碳源、氮源及其他条件对VB_(12)发酵影响的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文研究了碳源、氮源、温度、pH等因素对维生素B_(12)产生菌发酵的影响,并进行了补糖、补氨、以及丙酸对发酵影响的研究。其主要研究内容有以下几个方面:
     1.碳源的筛选
     实验结果表明碳源A是VB_(12)发酵的最佳碳源。
     2.培养基中起始A浓度对发酵产素的影响
     实验结果表明,培养基中A的含量对菌体的生长有较大的影响。在不同水平的A加量实验中,随着培养基中起始A浓度的增加,对数生长期的菌体生长速率逐渐下降;随着A浓度的增加,生物量经过了一个由低到高再到低的变化过程;发酵单位也经过了一个类似的过程,但与生物量的变化规律有所不同。同时,当培养基中A起始浓度达到7%以上时,会对菌体的生物量和发酵单位产生抑制作用。
     3.发酵过程中补加A对发酵的影响
     实验结果表明,补加A对发酵单位上升有促进作用,这种促进作用可能有两方面的原因1)可能是由于生物量的增加而产生的。2)可能是过程中较低的A浓度解除了其对VB_(12)合成的代谢反馈抑制,从而使发酵单位上升。
     当A浓度维持在4%左右时并维持20—30小时,对发酵单位提高最为有利。
     4.氮源的筛选
     通过对氮源进行筛选得出氮源B是VB_(12)发酵的最佳氮源。
     5.发酵过程中补加氨水对发酵的影响
     实验结果表明,在一定的时期内补加氨水对发酵单位的上升有促进作用;补加时间过长会导致发酵单位的下降。
     6.对氮源B的成分进行初步分析
     氮源B对VB_(12)的发酵单位有很大影响,不同来源的B对发酵的影响也不一致,我们对其造成这种影响的原因进行了初步分析。
     7.氨基氮变化规律
     对发酵过程种氨基氮的变化规律进行了研究。表明初始A浓度和接种量的不同对氨基氮的变化有较大的影响。
    
     摘要
    巴里里皿三里里里巴里口里里口里里里里里巴里里孚里里里巴里里里里里
    8.温度及pH对VB:2发酵的影响
     研究了温度及pH对菌体生长和A代谢的影响。
    9.前体添加时间和添加量对VB12发酵的影响及其它添加物对VB,2发酵的影响
    10.丙酸对VB12发酵的影响
     丙酸作为VB12合成中的代谢产物,其产生对菌体的生长和A代谢有不利的
    影响。
In this work, we studied the effect of carbon resource, nitrogen resource, temperature, pH and other factors on fermentation and researched the influence of supplemented A, ammonia and propionic acid on VB12 production.
    1. Screening of carbon resource
    The result showed that carbon resource A was the best for VB12 fermentation.
    2. The effect of initial concentration of A on fermentation
    The results showed that initial concentration of A drastically influenced the biomass and biosynthesis of VB12. Wjth the increase of initial concentration of A, the growth rate decreased during exponent phase, and the biomass changed from lower to higher and to lower again. And the same change to the biosynthesis of VB12. 'When initial concentration of A was 7% or beyond, the biomass and VBn production was repressed.
    3. The influence of supplemented A on VB12 production
    The experiment results showed that supplemented A could promote VB12 production, and the promotion effect may be caused by the increase of biomass or the elimination of feedback inhibition to VB12 biosynthesis. When concentration of A was sustained about 4% and was maintained about 20-30h, fermentation titer was improved largely.
    4. Screening of nitrogen resource
    The results showed that nitrogen resource B was the best for VB12 fermentation.
    5. The influence of supplemented ammonia on VB12 production
    The result showed that supplemented ammonia was beneficial to improve the biomass and fermentation titer of VB12. But if the feeding time was beyond 90h and last the whole period of fermentation, the fermentation titer fell.
    6. Analysis of the components of nitrogen resource B
    Nitrogen resource B from different firm had different effect on VB12 fermentation. We analyzed the content of protein and the kinds and the content of amino acids of B in order to find the cause that led to the difference. But the results
    
    
    did not tell the difference.
    7. The change of amino nitrogen vs. time
    We studied the change of amino nitrogen vs. time. The results showed that initial concentration of A and inoculums quantity both had influence on the change of amino nitrogen.
    8. We also researched the influence of temperature and pH on the growth and the change of A. And the effect of VBn precursor on the VB12 fermentation
    9. Other additional components on the VB12 fermentation was studied too.
    10. propionic acid on the VB12 fermentation
    The results showed that propionic acid had bad effect on VB12 fermentation.
引文
[1] 颜方贵.发酵微生物学[M].中国农业大学出版社,1993,101—106
    [2] Hodgkin D.C., Kamper J, MacKay M, et al. 1956, Structure of vitamin B_(12)[J]. Nature, 17: 64-66
    [3] 罗讳,郝常明.维生素B_(12)的研究及其进展[J].中国食品添加剂,2002,3:15-30
    [4] Minot G.R., Murphy L.P. Treatment of pernicious anaemia by a special diet. J. Am. Med. Assoc[J]. 1926, 87: 470-476
    [5] Weir, D.G., Scott, J.M. Cobalamins Physiology, Dietary Sources and Requirements[J]. In: Sadler M.J., Strain J.J., Caballero B., eds. Encyclopedia of Human Nutrition, 1999, 1: 394-401.
    [6] Weir, D.G., Scott, J.M. In: Modern Nutrition in Health and Disease. Editors Shils M.E., Olson J.A., Shike M., & Ross A.C. Baltimore, USA. Willams and Wilkins, 1999.
    [7] Evelyne RAUX. Cobalamin(vitamin B_(12))biosynthesis: identification and characterization of a Bacillum megaterium cobl operon. Biochem[J]. 1998, 335: 159-166
    [8] H. McGoldrickl, E. Decry, M. Warren et al. Cobalamin(vitamin B12)biosynthesis in Rhodobacter capsulatus[J]. Biochemical Society Transactions. 2002, 30(4)
    [9] BOBBI B., ADCOCK M.D., JERRY T., et al. Cobalamin pseudodeficiency due to a transcobalamin Ⅰdeficiency[J].SOUTHERN MEDICAL JOURAL, 2002, 95(9): 1060-1062
    [10] John Coleman. An Introduction To Cobalamin Metabolism-cobalamins: form, function, inhibitors, a vegan perspective[J].
    [11] http://www.chemnet.com.cn/newscenter/07/00051455.html,我国维生素B_(12)的市场开发建议
    [12] Rickes E.L., Brink N. G., Koniuszy F. R, et al. Crystslline vitamin B_(12)[J]. Science, 1948, 107: 396
    
    
    [13] 沈同,王镜岩.生物化学(第二版)[M].高等教育出版社,376—379
    [14] Eschenmoser A. vitamin B_(12): experiments concerning the origin of its molecular structure[J]. Angew. Chem. Int. Ed. Engl., 1998, 27: 5-39.
    [15] Bobik T. A., Ailon M., Roth J. R. A single regulatory gene integrates control of vitamin B_(12) synthesis and propanediol degradation[J]. J. Bacteriol, 1992, 174: 2253-66.
    [16] Blanche F., Cameron B., Crouzet J., et al. Vitamin B_(12): How the Problem of its Biosynthesis Was Solved. Angew. Chem. Int. Ed. Engl., 1995, 34: 383-411.
    [17] Roth J. R., Lawrence J.G., Rubenfield M., et al. Characterization of the cobalamin (vitamin B_(12)) biosynthetic genes of Salmonella typhimurium[J]. J. Bacteriol, 1993, 175: 3303-3316.
    [18] Raux. E., Lanois. A., Warren, M.J., et al. Cobalamin (vitamin B_(12)) biosynthesis: identification and characterization of a Bacillus megaterium cobI operon[J]. Biochem J, 1998, 335: 159-166.
    [19] Roessner C. A., Huang K. X., Warren. M.J., et al. Isolation and characterization of 14 additional genes specifying the anaerobic biosynthesis of cobalamin (vitamin B_(12)) in Propionibacterium freudenreichii (P. shermanii) [J]. Microbiology, 2002, 148: 1845-1853.
    [20] Raux E., Schubert. H.L., Warren. M.J. Biosynthesis of cobalamin (vitamin B_(12)): a bacterial conundrum [J]. Cellular and Molecular Life .Science, 2000, 57: 1880-1893.
    [21] 刘秀艳,叶敏,徐向阳.产生5-氨基乙酰丙酸(ALA)光合细菌生物学研究进展[J].生物工程进展,2000,20(3):67-70.
    [22] Sattler I., RoessnerC. A.,StolowichN. J., et al. Cloning, sequencing, and expression of the Uroporphyrinogen Ⅲ methyltransferase CobA gene of Propionibacterium freudenreichii (shermanii)[J]. Journal of Bacteriology, 1995, 177(6): 1564-1569.
    
    
    [23] Crouzet, J., Cameron, B., Cauchois, L.,et al. Genetic and sequence analysis of an 8·7-kilobase Pseudomonas denitrificans fragment involved in transformation of precorrin-2 to cobyrinic acid[J]. J Bacterio1, 1990, 172: 5980-5990
    [24] Blanche, F., Debussche, L.,Thibaut, D.,et al. Purification and characterization of S-adenosyl-L-methionine: uroporphyrinogen Ⅲ methyltransferase from Pseudomonas denitrificans[J]. J. Bacteriol, 1989, 171: 4222-4231
    [25] Warren M. J., Roessner C.A., Santander P.J. The Escherichia coli cysG gene encodes S-adenosylmethionine-dependent uroporphyrinogen Ⅲ methylase[J]. Biochem J, 1990, 265: 725-729.
    [26] Warren M. J., Bolt E. L., Roessner C.A.,et al. Gene dissection demonstrates that the Escherichia coli CysG gene encodes a multifunctionhal protein[J]. Biochem. J, 1994, 302: 837-844.
    [27] Raux, E., Beck, R., Levillaye, F., et al . A role for Salmonella typhimurium cbiK in cobalamin (vitamin B_(12)) and siroheme biosythesis[J]. J Bacteriol, 1997, 179: 3202-3212.
    [28] Roessner C.A., Scott A.I. Biosynthesis of cobalamin (vitamin B_(12))[J]. Biochemical Society transaction, 2002, 30(4): 613-620.
    [29] Roessner C.A., Warren, M.J., Santander, P.J., et al. Expression of Salmonella typhimurium enzymes for cobinamide biosynthesis: identification of the 11-methyl and 20-methyl transferases of corrin biosynthesis[J]. FEBS Lett, 1992, 301: 73-78.
    [30] Debussche L., Thibaut D., Cameron B., et al. Biosynthesis of the corrin macrocycle of coenzyme B_(12)in Pseudomonas denitrificans[J]. J. Bacteriol, 1993, 175: 7430-7440.
    [31] Santander P.J., Roessner C.A.,Stolowich N., et al. How corrinoids are synthesized without oxygen: nature's first pathway to vitamin B_(12) [J]. Chem. Biol, 1997, 4: 659-666
    
    
    [32] Scott, A.I., Roessner C.A., Santander, P.J. Genetic and mechanistic exploration of the two pathways of vitamin B_(12) biosynthesis[J]. Elsevier Science, 2003, 12: 211-228.
    [33] Debussche L., M. Couder D. Thibaut B., et al. Purification and partial characterization of cob(Ⅰ)alamin adenosyltransferase from Pseudomonas denitrificans[J]. J. Bacteriol, 1991, 173: 6300-6302.
    [34] Cameron B., Blanche F., Rouyez M.C., et al. Genetic analysis, nucleotide sequence, and products of two Pseudomonas denitrificans cob genes encoding nicotinate-nucleotide: dimethylbenzimidazole phosphoribosyltransferase and cobalamin (5'-phosphate) synthase[J] .J. Bacterio1, 1991, 173(19): 6066-6073
    [35] Raux E., Schubert H.h., Roper J. M., et al. Vitamin B_(12): Insights into biosynthesis's mount improbable[J].Bioorganic chemistry, 1999, 27:100-118.
    [36] 曹友声,刘仲敏.现代工业微生物学[M].湖南科学技术出版社,1998,317—319
    [37] 陈陶声.近代工业微生物学[M].上海科学技术出版社,1982,512—517
    [38] H.J.李姆.工业微生物学[M].科学出版社,1975,448—456
    [39] Battersby A.R. Biosynthesis ofvitamin B12[J].Acc. Chem. Res.,1986. 19:147-152
    [40] 褚志义.生物合成药物学[M].化学工业出版社,2000,182—188
    [41] Bradbeer B. Cobalamin transport in Escherichia coli. [J]. Biofactors, 1991,3:11-19
    [42] Scott A.L. Mechanistic and evolutionary aspects of vitamin B_(12)[J]. Biosynthesis. Acc. Chem. Res., 1990, 23: 308-317
    [43] Scott A. L. How nature synthesize vitamin B12---a survey of the last four billion years[J]. Angew. Chemie, 1993, 32: 1223-1243
    [44] 北京大学生物系生物化学教研室.生物化学实验指导[M].北京:高等教育出版社,1990,96—99
    [45] 张龙翔,张庭芳,李令媛.生化实验方法和技术(第二版)[M].高等教育出
    
    版社,1997,1-3
    [46] 本书编写组.正交试验设计法[M].上海科学技术出版社,1979,1—229
    [47] 施巧琴,吴松刚.工业微生物育种学[M].福州:福建科学技术出版社,1991,110-111
    [48] 刘颖,张小里,熊朝晖,等.碳及氮源在提高重组酵母表达分泌水平中的作用[J].西北大学学报(自然科学版),2001,31(2):137-140
    [49] 邓振旭,王宜磊.碳源和氮源对毛栓菌菌丝生长和漆酶分泌的影响[J].微生物学杂志,2000,20(2):60-61
    [50] 林亲雄,陈京元.碳源和氮源对松乳菇菌丝生长的影响[J].食用菌学报,2002,9(1):44-46
    [51] 孙红斌,刘梅森,陈海晏.液态发酵猴头菌多糖工艺优化研究(Ⅳ)---培养基重要组分的影响[J].食品与发酵工业,28(3):25-27
    [52] 孙红斌,刘梅森,陈海晏.液态发酵猴头菌多糖工艺优化研究(Ⅰ)---碳、氮源对得率的影响[J].食品与发酵工业,27(9):30-34
    [53] 郑裕国,沈寅初.微生物发酵生产虾青素[J].生物工程进展,2002,22(2):19-22
    [54] 陈冠群,杨东靖,杜连祥.纳他霉素高产菌株的选育及其发酵条件的研究[J].食品与发酵工业,2002,29(3):19-21
    [55] 管斌,丁友昉,谢来苏,等.还原糖测定方法的规范[J].无锡轻工大学学报,1999,18(3):74-79
    [56] 福田作藏.还原糖定量法[M].东京:学会出版,1989
    [57] 毕瑞明,任少亭,高庆义,等.产胞外木聚糖酶青霉菌发酵条件的正交设计试验[J].河北大学学报(自然科学版),1999,19(3):276-279
    [58] 陈代杰,朱宝泉.工业微生物菌种选育与发酵控制技术[M].上海科学技术出版社,1995,244—249
    [59] 赵桂云,李凤云,雷景敏,等.冬虫夏草菌丝液体培养碳氮源最佳组合的研究[J].中国林副特产,2002,(4):20-21
    [60] 康从宝,赵建,李清心,等.层孔菌产漆酶的摇瓶最适培养条件的研究[J].微生物学通报,2002,29(3):42-45
    
    
    [61] 张小里,夏诏杰,刘颖,等.营养物及补料方式对重组酵母产α-淀粉酶的影响[J].高校化学工程学报,2001,15(2):144-148
    [62] 何艳玲,邬建国,路福平,等.间歇补料分批发酵提高纳他霉素产量[J].药物生物技术,2002,9(4):224-226
    [63] 关洁雯,林炜铁,姚汝华.被孢霉产γ-亚麻酸的补料工艺研究[J].食品与发酵工业,1998,24(5):18-20
    [64] 陆文清,章克昌,吴佩宗.核黄素产生菌的补料发酵[J].无锡轻工大学学报,2002,19(3):240-242
    [65] 李世杰,方尚玲,刘华梅,等.苏云金杆菌深层发酵补料分批培养工艺研究[J].湖北农业科学,2001,(1):39-41
    [66] 王尚健,卢红,卢军.采用补料法提高糖化酶发酵水平[J].食品与发酵工业,2001,21(8):34-37
    [67] 张卫,虞星炬,袁权.补料-批式发酵生产青霉素G的最优控制策略比较[J].1991,10(1):397-402
    [68] 朱智东,唐燕发,许建和,等.底物诱导和分批补料对巨大芽胞杆菌环氧化物水解酶生物合成的影响[J].华东理工大学学报,2001,27(3):243-246
    [69] 刘勇,张长凯,曹光宇,等.分批补料培养对L-异亮氨酸发酵的影响[J].工业微生物,2002,30(2):26-33
    [70] 余红英,杨幼慧,杨跃生,等.枯草芽胞杆菌β-甘露聚糖酶补料发酵及其特性研究[J].微生物通报,2002,29(5):25-29
    [71] 中山大学生物系生化微生物学教研室编.生化技术导论.北京:人民教育出版社,1981
    [72] 李建武,余瑞元,袁明秀,等.生物化学实验原理和方法[M].北京大学出版社,1994,160-216
    [73] 河北大学生物系编.微生物实验技术[M].河北大学生物系,1998,5—9
    [74] 朱明军,梁世中,吴海珍.不同氮源对红发夫酵母培养的影响[J].郑州工程学院学报,2001,22(2):64-67
    [75] 鄢家林,林进龙.氨基酸分析仪在抗生素发酵研究中的应用[J].中国医药
    
    工业杂志,2002,33(4):202-205
    [76] 金晓玲,王芳巩,菊芳,等.佛手全氮及氨基酸含量测定[J].特产研究,1999,(1):46-49
    [77] 包志华,王美玲,李存保.中药佛手柑中微量元素与氨基酸的测定[J].内蒙古科技与经济,2000文献版,87-88
    [78] 张伟心,王建平,李红权,等.有机氮源对柠檬酸发酵的影响[J].河北大学学报(自然科学版),2000,20(2):157-162
    [79] 杨立刚,江波,王璋.氮源对谷氨酰胺转胺酶合成的影响[J].生物技术,2002,12(2):11-13
    [80] 张小里,赵彬侠,马政生.氮源对酵母工程菌株生产α-淀粉酶的影响[J].化学工程,2000,28(6):31-34
    [81] 黄良军,唐军,蔡水洪,等.玉米浆浓度对甘油发酵的影响及动力学[J].化工学报,2001,52(1):88-91
    [82] 郑美英,堵国成,陈坚,等.分批发酵生产谷氨酰胺转氨酶的温度控制策略[J].生物工程学报,2000,16(6):759-762
    [83] 王树君,郭德本,陈维佳,等.发酵温度对重组工程菌生长密度和干扰素表达的影响[J].中国生物制品学杂志,2002,15(2):107-108
    [84] 宋爱荣,郭立忠,段方猛,等.pH对灰树花液体深层发酵的影响[J].中国食用菌1999,18(3):29-32
    [85] 杨博,姚汝华,潘力,等.pH值控制对发酵生产γ2亚麻酸的影响[J].2001,26(3):55-58
    [86] 孙红斌.刘梅森.陈海晏.液态发酵猴头菌多糖工艺优化研究(Ⅱ)——促生长剂、pH值、装液量、菌龄及菌种稳定性对多糖产量的影响[J].食品与发酵工业,27(11):30-33
    [87] 李寅,陈坚,毛英鹰,伦世仪,等.前体氨基酸和三磷酸腺苷对重组大肠杆菌生产谷胱甘肽的影响[J].无锡轻工大学学报,1998,17(2):11-15
    [88] 李家儒,曹孟德,刘曼西,等.前体物对红豆杉培养细胞中紫杉醇生物合成的影响[J].植物研究,1999,19(3):356-360
    [89] 王菊芳,吴晖.前体物质对阿维菌素生物合成的影响[J].华南理工大学学报(自然科学版),2002,30(5):16-18
    
    
    [90] S., S. Marwaha, R. P. Sethi, F. Kennedy. Role of amino acids, betaine and choline in vitamin B_(12) biosynthesis by strains of Propionibacterium[J].
    [91] 任南琪,赵丹,陈晓蕾,等.厌氧生物处理丙酸产生和积累的原因及控制对策[J].中国科学(B辑),32(1):83-89
    [92] 仪宏,王丽丽,冯惠勇.丙酸积累对薛氏丙酸杆菌生长及产酸的影响[J].微生物学通报,2003,30(3):29-32

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700