWolk, A. Whole grain consumptionand risk of colorectal cancer: A population-based cohort of60000women [J]. BritishJournal of Cancer,2005,92:1803–1807.
    [50] Chan, J. M., Wang, F. and Holly, E. A. Whole grains and risk of pancreatic cancer in alarge population-based case-control study in the San Francisco Bay Area, California [J].Am. J. Epidemiol,2007,166:1174–1185.
    [51] Cooke L. The importance of exposure for healthy eating in childhood: a review [J]. Hum.Nutr. Diet,2007,20(4):294–301.
    [52] Moore, T., and Strouts, B. Basic cracker technology Ι: Ingredients and formulation [J].Am. Institute Baking Tech. Bull2008a,4:1-9.
    [53] Pizzinatto, A., and Hoseney, R. C. Rheological changes in cracker sponge duringfermentation [J]. Cereal Chemistry,1980a,57:185-188.
    [54] Rogers, D. E., Hoseney, R. C. Effects of fermentation in saltine cracker production [J].Cereal Chemistry,1989,66,6-10.
    [55] Bennett, R., Ewart, J. A. D. The reaction of acids with dough proteins [J]. Journal of theScience of Food and Agriculture,1962,13,15.
    [56] Slade, L., Levine, H., Craig, S., Arciszewski, H. Reducing checking in crackers withpentosanase. United States Patent No1994,5,362,502.
    [57] Kweon, M., Slade, L., and Levine, H. Development of a benchtop baking method forchemically leavened crackers Ⅱ: Validation of the method [J]. Cereal Chemistry,2011,88:25-30.
    [58] Kweon, M., Slade, L., Levine H. Solvent retention capacity (SRC) testing of wheat flour:Principles and value in predicting flour functionality in different wheat-based foodprocesses and in wheat breeding—A review [J]. Cereal Chemistry,2011,88,537-552.
    [59] Moore, T., and Strouts, B. Basic cracker technology ΙΙ: Processing. Am. Institute BakingTech. Bull,2008,6:1-10.
    [60] Pizzinatto, A., and Hoseney, R. C. A laboratory method for saltine crackers [J]. CerealChemistry,1980b,57:249-252.
    [61] Kweon, M., Slade, L., Levine H. Development of a benchtop baking method forchemically leavened crackers: Identification of a diagnostic formula and procedure [J].Cereal Chemistry,2011a,88:19-24.
    [62] Garey, J. M., Moisey, M. J., Levine, H., Slade, L., Dzurenko, T. E., McHugh, K. Crispywheat-based snacks having surface bubbles. United States Patent No2002,6,479,090B1.
    [63] Slade, L., Levine, H., Craig, S., Arciszewski, H. Reducing checking in crackers withpentosanase. United States Patent No1994,5,362,502.
    [64] Doescher, L. C., Hoseney, R. C. Saltine crackers: changes in cracker sponge rheologyand modification of a cracker-baking procedure [J]. Cereal Chemistry,1985,62:158-162.
    [65] Pizzinatto, A., Hoseney, R. C. Rheological changes in cracker sponge duringfermentation [J]. Cereal Chemistry,1980a,57,185-188.
    [66] Bennett, R., Ewart, J. A. D. The reaction of acids with dough proteins [J]. Journal of theScience of Food and Agriculture,1962,13,15.
    [67] Rogers, D. E., Hoseney, R. C. Effects of fermentation in saltine cracker production [J].Cereal Chemistry,1989,66,6-10.
    [68] Rogers, D. E., Hoseney, R. C. Test to determine the optimum water absorption for saltinecracker doughs [J]. Cereal Chemistry,1987,64,370-372.
    [69] Kweon, M., Slade, L., Levine H. Development of a benchtop baking method forchemically leavened crackers: Identification of a diagnostic formula and procedure [J].Cereal Chemistry,2011a,88,19-24.
    [70] Moore, T., Strouts, B. Basic cracker technologyⅡ: Processing [J]. American Institute ofBaking,2008b,6,1-10.
    [71] Pizzinatto, A., Hoseney, R. C. A laboratory method for saltine crackers [J]. CerealChemistry,1980b,57,249-252.
    [72] Sutherland, R. Hydrogen ion concentration (pH) and total titratable acidity tests [J].American Institute of Baking,1989,5,1-6.
    [73] Faridi, H. A., Johnson, J. A. Saltine cracker flavor. I. Changes in organic acids andsoluble nitrogen constituents of cracker sponge and dough [J]. Cereal Chemistry,1977,55,7-15.
    [74] Courtin, C. M., Delcour, J. A. Aarabinoxylans and endoxylanases in wheat flourbread-making [J]. Journal of Cereal Science,2002,35,225-243.
    [75] Kweon, M., Slade, L., Levine H. Development of a benchtop baking method forchemically leavened crackers Ⅱ: Validation of the method [J]. Cereal Chemistry,2011b,88,25-30.
    [76] Moore, T., Strouts, B. Basic cracker technologyⅠ: Ingredients and formulation [J].American Institute of Baking,2008a,4,1-9.
    [77] Rogers, D. E., Hoseney, R. C. Test to determine the optimum water absorption for saltinecracker doughs [J]. Cereal Chemistry,1987,64:370–372.
    [78] Courtin, C. M., Delcour, J. A. Aarabinoxylans and endoxylanases in wheat flourbread-making [J]. Journal of Cereal Science,2002,35:225-243.
    [79] Meuser, F., Suckow, P. Non-starch polysaccharides. In: Blanshard, J. M. V., Frazier, P. J.,Gallidard, T.(Ed.), Chemistry and Physics of Baking. The Royal Society of Chemistry,London, UK,1986:42-61.
    [80] Tilley, K.A., Benjamin, R.E., Bagorogoza, K.E., Okot-Koter, B.M., Prakash, O., Kwen,H. Tyrosine cross-links: Molecular basis of gluten structure and function [J]. Journal ofAgricultural and Food Chemistry,2001,49:2627-2632.
    [81] Courtin, C.M., Roelants, A., Delcour, J.A. Fractionation–reconstitution experimentsprovide insight into the role of endoxylanases in bread-making [J]. Journal ofAgricultural and Food Chemistry,1999,47:1870-1877.
    [82] Rouau, X., EI Hayek, M. L., Moreau, D. Effect of an enzyme preparation containingpentosanases on the bread-making quality of flours in relation to changes in pentosanproperties [J]. Journal of Cereal Science,1994,19:259–272.
    [83] Wang, M.W., Hamer, R.J., van Vliet, T., Gruppen, H., Marseille, J.P., Weegels, P.L. Effectof water unextractable solids on gluten formation and properties: mechanisticconsiderations [J]. Journal of Cereal Science,2003a,37:55–64.
    [84] Wang, M. W., Oudgenoeg, G., van Vliet, T., Hamer, R. J. Interaction of waterunextractable solids with gluten protein: effect on dough properties and gluten quality[J]. Journal of Cereal Science,2003b,38:95–104.
    [85] Li, J., Kang, J., Wang, L., Li, Z., Wang, R., Chen, Z. X., Hou, G. G. Effect of watermigration between arabinoxylans and gluten on baking quality of whole wheat breaddetected by magnetic resonance imaging (MRI)[J]. Journal of Agricultural and FoodChemistry,2012,60:6507-6514.
    [86] Sunna, A., Antranikian, G. Xylanolytic enzymes from fungi and bacteria [J]. CriticalReviews in Biotechnology,1997,17:39-67.
    [87] Slade, L., Levine, H., Craig, S., Arciszewski, H. Reducing checking in crackers withpentosanase [J]. US Patent1994,5,362,502.
    [88] Kalin, F. Wheat gluten applications in food products [J]. Journal of the American OilChemists' Society,1979,56:477-479.
    [89] Ward, F. M., Andon, S. A. Water-soluble gums used in snack foods and cereal products[J]. Cereal foods world,1993,38:748-750.
    [90] Indrani, D., Sai Manohar, R., Rajiv, J.Venkateswara Rao, G. Alveograph as a tool toassess the quality characteristics of wheat flour for parotta making [J]. Journal of FoodEngineering,2007,78:1202-1206.
    [91] Ozturk, S., Kahraman, K., Tiftik, B., Koksel, H. Predicting the cookie quality of flours byusing Mixolab [J]. European Food Research and Technology,2008,227:1549–155.
    [92] Rosell, C. M., Collar, C., Haros, M. Assessment of hydrocolloid effects on thethermo-mechanical properties of wheat using the Mixolab [J]. Food Hydrocolloids,2007,21:452–462.
    [93] Kweon, M., Slade, L., Levine H. Solvent retention capacity (SRC) testing of wheat flour:Principles and value in predicting flour functionality in different wheat-based foodprocesses and in wheat breeding—A review [J]. Cereal Chemistry,2011,88:537–552.
    [94] Bielawny J. The influence of mineral content on the viscosity of potato starch emulsions[J]. Lebensm Ind,1980,27:169–170.
    [95] Rosell, C. M., Santos, E., Collar, C. Physical characterization of fiber-enriched breaddoughs by dual mixing and temperature constraint using the Mixolab [J]. EuropeanFood Research Technology,2010,231:535–544.
    [96] Singh, J., and Singh, N. Studies on the morphological, thermal and rheological propertiesof starch from some Indian potato cultivars [J]. Food Chemistry,2001,75:67–77.
    [97] Kaur, L., Singh, N., and Sodhi, N. S. Some properties of potatoes and their starches II.Morphological, thermal and rheological properties of starches [J]. Food Chemistry,2002,79:183–192.
    [98] Bettge, A.D., Morris, C.F., DeMacon, V.L., Kidwell, K.K. Adaptation of AACC Method56-11, Solvent Retention Capacity, for use as an early generation selection tool forcultivar enhancement [J]. Cereal Chemistry,2002,79:670-674.
    [99] Slade, L., Levine, H., Craig, S., Arciszewski, H., Saunders, S. Enzyme-treated lowmoisture content comestible products. US Patent1993,5,200,215.
    [100] Garey et al. Crispy wheat-based snacks having surface bubbles. US Patent2002,6,479,090B1.
    [101] Kohajdova, Z., Karovicova, J. Influence of hydrocolloids on quality of baked goods [J].Acta Scientiarum Polonorum, Technology Aliment,2008,7:43-49.
    [102] Sorensen, J. F. Novel tailor-made xylanases: their characterization, performance incereal processing and use a tool to understand xylanase functionality in baking. In:Courtin, C. M., Veraverstand, W. S., Delcour, J. A.(Ed.), Recent advances in enzymesin grain processing. Laboratory of food chemistry, Katholieke University Leuven,Leuven,2003,241-245.
    [103] Bhatty, R. S. Extraction and enrichment of (1-3),(1-4)-β-D-glucan from barley and oatbrans [J]. Cereal Chemistry,1993,70:73–77.
    [104] Terrence Madhujith, Marta Izydorczyk, and Fereidoon Shahidi. Antioxidant propertiesof pearled barley fractions [J]. Journal of Agriculture and Food Chemistry,2006,54:3283–3289.
    [105] Slavin, J., Jacobs, D., and Marquardt, L. Grain processing and nutrition [J]. CriticalReviews in Food Science and Nutrition,2000,4:309–326.
    [106] Bamforth, C.W. Barley β-glucans. Their role in malting and brewing [J]. Brew. Dig.1982,57:22-35.
    [107] Newman, C. W., and Newman, R. K. Nutrition aspects of barley seed structure andcompodition. In P. R. Shewry (Eds.), Barley: Genetics, Biochemistry, MolecularBiology, and Biochemistry, UK: CBA International,1992,351–362.
    [108] Wood, P. J., and Beer, M. U. Functional oat products. in: FunctionalFoods—Biochemical and Processing Aspects. G. Mazza, ed. Technomic: Lancaster, PA,1998:1-37.
    [109] Wang, L., Behr, S. R., Newman, R. K., and Newman, C. W. Comparativecholesterol-lowering effects of barley β-glucan and barley oil in golden Syrian hamsters[J]. Nutrition Research,1997,17:77-88.
    [110] Wood, P. J., Braaten, J. T., Fraser, W. S., Riedel, D., and Poste, L. Comparisons of theviscous properties of oat gum and guar gum and the effects of these and oat bran onglycemic index [J]. Journal of Agriculture and Food Chemistry,1990,38:753-757.
    [111] Wood, P. J., Braaten, F. W., Scott, F. W., Riedel, K. D., Wolynetz, M. S., and Collins, M.W. Effect of dose and modification of viscous properties of oat gum on plasma glucoseand insulin following an oral glucose load [J]. British Journal of Nutrition,1994,72:731-743.
    [112] Dawkins, N. L., and Nnanna, I. A. Studies on oat gum [(1-3,1-4)-β-D-glucan]:Composition, molecular weight estimation and rheological properties [J]. FoodHydrocolloid,1995,9:1-7.
    [113] Izydorczyk, M. S., Macri, L. J., MacGregor, A. W. Structure and physicochemicalproperties of barley non-starch polysaccharides-Ι. Water-extractable β-glucans andarabinoxylans [J]. Carbohydrate Polymers,1998,35:249-258.
    [114] María Eugenia Bárcenasb, Jessica De la O-Kellerb, Cristina M. Rosella. Influence ofdifferenthydrocolloids on majorwheatdoughcomponents (gluten and starch)[J]. Journalof Food Engineering,2009,94(3-4):241–247.
    [115] Rojas, J.A., Rosell, C.M., and Benedito, C. Pasting properties of different wheatflour-hydrocolloid systems [J]. Food Hydrocolloids,1999,13,27–33.
    [116] Rosell, C.M., Rojas, J.A., and Benedito de Barber, C. Influence of hydrocolloids ondough rheology and bread quality [J]. Food Hydrocolloids,2001,15,75–81.
    [117] Mandala, I.G. Physical properties of fresh and frozen stored, microwave reheated breads,containing hydrocolloids [J]. Journal of Food Engineering,2005,66,291–300.
    [118] Chaisawang, M., and Suphantharika, M. Pasting and rheological properties of nativeand anionic tapioca starches as modified by guar gum and xanthan gum [J]. FoodHydrocolloids,2006,20,641–649.
    [119] Li, J., Hou, G. G., Chen, Z. X., Chung, A. L., Gehring, K. Studying the effects ofwhole-wheat flour on the rheological properties and the quality attributes ofwhole-wheat saltine cracker using SRC, alveograph, rheometer, and NMR technique [J].LWT-Food Science and Technology,2013, http://dx.doi.org/10.1016/j.lwt.2013.07.022, inpress.
    [120] Rao G.V., Indravi D., Sharpalekar S.R. Guar gum as an additives for improving thebread making quality of wheat flours [J]. Journal of Food Science and Technology,1985,22:101–107.
    [121] Rao J., Prasad M.S., Rao G.V., Effect of xanthan gum on the rheological and breadmaking quality of wheat flour [J]. Journal of Food Science and Technology India,1992,29:234–239.
    [122] Moorhouse, R., Walkinshaw, M. D., and Amott, S. Xanthan gum-molecularconformation and interactions. In P. A. Sand-ford (Eds.), Extracellular MicrobialPolysaccharides. Washington: ACS Symposium,1997,90–102.
    [123] Stokke, B. T., and Christensen, B. E. Release of disordered xanthan oligomers uponpartial acid hydrolysis of double-stranded xanthan [J]. Food Hydrocolloids,1996,10:83–89.
    [124] Slade, L.; Levine, H.; Craig, S.; Arciszewski, H. Reducing checking in crackers withpentosanase. US Patent1994, No.5,362,502.
    [125] Tamstorf, S., Jonsson, T., and Krog, N. The role of fats and emulsifiers in bakedproducts. In J. Blanshard, P. Frazier,&T. Galliard (Eds.), Chemistry and physics ofbaking. Bristol: The Royal Society of Chemistry,1986,75–88.
    [126] Mothé, C. G.,&Rao, M. A. Rheological behaviour of aqueous dispersions of cashewgum and gum arabic: effect of concentration and blending [J]. Food Hydrocolloids,1999,13,501–506.
    [127] Huang, C.C. Physicochemical, pasting and thermal properties of tuber starches asmodified by guar gum and locust bean gum [J]. International Journal of Food Scienceand Technology2008, DOI:10.1111/j.1365-2621.2007.01634.
    [128] Ross-Murphy, S. B. Structure–property relationships in food biopolymer gels andsolutions [J]. Journal of Rheology,1995,39:1451–1463.
    [129] Achayuthakan, P., and Suphantharika, M. Pasting and rheological properties of waxycorn starch as affected by guar gum and xanthan gum [J]. Carbohydrate Polymers,2008,71:9–17.
    [130] Ribotta, P. D., Ausar, S. F., Beltramo, D. M., and León, A. E. Interactions ofhydrocolloids and sonicated-gluten proteins [J]. Food Hydrocolloids,2005,19:93–99.
    [131] Voutsinas, L. P., Cheung, E., Nakai, S. Relationships of hydrophobicity to emulsifyingproperties of heat denatured proteins [J]. Journal of food Science,1983,48:26–32.
    [132] Rosell, C. M., Collar, C., and Haros, M. Assessment of hydrocolloid effects on thethermo-mechanical properties of wheat using the Mixolab [J]. Food Hydrocolloids,2007,21:452–462.
    [133] Alloncle, M., and Doublier, J. L. Viscoelastic properties of maize starch/hydrocolloidpastes and gels [J]. Food Hydrocolloids,1991,5:455–467.
    [134] Alloncle, M., Lefebvre, J., Llamas, G., and Doublier, J. L. A rheological characterizationof cereal starch-galactomannan mixtures [J]. Cereal Chemistry,1989,66:90–93.
    [135] Collar, C. Significance of viscosity profile of pasted and gelled formulated wheatdoughs on bread staling [J]. European Food Research and Technology,2003,216:505–513.
    [136] Mettler, E., and Seibel, W. Effects of emulsifiers and hydrocolloids on whole wheatbread quality: a response surface methodology study [J]. Cereal Chemistry,1993,70:373–377.
    [137] Ribotta, P. D., Pérez, G. T., León, A. E.,&A ón, M. C. Effect of emulsifier and guargum on micro structural, rheological and baking performance of frozen bread dough [J].Food Hydrocolloids,2004,18:305–313.
    [138] Davidou S., Le Meste M., Debever E., Bekaert D. A contribution to the study of stalingof white bread: effect of water and hydrocolloid [J]. Food Hydrocolloids,1996,10:375-383.
    [139] Liu, R.H. Whole grain phytochemicals and health [J]. Journal of Cereal Science,2007,46:207–219.
    [140] Mozaffarian, R. S.; Lee, R. M.; Kennedy, M. A.; Ludwig, D. S.; Mozaffarian, D.;Gortmaker, S. L. Identifying whole grain foods: A comparison of different approachesfor selecting more healthful whole grain products [J]. Public Health Nutrition,2013, doi:10.1017/S1368980012005447(in press).
    [141] Haros, M.; Rosell, C. M.; Benedito, C. Use of fungal phytase to improve breadmakingperformance of whole wheat bread [J]. Journal of Agriculture and Food Chemistry,2001,49:5450–5454.
    [142] Kihlberg, I.; Johansson, L., Kohler, A., Risvik, E. Sensory qualities of whole wheat panbread-influence of farming system, milling and baking technique [J]. Journal of CerealScience,2004,39:67–84.
    [143] Seyer, M. E.; Gélinas, P. Bran characteristics and wheat performance in whole wheatbread [J]. International Journal of Food Science and Technology,2009,44:688–693.
    [144] Jensen, S.; Ostdal, H.; Skibsted, L. H.; Thybo, A. K. Antioxidants and shelf life ofwhole wheat bread [J]. Journal of Cereal Science,2001,53:291–297.
    [145] Gélinas, P.; McKinnon, C. A finer screening of wheat cultivars based on comparison ofthe baking potential of whole-grain flour and white flour [J]. International Journal ofFood Science and Technology,2011,46:1137–1148.
    [146] Li, J.; Hou, G. G.; Chen, Z. X. Whole grain saltine crackers: formulation, processing,and quality improvements [J]. Cereal Food World,2013,58:180–185.
    [147] Villeneuve, S.; Gélinas, P. Drying kinetics of whole durum wheat pasta according totemperature and relative humidity [J]. LWT-Food Science and Technology,2007,40:465–471.
    [148] West, R.; Duizer, L.; Seetharaman, K. The effect of drying and whole grain content onthe pasting, physicochemical and qualitative properties of pasta [J]. Starch/St rke2013,doi:10.1002/star.201200212(in press).
    [149] Manthey, F. A.; Schorno, A. L. Physical and cooking quality of spaghetti made fromwhole wheat durum [J]. Cereal Chemistry,2002,79:504–510.
    [150] Barros, F.; Alviola, J. N.; Rooney, L. W. Comparison of quality of refined and wholewheat tortillas [J]. Journal of Cereal Science,2010,50:50–56.
    [151] Courtin, C. M.; Delcour, J. A. Aarabinoxylans and endoxylanases in wheat flourbread-making [J]. Journal of Cereal Science,2002,35:225–243.
    [152] Slade, L.; Levine, H.; Craig, S.; Arciszewski, H. Reducing checking in crackers withpentosanase. US Patent1994, No.5,362,502.
    [153] Ruan, R. R.; Wang, X.; Chen, P. L.; Fulcher, R. G.; Pesheck, P.; Chakrabati, S. Study ofwater in dough using nuclear magnetic resonance [J]. Cereal Chemistry,1999,76:231–235.
    [154] Sai Manohar, R.; Haridas Rao, P. Interrelationship between rheological characteristicsof dough and quality of biscuits; use of elastic recovery of dough to predict biscuitquality [J]. Food Research International,2002,35:807–813.
    [155] Webb, T.; Heaps, P. W.; Russell Eggitt, P. W.; Coppock, J. B. M. A rheologicalinvestigation of the role of water in wheat flour doughs [J]. Journal of Food Technology1970,5:65–76.
    [156] Schmidt, S. J.; Lai, H. Use of NMR and MRI to study water relations in foods. In WaterRelationships in Foods,1nd ed.; H. Lavine, L. Slade, Eds.; Plenum Press: New York,USA,1990,405–452.
    [157] Ruan, R. R.; Wang, X.; Chen, P. L.; Fulcher, R. G.; Pesheck, P.; Chakrabati, S. Study ofwater in dough using nuclear magnetic resonance [J]. Cereal Chemistry,1999,76:231–235.
    [158] Doona, C. J.; Baik, Moo-Yeol. Molecular mobility in model dough systems studied bytime-domain nuclear magnetic resonance spectroscopy [J]. Journal of Cereal Science,2007,45:257–262.
    [159] Assifaoui, A.; Champion, D.; Chiotelli, E.; Verel, A. Characterization of water mobilityin biscuit dough using a low-field1H NMR technique [J]. Carbohydrate Polymers,2006,64:197–204.
    [160] Li, S.; Dickinson, L. C.; Chinachoti, P. Proton relaxation of starch and gluten bysolid-state nuclear magnetic resonance spectroscopy [J]. Cereal Chemistry,1996,73:736–743.
    [161] Sunna, A.; Antranikian, G. Xylanolytic enzymes from fungi and bacteria [J]. CriticalReviews in Biotechnology,1997,17:39–67.
    [162] Courtin, C. M.; Roelants, A.; Delcour, J. A. Fractionation–reconstitution experimentsprovide insight into the role of endoxylanases in bread-making [J]. Journal ofAgriculture and Food Chemistry,1999,47:1870–1877.
    [163] Rojas, J. A.; Rosell, C. M.; Benedito de Barber, C. Pasting properties of different wheatflour-hydrocolloid systems [J]. Food Hydrocolloids,1999,13:27–33.
    [164] Rosell, C. M.; Rojas, J. A.; Benedito de Barber, C. Influence of hydrocolloids on doughrheology and bread quality [J]. Food Hydrocolloids,2001,15:75–81.
    [165] Bárcenas, M. E.; De la O-Keller, J.; Rosell, C. M. Influence of different hydrocolloidson major wheat dough components (gluten and starch)[J]. Journal of Food Engineering,2009,94:241–247.
    [166] Martinez, I.; Aursand, M.; Erikson, U.; Singstad, T. E.; Veliyulin, E.; Van der Zwaag, C.Destructive and non-destructive analytical techniques for authentication andcomposition analyses of foodstuffs [J]. Food Science and Technology,2003,14:489–498.
    [167] Lambert, J.B.; Mazzola, E.P. Nuclear magnetic resonance spectroscopy: an introductionto principles, applications, and experimental methods. Pearson/Prentice Hall, UpperSaddle River, New Jersey,2003,154–196.
    [168] Trout, G.R. Techniques for measuring water-binding capacity in muscle foods—areview of methodology [J]. Journal of Food Engineering,2009,94:241–247.
    [169] Hinrichs, R.; Gotz, J.; Noll, M.; Wolfschoon, A.; Eibel, H.; Weisser, H. Characterisationof the water-holding capacity of fresh cheese samples by means of low resolutionnuclear magnetic resonance [J]. Meat Science,1988,23:235–252.
    [170] Straadt, I.K.; Thybo, A.K.; Bertram, H.C. NaCl-induced changes in structure and watermobility in potato tissue as determined by CLSM and LF-NMR [J]. LWT-Food Scienceand Technology,2008,41:1493–1500.
    [171] Bertram, H.C.; Purslow, P.P.; Andersen, H.J. Relationship between meat structure, watermobility, and distribution: A low-field nuclear magnetic resonance study [J]. Journal ofAgriculture and Food Chemistry,2002,50:824829.
    [172] Jacobs, M. S.; Izydorczyk, M. S.; Preston, K. R.; Dexter, J. E. Evaluation of bakingprocedures for incorporation of barley roller milling fractions containing high levels ofdietary fiber into bread [J]. Journal of Science and Food Agriculture,2008,88:558568.
    [173] Stojceska, V.; Ainsworth, P. The effect of different enzymes on the quality of high-fiberenriched brewer's spent grain breads [J]. Food Chemistry,2008,110:865872.
    [174] Campbell, G. M.; Herrero-Sanchez, R.; Payo-Rodriguez, R.; Merchan, M. L.Measurement of dynamic dough density and effect of surfactants and flour type onaeration during mixing and gas retention during proofing [J]. Cereal Chemistry,2001,78:272277.
    [175] Gan, Z.; Angold, R. E.; Williams, M. R.; Ellis, P. R.; Vaughan, J. G.; Galliard, T. Themicrostructure and gas retention of bread dough [J]. Journal of Cereal Science,1990,12:1524.
    [176] Seyer, M. E and Gélinas, P. Bran characteristics and wheat performance in whole wheatbread [J]. International Journal of Food Science and Technology,2009,44:688–693.
    [177] Selinheimo, E.; Autio, K.; Krijus, K.; Buchert, J. Elucidating the mechanism oflaccase and tyrosinase in wheat bread making [J]. Journal of Agriculture and FoodChemistry,2007,55:63576365.
    [178] Autio, K. Effects of cell wall components on the functionality of wheat gluten [J].Biotechnology Advances,2006,24:633635.
    [179] Shewry, P. R.; Popineau, Y.; Lafiandra, D.; Belton, P., Wheat glutenin subunits anddough elasticity: findings of the EUROWHEAT project [J]. Trends in Food Science andTechnology,2001,11:433441.
    [180] Elizabeth C. M. Arabinoxylan Gels: Impact of the feruloylation degree on their structureand properties [J]. Biomacromolecules,2005,6:309317.
    [181] Mingwei Wang, G. O., Ton van Vliet, Robert J. Hamer, Interaction of waterunextractable solids with gluten protein: effect on dough properties and gluten quality[J].2003,38:95104.
    [182] Izydorczyk, M. S.; Biliaderis, C. G. Cereal arabinoxylans: advances in structure andphysicochemical properties [J]. Carbohydrate Polymers,1995,28:3348.
    [183] Izydorczyk, M. S.; Chornick, T. L.; Paulley, F. G.; Edwards, N. M.; Dexter, J. E.Physicochemical properties of hull-less barley fibre-rich fractions varying in particlesize and their potential as functional ingredients in two-layer flat bread [J]. FoodChemistry,2008,108:561570.
    [184] Day, L.; Augustin, M. A.; Batey, I. L.; Wrigley, C. W. Wheat-gluten uses and industryneeds [J]. Trends in Food Science and Technology,2006,17:8290.
    [185] Bettge, A. D.; Morris, C. F. Oxidative gelation measurement and influence on softwheat batter viscosity and end-use quality [J]. Cereal Chemistry,2007,84:237242.
    [186] Hills, B. P.; Takacs, S. F.; Belton, P. S. The effects of proteins on the proton N.M.R.transverse relaxation time of water: II. Protein aggregation [J]. Molecular Physics,1989,67:919–937.
    [187] Umbach, S. L.; Davis, E. A.; Gordon, J.; Callaghan, P. A. Water self-diffusioncoefficients and dielectrics determination for starch–gluten–water mixture bymicrowave and by conventional methods [J]. Cereal Chemistry,1999,69:637–642.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700