阿维菌素生物合成调控因子SAV576和SAV577的相互关系及SAV4189的功能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
阿维链霉菌(Streptomyces avermitilis)是一种重要的工业生产菌株,其产生的阿维菌素(Avermectins)广泛应用于农业及畜牧业生产中,但目前对于阿维菌素生物合成的调控机制还所知甚少。本工作研究了儿个可调控阿维菌素合成的基因,以加深对阿维菌素合成的复杂调控网络的理解,为通过遗传手段改造阿维链霉菌提高阿维菌素产量奠定基础。
     本实验室前期通过agilent表达谱芯片比较了阿维菌素高产菌株76-02-e及野生型菌株ATCC31267转录组的差异。本研究通过分析芯片数据在高产菌株中发现发酵2天和6天都显著上调的基因有162个,都显著下调的基因有150个(差异在2倍以上),并通过对选取的基因进行RT-qPCR验证了芯片数据的可靠性。
     SAV576、SAV577是两个相似的TetR家族的转录调控因子,在实验室前期工作基础上,本研究进一步通过5'RACE实验确定了两者的靶基因SAV576、SAV575的转录起始位点并预测了这两个基因的启动子区结构,DNase Ⅰ footprinting分析显示SAV576和SAV577在SAV576、SAV575启动子区结合的靶序列完全一致,表明SAV577与SAV576的功能相似,都能通过抑制SAV575(编码细胞色素P450/NADPH-高铁血红素蛋白还原酶)的表达间接负调控阿维菌素的合成。通过竞争性EMSA实验发现SAV576与SAV577竞争相同的靶位点,且SAV576与靶DNA的结合力比SAV577强。GST pull-down实验表明SAV576和SAV577蛋白都可与白身形成同源二聚体,但它们之间不能形成异源二聚体。这些结果说明SAV577与SAV576蛋白是通过竞争方式抑制靶基因表达进而抑制阿维菌素合成,且SAV576的作用占主要地位。
     SAV4189是高产菌株中上调最为显著的基因,编码MarR家族的转录调控因子。本研究通过对SAV4189的缺失,回补和过量表达并测定相关菌株的阿维菌素产量,初步确定SAV4189能够正调控阿维菌素的生物合成。进一步通过RT-qPCR和EMSA实验证明SAV4189间接止调控阿维菌素生物合成,直接负调控自身和相邻的共转录基因SAV4190(编码MFS超家族转运蛋白)的表达。通过5'RACE实验确定了SAV4189启动子区的结构,DNase Ⅰ footprinting证明SAV4189蛋白的结合位点覆盖了其白身基因启动子区,从而阻碍了RNA聚合酶与其启动子区的结合,抑制SAV4189-SAV4190共转录单元的转录。通过小分子配体影响SAV4189蛋白与靶DNA结合力的实验证明潮霉素B、硫链丝菌素、杆菌肽和氨苄青霉素都能使SAV4189蛋白与靶DNA的结合能力减弱或消失。进一步通过RT-qPCR实验发现潮霉素B和硫链丝菌素能诱导活细胞内SAV4189-SAV4190的表达,证明了潮霉素B和硫链丝菌素是有生物活性的SAV4189蛋白的配体。通过野生型菌株ATCC31267和SAV4189缺失株在低浓度潮霉素B的作用下阿维菌素产量的变化对比证明,SAV4189是响应外界特定抗生素信号并保持自身阿维菌素合成的重要调控基因。通过ChIP-Seq、EMSA及RT-qPCR实验初步确定SAV4202和SAV4203(分别编码预测的分泌蛋白和肽聚糖结合蛋白)是SAV4189的靶基因,但它们与阿维菌素合成的关系还需进一步确定。缺失SAV4189靶基因SAV4190导致阿维菌素产量提高,这与SAV4189缺失株中SAV4190表达量显著提高而阿维菌素产量降低相一致,暗示SAV4190基因产物通过转运一些未知底物抑制阿维菌素合成。
The important industry strain Streptomyces avermitilis produces avermectins, which are widely used in agriculture and veterinary. The complex regulatory mechanisms of avermectin production remain poorly understood. In this work, several genes which could control avermectin production were studied to help understand the complex regulatory network of avermectin biosynthesis and construct avermectin high producer through genetic manipulation.
     In previous work, transcription profiles of wild-type S. avermitilis ATCC31267and avermectin high producer76-02-e were determined by agilent expression microarray. In this study, Analysis of microarray data revealed162up-regulated and150down-regulated genes (2-fold or more in76-02-e relative to ATCC31267at2and6days in the process of fermentation). RT-qPCR was used to test some selected genes and the PCR results were mainly consistent with the microarray data.
     SAV576and SAV577are both TetR family transcriptional regulators, and SAV577is similar to SAV576. Based on previous work, the transcriptional start sites of SAV575and SAV576(target genes of both SAV576and SAV577) were determined by5'RACE assays and the promoter structures of SAV576and SAV577were predicted. DNase I footprinting assays revealed that SAV576and SAV577had the same binding sites on the bidirectional SAV575-SAV576promoter region, indicating the similar functions of SAV576and SAV577:they both indirectly downregulate avermectin biosynthesis by directly repressing the expression of SAV575which encodes a putative cytochrome P450/NADPH-ferrihemoprotein reductase. EMSA results showed that SAV576and SAV577proteins compete for the same binding regions, and the DNA binding affinity of SAV576is much stronger than that of SAV577. GST pull-down assays revealed that SAV576or SAV577interacts with itself to form a homodimer, but SAV576does not interact with SAV577to form a heterodimer in v/vo.These findings lead to the possibility that SAV576plays a dominant role over SAV577in repressing target genes including SAV575, and in inhibiting avermectin production in S. avermitilis.
     SAV4189, which encodes a putative MarR family transcriptional regulator, was upregulated most significantly in76-02-e according to the microarray data. Determination of avermectin production in SAV4189gene deletion, complementation, and overexpression strains implied that SAV4189regulates avermectin biosynthesis positively. RT-qPCR and EMSA assays revealed that SAV4189indirectly upregulates avermectin production and directly represses the expression of the transcriptional unit SAV4189-SAV4190(encodes a putative major facilitator superfamily efflux pump). The transcriptional start site of SAV4189was determined by5'RACE assay, and the promoter structure of SAV4189was thus predicted. DNase I footprinting assays showed that the protected regions of SAV4I89protein overlap the potential-10and-35regions of the SAV4189promoter, indicating that SAV4189negatively regulates SAV4189-SAV4190transcription by blocking the access of RNA polymerase to its promoter region. EMSA assays revealed that some antibiotic molecular such as hygromycin B, thiostrepton, bacitracin and ampicillin, could inhibit the DNA binding activity of SAV4189protein. RT-qPCR analysis showed that hygromycin B and thiostrepton, not bacitracin and ampicillin, could induce the expression of SAV4189-SAV4190in S. avermitilis. These findings indicate that hygromycin B and thiostrepton can act as ligands of SAV4189protein. Comparison of avermectin production in wild-type strain and SAV4189deletion mutant in the presence or absence of hygromycin B suggested that SAV4189is an important gene involved in the connection with response of environmental antibiotic stress and avermectin production. ChIP-Seq, EMSA and RT-qPCR assays revealed that SAV4202(encodes a putative secreted protein)and SAV4203(encodes a putative peptidoglycan-binding protein) are target genes of SAV4189, and the relationship between these genes and avermectin biosynthesis should be further explored. Deletion of SAV4190, the target gene of SAV4189, resulted in increased avermectin production, which was consistent with decreased avermectin production and upregulated SAV4190expression in SAV4189deletion mutant, suggesting that SAV4190gene product has a negative effect on avermectin biosynthesis by transporting some yet-unknown substrate(s).
引文
[1]Aceti D J and Champness W C. Transcriptional regulation of Streptomyces coelicolor pathway-specific antibiotic regulators by the absA and absBloci. J Bacteriol,1998,180(12):3100-3106
    [2]Aharonowitz Y. Nitrogen metabolite regulation of antibiotic biosynthesis. Annu Rev Microbiol, 1980,34(1):209-233
    [3]Alekshun M N and Levy S B. Characterization of MarR superrepressor mutants. J Bacteriol, 1999,181(10):3303-3306
    [4]Alekshun M N, Kim Y S and Levy S B. Mutational analysis of MarR, the negative regulator of marRAB expression in Escherichia coli, suggests the presence of two regions required for DNA binding. Mol Microbiol,2000,35(6):1394-1404
    [5]Allenby N E, Laing E, Bucca G, et al. Diverse control of metabolism and other cellular processes in Streptomycescoelicolor by the PhoP transcription factor:genome-wide identification of in vivo targets. Nucleic Acids Res,2012,40(19):9543-9556
    [6]Anderson T B, Brian P and Champness W C. Genetic and transcriptional analysis of absA, an antibiotic gene cluster-linked two-component system that regulates multiple antibiotics in Streptomyces coelicolor. Mol Microbiol,2001,39(3):553-566
    [7]Andresen C, Jalal S, Aili D, et al. Critical bio-physical properties in the Pseudomonas aeruginosa efflux gene regulator MexR are targeted by mutations conferring multidrug resistance. Protein Sci,2010,19(4):680-692
    [8]Asturias J A, Martin J F and Liras P. Biosynthesis and phosphate control of candicidin by Streptomyces acrimycini JI2236:effect of amplification of the pabAB gene. J Ind Microbiol,1994, 13(3):183-189
    [9]Axarli I, Prigipaki A and Labrou N E. Cytochrome P450 102A2 catalyzes efficient oxidation of sodium dodecyl sulphate:A molecular tool for remediation. Enzyme Res,2010,2010:125429
    [10]Barbe V, Bouzon M, Mangenot S, et al. Complete genome sequence of Streptomyces cattleya NRRL 8057, a producer of antibiotics and fluorometabolites. J Bacteriol,2011,193(18): 5055-5056
    [11]Barends S, Barend K and van Wezel G P. The tmRNA-tagging mechanism and the control of gene expression:a review. Wiley Interdiscip Rev RNA,2011,2(2):233-246
    [12]Barends S, Zehl M, Bialek S, et al. Transfer-messenger RNA controls the translation of cell-cycle and stress proteins in Streptomyces. EMBO Rep,2009,11(2):119-125
    [13]Bate N, Stratigopoulos G and Cundliffe E. Differential roles of two SARP-encoding regulatory genes during tylosin biosynthesis. Mol Microbiol,2002,43(2):449-458
    [14]Bentley S D, Chater K F, Cerdeno-Tarraga A M, et al. Complete genome sequence of the model actinomycete Streptomyces coelicolor A3 (2). Nature,2002,417(6885):141-147
    [15]Bhatnagar R K, Doull J L and Vining L C. Role of the carbon source in regulating chloramphenicol production by Streptomyces venezuelae:studies in batch and continuous cultures. Can J Microbiol,1988,34(11):1217-1223
    [16]Bibb M J. Regulation of secondary metabolism in streptomycetes. Curr Opin Microbiol,2005, 8(2):208-215
    [17]Bignell D R, Seipke R F, Huguet-Tapia J C, et al. Streptomyces scabies 87-22 contains a coronafacic acid-like biosynthetic cluster that contributes to plant-microbe interactions. Mol Plant Microbe Interact,2010,23(2):161-175
    [18]Bordelon T, Wilkinson S P, Grove A, et al. The crystal structure of the transcriptional regulator HucR from Deinococcus radiodurans reveals a repressor preconfigured for DNA binding. J Mol Biol,2006,360(1):168-177
    [19]Bordelon T, Wilkinson S P, Grove A, et al. The crystal structure of the transcriptional regulator HucR from Deinococcus radiodurans reveals a repressor preconfigured for DNA binding. J Mol Biol,2006,360(1):168-177
    [20]Bralley P and Jones G H. Overexpression of the polynucleotide phosphorylase gene (pnp) of Streptomyces antibioticus affects mRNA stability and poly(A) tail length but not ppGpp levels. Microbiology,2003,149(8):2173-2182
    [21]Burg R W, Miller B M, Baker E E, et al. Avermectins, new family of potent anthelmintic agents: producing organism and fermentation. Antimicrob Agents Chemother,1979,15(3):361-367
    [22]Carmody M, Byrne B, Murphy B, et al. Analysis and manipulation of amphotericin biosynthetic genes by means of modified phage KC515 transduction techniques. Gene,2004,343(1):107-115
    [23]Challis G L and Hopwood D A. Synergy and contingency as driving forces for the evolution of multiple secondary metabolite production by Streptomyces species. Proc Natl Acad Sci USA, 2003,100(Suppl 2):14555-14561
    [24]Chandra G and Chater K F. Evolutionary flux of potentially bldA-dependent Streptomyces genes containing the rare leucine codon TTA. Antonie Van Leeuwenhoek,2008,94(1):111-126
    [25]Chang S A, Bralley P and Jones G H. The absB gene encodes a double strand-specific endoribonuclease that cleaves the read-through transcript of the rpsO-pnp operon in Streptomycescoelicolor. J Biol Chem,2005,280(39):33213-33219
    [26]Chater K F and Bruton C J. Resistance, regulatory and production genes for the antibiotic methylenomycin are clustered. EMBO J,1985,4(7):1893-1897
    [27]Chater K F and Chandra G. The use of the rare UUA codon to define "expression space" for genes involved in secondary metabolism, development and environmental adaptation in Streptomyces. J Microbiol,2008,46(1):1-11
    [28]Chen L, Chen J, Jiang Y Q, et al. Transcriptomics analyses reveal global roles of the regulator Avel in Streptomyces avermitilis. FEMS Microbiol Lett,2009,298(2):199-207
    [29]Chen L, Lu Y H, Chen J, et al. Characterization of a negative regulator Avel for avermectin biosynthesis in Streptomyces avermitilis NRRL8165. Appl Microbiol Biotechnol,2008,80(2): 277-286
    [30]Choi K Y, Jung E, Jung D H, et al. Cloning, expression and characterization of CYP102D1, a self-sufficient P450 monooxygenase from Streptomyces avermitilis. FEBS J,2011,279(9): 1650-1662
    [31]Cohen S P, Hachler H and Levy S B. Genetic and functional analysis of the multiple antibiotic resistance(mar) locus in Escherichia coli. J Bacteriol,1993,175(5):1484-1492
    [32]Colson S, Stephan J, Hertrich T, et al. Conserved cis-acting elements upstream of genes composing the chitinolytic system of streptomycetes are DasR-responsive elements. J Mol Microbiol Biotechnol,2006,12(1-2):60-66
    [33]Corre C, Song L, O'Rourke S, et al.2-Alkyl-4-hydroxymethylfuran-3-carboxylic acids, antibiotic production inducers discovered by Streptomyces coelicolor genome mining. Proc Natl Acad Sci USA,2008,105(45):17510-17515
    [34]Cortes J, Liras P, Castro J M, et al. Glucose regulation of cephamycin biosynthesis in Streptomyces lactamdurans is exerted on the formation of a-aminoadipyl-cysteinyl-valine and deacetoxycephalosporin C synthase. J Gen Microbiol,1986,132(7):1805-1814
    [35]Davies J. Are antibiotics naturally antibiotics? J Ind Microbiol Biotechnol,2006,33(7):496-499.
    [36]Davis J R, Brown B L, Page R, et al. Study of PcaV from Streptomyces coelicolor yields new insights into ligand-responsive MarR family transcription factors. Nucleic Acids Res,2013,41(6): 3888-3900
    [37]Demain A L and Inamine E. Biochemistry and regulation of streptomycin and mannosidostreptomycinase (alpha-D-mannosidase) formation. Bacteriol Rev,1970,34(1):1
    [38]Demain A L. Prescription for an ailing pharmaceutical industry. Nat Biotechnol,2002,20(4):331
    [39]Di Fiore A, Fiorentino G, Vitale R M, et al. Structural analysis of BldR from Sulfolobus solfataricus provides insights into the molecular basis of transcriptional activation in archaea by MarR family proteins. J Mol Biol,2009,388(3):559-569
    [40]Dimroth P. Primary sodium ion translocating enzymes. Biochim Biophys Acta,1997,1318(1-2): 11-51
    [41]Duong C T, Lee H N, Choi S S, et al. Functional expression of SAV3818, a putative TetR-family transcriptional regulatory gene from Streptomyces avermitilis, stimulates antibiotic production in Streptomyces species. J Microbiol Biotechnol,2009,19(2):136-139
    [42]Fernandez-Moreno M A, Caballero J L, Hopwood D A, et al. Theact cluster contains regulatory and antibiotic export genes, direct targets for translational control by the bldA tRNA gene of Streptomyces. Cell,1991,66(4):769-780
    [43]Fiorentino G, Ronca R, Cannio R, et al. MarR-like transcriptional regulator involved in detoxification of aromatic compounds in Sulfolobus solfataricus. J Bacteriol,2007,189(20): 7351-7360
    [44]Furuya K and Hutchinson C R. The DnrN protein of Streptomyces peucetius, a pseudo-response regulator, is a DNA-binding protein involved in the regulation of daunorubicin biosynthesis. J Bacteriol,1996,178(21):6310-6318
    [45]Gajiwala K S, Chen H, Cornille F, et al. Structure of the winged-helix protein hRFX1 reveals a new mode of DNA binding. Nature,2000,403(6772):916-921
    [46]Galan B, Kolb A, Sanz J M, et al. Molecular determinants of the hpa regulatory system of Escherichia coli:the HpaR repressor. Nucleic Acids Res,2003,31(22):6598-6609
    [47]Gatewood M L, Bralley P and Jones G H. RNase Ⅲ-dependent expression of the rpsO-pnp operon of Streptomyces coelicolor. J Bacteriol,2011:193(17):4371-4379.
    [48]Gatewood M L, Bralley P, Weil M R, et al. RNA-Seq and RNA immunoprecipitation analyses of the transcriptome of Streptomyces coelicolor identify substrates for RNase Ⅲ. J Bacteriol,2012, 194(9):2228-2237
    [49]Gomez-Escribano J P, Martin J F, Hesketh A, et al. Streptomyces clavuligerus relA-null mutants overproduce clavulanic acid and cephamycin C:negative regulation of secondary metabolism by (p)ppGpp. Microbiology,2008,154(3):744-755
    [50]Guo J, Zhang X, Luo S, et al. A novel tetR family transcriptional regulator, SAV576, negatively controls avermectin biosynthesis in Streptomyces avermitilis.PloS one,2013,8(8):e71330
    [51]Guo J, Zhao J L, Li L L, et al. The pathway-specific regulator AveR from Streptomyces avermitilis positively regulates avermectin production while it negatively affects oligomycin biosynthesis. Mol Genet Genomics,2010,283(2):123-133
    [52]Hesketh A, Chen W J, Ryding J, et al. The global role of ppGpp synthesis in morphological differentiation and antibiotic production in Streptomyces coelicolor A3(2). Genome Biol,2007, 8(8):R161
    [53]Hesketh A, Sun J and Bibb M. Induction of ppGpp synthesis in Streptomyces coelicolor A3(2) grown under conditions of nutritional sufficiency elicits actⅡ-ORF4 transcription and actinorhodin biosynthesis. Mol Microbiol,2001,39(1):136-144
    [54]Holley T A, Stevenson C E, Bibb M J, et al. High resolution crystal structure of SCO5413, a widespread actinomycete MarR family transcriptional regulator of unknown function. Proteins: Struct Function Genet,2013,81(1):176-182
    [55]Hommais F, Oger-Desfeux C, Van Gijsegem F, et al. PecS is a global regulator of the symptomatic phase in the phytopathogenic bacterium Erwinia chrysanthemi 3937. J Bacteriol, 2008,190(22):7508-7522
    [56]Hong M, Fuangthong M, Helmann J D, et al. Structure of an OhrR-ohrA operator complex reveals the DNA binding mechanism of the MarR Family. Mol Cell,2005,20(1):131-141
    [57]Hood D W, Heidstra R, Swoboda U K, et al. Molecular genetic analysis of proline and tryptophan biosynthesis in Streptomyces coelicolor A3(2):interaction between primary and secondary metabolism--a review. Gene,1992,115(1):5-12
    [58]Hopwood D A, Bibb M J, Chater K F, et al. Genetic manipulation of Streptomyces:A Laboratory manual. Norwich:The John Innes Foundation,1985,405-422
    [59]Horinouchi S and Beppu T. A-factor as a microbial hormone that controls cellular-differentiation and secondary metabolism in Streptomyces griseus. Mol Microbiol,1994,12(6):859-864
    [60]Horinouchi S. Mining and polishing of the treasure trove in the bacterial genus Streptomyces. Biosci Biotechnol Biochem,2007,71(2):283-299
    [61]Huang H and Grove A. The transcriptional regulator TamR from Streptomyces coelicolor controls a key step in central metabolism during oxidative stress. Mol Microbiol,2013,87(6): 1151-1166
    [62]Hvorup R N and Saier M H. Sequence similarity between the channel-forming domains of voltage-gated ion channel proteins and the C-terminal domains of secondary carriers of the major facilitator superfamily. Microbiology,2002,148(12):3760-3762
    [63]Hwang Y S, Kim E S, Biro S, et al. Cloning and analysis of a DNA fragment stimulating avermectin production in various Streptomyces avermitilis strains. Appl Environ Microbiol,2003, 69(2):1263-1269
    [64]Ikeda H and Omura S. Avermectin biosynthesis. Chem Rev,1997,97(7):2591-2609
    [65]Ikeda H and Omura S. Control of avermectin biosynthesis in Streptomyces avermitilis for the selective production of a useful component. J Antibiot,1995,48(7):549-562
    [66]Ikeda H, Ishikawa J, Hanamoto A, et al. Complete genome sequence and comparative analysis of the industrial microorganism Streptomyces avermitilis. Nat biotechnol,2003,21(5):526-531
    [67]Ikeda H, Kotaki H, Tanaka H, et al. Involvement of glucose catabolism in avermectin production by Streptomyces avermitilis. Antimicrob Agents Chemother,1988,32(2):282-284
    [68]Ikeda H, Nonomiya T and Omura S. Organization of biosynthetic gene cluster for avermectin in Streptomyces avermitilis:analysis of enzymatic domains in four polyketide synthases. J Ind Microbiol Biotechnol,2001,27(3):170-176
    [69]Ikeda H, Nonomiya T, Usami M, et al. Organization of the biosynthetic gene cluster for the polyketide anthelmintic macrolide avermectin in Streptomyces avermitilis. Proc Natl Acad Sci USA,1999,96(17):9509-9514
    [70]Ikeda H, Takada Y, Pang CH, et al. Transposon mutagenesis by Tn4560 and applications with avermectin-producing Streptomyces avermitilis. J Bacteriol,1993,175(7):2077-2082
    [71]Im J H, Kim M G and Kim E S. Comparative transcriptome analysis for avermectin overproduction via Streptomyces avermitilis microarray system. J Microbiol Biotechnol,2007,17: 534-538
    [72]Iqbal M, Mast Y, Amin R, et al. Extracting regulator activity profiles by integration of de novo motifs and expression data:characterizing key regulators of nutrient depletion responses in Streptomyces coelicolor. Nucleic Acids Res,2012,40(12):5227-5239
    [73]Jiang L, Liu Y, Wang P, et al. Inactivation of the extracytoplasmic function sigma factor Sig6 stimulates avermectin production in Streptomyces avermitilis. Biotechnol Lett,2011,33(10): 1955-1961
    [74]Jones G H. RNA degradation and the regulation of antibiotic synthesis in Streptomyces. Future Microbiol,2010,5(3):419-429
    [75]K E Narva and Feitelson J S. Nucleotide sequence and transcriptional analysis of the redD locus of Streptomycescoelicolor A3(2). J Bacteriol,1990.172(1):326-333
    [76]Potrykus K and Cashel M. (p)ppGpp:Still Magical? Annu Rev Microbiol,2008,62:35-51
    [77]Kaback H R. Structure and mechanism of the lactose permease. C R Biologies,2005,328(6): 557-567
    [78]Kang S G, Jin W, Bibb M, et al. Actinorhodin and undecylprodigiosin production in wild-type and relA mutant strains of Streptomycescoelicolor A3 (2) grown in continuous culture. FEMS Microbiol Lett,1998,168(2):221-226
    [79]Kang S H, Huang J Q, Lee H N, et al. Interspecies DNA microarray analysis identifies WbIA as a pleiotropic down-regulator of antibiotic biosynthesis in Streptomyces. J Bacteriol,2007,189(11): 4315-4319
    [80]Kato J Y, Funa N, Watanabe H, et al. Biosynthesis of y-butyrolactone autoregulators that switch on secondary metabolism and morphological development in Streptomyces. Proc Natl Acad Sci USA,2007,104(7):2378-2383
    [81]Kawachi R, Akashi T, Kamitani Y, et al. Identification of an AfsA homologue (BarX) from Streptomyces virginiae as a pleiotropic regulator controlling autoregulator biosynthesis, virginiamycin biosynthesis and virginiamycin M1 resistance. Mol microbiol,2000,36(2): 302-313
    [82]Keiler K C. Biology of trans-translation. Annu Rev Microbiol,2008,62:133-151
    [83]Khokhlov A S, Tovarova I I, Borisova L N, et al. The A-factor, responsible for streptomycin biosynthesis by mutant strain of Actinomyces streptomycini. Dokl AkAD Nauk SSSR,1966, 177(1):232-235
    [84]Kim E S, Hong H J, Choi C Y, et al. Modulation of actinorhodin biosynthesis in Streptomyces lividans by glucose repression of afsR2 gene transcription. J Bacteriol,2001,183(7):2198-2203
    [85]Kitani S, Doi M, Shimizu T, et al. Control of secondary metabolism by farX, which is involved in the y-butyrolactone biosynthesis of Streptomyces lavendulae FRI-5. Arch Microbiol,2010, 192(3):211-220
    [86]Kitani S, Ikeda H, Sakamoto T, et al. Characterization of a regulatory gene, aveR, for the biosynthesis of avermectin in Streptomyces avermitilis. Appl Microbiol Biotechnol,2009,82(6): 1089-1096
    [87]Kitani S, Miyamoto K T, Takamatsu S, et al. Avenolide, a Streptomyces hormone controlling antibiotic production in Streptomyces avermitilis. Proc Natl Acad Sci USA,2011,108(39): 16410-16415
    [88]Kitani S, Yamada Y, and Nihira T. Gene replacement analysis of the butyrolactone autoregulator receptor (FarA) reveals that FarA acts as a novel regulator in secondary metabolism of Streptomyces lavendulae FRI-5. J Bacteriol,2001,183(14):4357-4363
    [89]Kondo K, Higuchi Y, Sakuda S, et al. New virginiae butanolides from Streptomyces virginiae. J Antibiot,1989,42(12):1873
    [90]Kovacikova G, Lin W and Skorupski K. Vibrio cholerae AphA uses a novel mechanism for virulence gene activation that involves interaction with the LysR-type regulator AphB at the tcpP H promoter. Mol Microbiol,2004,53(1):129-142
    [91]Kumarevel T, Tanaka T, Umehara T, et al. ST1710-DNA complex crystal structure reveals the DNA binding mechanism of the MarR family of regulators. Nucleic Acids Res,2009,37(14): 4723-4735
    [92]Lebrihi A, Lefebvre G, and Germain P. Carbon catabolite regulation of cephamycin C and expandase biosynthesis in Streptomyces clavuligerus. App Microbiol Biotechnol,1988,28(1): 44-51
    [93]Lee H N, Im J H, Lee M J, et al. A putative secreted solute binding protein, SCO6569 is a possible AfsR2-dependent down-regulator of actinorhodin biosynthesis in Streptomycescoelicolor. Process Biochem,2009,44(3):373-377
    [94]Lee Y J, Kitani S and Nihira T. Null mutation analysis of an afsA-family gene, barX, that is involved in biosynthesis of the y-butyrolactone autoregulator in Streptomyces virginiae. Microbiology,2010,156(1):206-210
    [95]Li L, Guo J, Wen Y, et al. Overexpression of ribosome recycling factor causes increased production of avermectin in Streptomyces avermitilis strains. J Ind Microbiol Biotechnol,2010b, 37(7):673-679
    [96]Li M, Chen Z, Zhang X, et al. Enhancement of avermectin and ivermectin production by overexpression of the maltose ATP-binding cassette transporter in Streptomyces avermitilis. Bioresour Technol,2010a,101(23):9228-9235
    [97]Li W, Wu J, Tao W, et al. A genetic and bioinformatic analysis of Streptomyces coelicolor genes containing TTA codons, possible targets for regulation by a developmentally significant tRNA. FEMS Microbiol Lett,2007,266(1):20-28
    [98]Lim D, Poole K and Strynadka N C. Crystal structure of the MexR repressor of the mexRAB-oprM multidrug efflux operon of Pseudomonas aeruginosa. J Biol Chem,2002, 277(32):29253-29259
    [99]Liu G, Chater K F, Chandra G, et al. Molecular regulation of antibiotic biosynthesis in Streptomyces. Microbiol Mol Biol Rev,2013,77(1):112-143
    [100]Liu G, Tian Y Q, Yang H H, et al.A pathway-specific transcriptional regulatory gene for nikkomycin biosynthesis in Streptomyces ansochromogenes that also influences colony development. Mol Microbiol,2005,55(6):1855-1866
    [101]Liu Y, Yan T, Jiang L, et al. Characterization of SAV7471, a TetR-family transcriptional regulator involved in the regulation of CoA metabolism in Streptomycesavermitilis. J Bacteriol, 2013,195(19):4365-4372
    [102]Lum A M, Huang J Q, Hutchinson C R, et al. Reverse engineering of industrial pharmaceutical-producing actinomycete strains using DNA microarrays. Metab Eng,2004,6(3): 186-196
    [103]Macneil D J and Klapko L M. Transformation of Streptomyces avermitilis by plasmid DNA. J Ind Microbiol Biot,1987,2(4):209-218
    [104]Macneil D J, Gewain K M, Ruby C L, et al. Analysis of Streptomyces avermitilis genes required for avermectin biosynthesis utilizing a novel integration vector. Gene,1992,111(1):61-68
    [105]Maloney P C. Microbes and membrane biology. FEMS Microbiol Lett,1990,87(1):91-102
    [106]Martin J F, Santos-Beneit F, Rodriguez-Garcia A, et al. Transcriptomic studies of phosphate control of primary and secondary metabolism in Streptomyces.coelicolor. Appl Microbiol Biotechnol,2012,95(1):61-75
    [107]Martin J F, Sola-Landa A, Santos-Beneit F, et al. Cross-talk of global nutritional regulators in the control of primary and secondary metabolism in Streptomyces. Microb Biotechnol 2011, 4(2):165-174
    [108]Martin J F. Phosphate control of the biosynthesis of antibiotics and other secondary metabolites is mediated by the PhoR-PhoP system:an unfinished story. J Bacteriol,2004,186(16):5197-5201
    [109]Martin R G and Rosner J L. Binding of purified multiple antibiotic-resistance repressor protein (MarR) to mar operator sequences. Proc Natl Acad Sci USA,1995,92(12):5456-5460
    [110]Martin R G, Nyantakyi P S and Rosner J L. Regulation of the multiple antibiotic resistance(mar) regulon by marORA sequences in Escherichia coli. J Bacteriol,1995,177(14):4176-4178
    [111]McDowall K J, Thamchaipenet A and Hunter I S. Phosphate control of oxytetracycline production by Streptomycesrimosus is at the level of transcription from promoters overlapped by tandem repeats similar to those of the DNA-binding sites of the OmpR family. J Bacteriol,1999, 181(10):3025-3032
    [112]Mehra S, Charaniya S, Takano E, et al.. A bistable gene switch for antibiotic biosynthesis:the butyrolactone regulon in Streptomyces coelicolor. PLoS One,2008,3(7):e2724
    [113]Mendes M V, Tunca S, Anton N, et al. The two-component phoR-phoP system of Streptomyces natalensis:inactivation or deletion of phoP reduces the negative phosphate regulation of pimaricin biosynthesis. Metab Eng,2007,9(2):217-227
    [114]Miyamoto K T, Kitani S, Komatsu M, et al. The autoregulator receptor homologue AvaR3 plays a regulatory role in antibiotic production, mycelial aggregation and colony development of Streptomyces avermitilis. Microbiology,2011.157(8),2266-2275
    [115]Nothaft H, Dresel D, Willimek A, et al.. The phosphotransferase system of Streptomycescoelicolor is biased for N-acetylglucosamine metabolism. J Bacteriol,2003, 185(23):7019-7023
    [116]Nothaft H, Rigali S, Boomsma B, et al. The permease gene nagE2 is the key to N-acetylglucosamine sensing and utilization in Streptomycescoelicolor and is subject to multi-level control. Mol Microbiol,2010,75(5):1133-1144
    [117]O'Rourke S, Wietzorrek A, Fowler K, et al. Extracellular signalling, translational control, two repressors and an activator all contribute to the regulation of methylenomycin production in Streptomyces coelicolor. Mol Microbiol,2009,71(3):763-778
    [118]Oh S Y, Shin J H and Roe J H. Dual role of OhrR as a repressor and an activator in response to organic hydroperoxides in Streptomyces coelicolor. J Bacteriol,2007,189(17):6284-6292
    [119]Ohnishi Y, Ishikawa J, Hara H, et al. Genome sequence of the streptomycin-producing microorganism Streptomyces griseus IFO 13350. J Bacteriol,2008,190(11):4050-4060
    [120]Omura S, Ikeda H, Ishikawa J, et al. Genome sequence of an industrial microorganism Streptomyces avermitilis:Deducing the ability of producing secondary metabolites. Proc Natl Acad Sci USA,2001,98(21):12215-12220
    [121]Otten S L, Olano C and Hutchinson C R. The dnrO gene encodes a DNA-binding protein that regulates daunorubicin production in Streptomyces peucetius by controlling expression of the dnrN pseudo response regulator gene. Microbiology,2000,146 (6):1457-1468
    [122]Paleckova P, Felsberg J, Bobek J, et al. tmRNA abundance in Streptomyces aureofaciens, S. griseus and S. collinus under stress-inducing conditions. Folia Microbiol,2007,52(5):463-470
    [123]Pan Y Y, Wang L Q, He X H, et al. SabR enhances nikkomycin production via regulating the transcriptional level of sanG, a pathway-specific regulatory gene in Streptomyces ansochromogenes. BMC Microbiol,2011,11(1):164
    [124]Park S S, Yang Y H, Song E, et al. Mass spectrometric screening of transcriptional regulators involved in antibiotic biosynthesis in Streptomyces coelicolor A3 (2). J Ind Microbiol Biotechnol, 2009,36(8):1073-1083
    [125]Perera I C and Grove A. Molecular mechanisms of ligand-mediated attenuation of DNA binding by MarR family transcriptional regulators. J Mol Cell Biol,2010,2(5):243-254
    [126]Perez-Llarena F J, Liras P, RodriguezGarcia A, et al.A regulatory gene (ccaR) required for cephamycin and clavulanic acid production in Streptomyces clavuligerus:amplification results in overproduction of both beta-lactam compounds. J Bacteriol,1997,179(6):2053-2059
    [127]Piendl W, Bock A and Cundliffe E. Involvement of 16S ribosomal RNA in resistance of the aminoglycoside-producers Streptomyces tenjimariensis, Streptomyces tenebrarius and Micromonospora purpurea. Mol Gen Genet,1984,197(1):24-29
    [128]Pullan S T, Chandra G, Bibb M J, et al. Genome-wide analysis of the role of GlnR in Streptomycesvenezuelae provides new insights into global nitrogen regulation in actinomycetes. BMCgenomics,2011,12(1):175
    [129]Qiu J, Zhuo Y, Zhu D, et al. Overexpression of the ABC transporter AvtAB increases avermectin production in Streptomyces avermitilis. Appl Microbiol Biotechnol,2011,92(2):337-345
    [130]Rajkarnikar A, Kwon H J, Ryu Y W, et al. Catalytic domain of AfsKav modulates both secondary metabolism and morphologic differentiation in Streptomyces avermitilis ATCC 31272. Curr Microbiol,2006,53(3):204-208
    [131]Ramakrishnan V, Finch J T, Graziano V, et al. Crystal structure of globular domain of histone H5 and its implications for nucleosome binding. Nature,1993,362(6417):219-223
    [132]Ramos J L, Martinez-Bueno M, Molina-Henares A J, et al.The TetR family of transcriptional repressors. Microbiol Mol Biol Rev,2005,69(2):326-356
    [133]Recio E, Colinas A, Rumbero A, et al. PI factor, a novel type quorum-sensing inducer elicits pimaricin production in Streptomyces natalensis. J Biol Chem,2004,279(40):41586-41593
    [134]Reddy V S, Shlykov M A, Castillo R, et al. The major facilitator superfamily (MFS) revisited. FEBS J,2012,279(11):2022-2035
    [135]Retzlaff L and Distler J. The regulator of streptomycin gene expression, StrR, of Streptomycesgriseus is a DNA binding activator protein with multiple recognition sites. Mol Microbiol,1995,18(1):151-162
    [136]Rigali S, Nothaft H, Noens E E, et al. The sugar phosphotransferase system of Streptomyces coelicolor is regulated by the GntR-family regulator DasR and links N-acetylglucosamine metabolism to the control of development. Mol Microbiol,2006,61(5):1237-1251
    [137]Rigali S, Schlicht M, Hoskisson P, et al. Extending the classification of bacterial transcription factors beyond the helix-turn-helix motif as an alternative approach to discover new cis/trans relationships. Nucleic Acids Res,2004,32(11):3418-3426
    [138]Rigali S, Titgemeyer F, Barends S, et al. Feast or famine:the global regulator DasR links nutrient stress to antibiotic production by Streptomyces. EMBO Rep,2008,9(7):670-675
    [139]Rodriguez-Garcia A, Sola-Landa A, Apel K, et al. Phosphate control over nitrogen metabolism in Streptomyces coelicolor:direct and indirect negative control of glnR, glnA, glnⅡ and amtB expression by the response regulator PhoP. Nucleic Acids Res,2009,37(10):3230-3242
    [140]Romero D, Traxler M F, Lopez D, et al. Antibiotics as signal molecules. Chem Rev,2011,111(9): 5492-5505
    [141]Saier M H. Tracing pathways of transport protein evolution. Mol microbiol,2003,48(5): 1145-1156.
    [142]Sambrook J, Fritsch E F and Maniatis T. Molecular Cloning:A Laboratory Manual (2nd Ed). New York:Cold Spring Harbor Laboratory Press,1989,1564-1658.
    [143]Sanchez S, Chavez A, Forero A, et al. Carbon source regulation of antibiotic production. J Antibiot,2010,63(8):442-459
    [144]Santos-Beneit F, Barriuso-Iglesias M, Fernandez-Martinez L T, et al. The RNA polymerase omega factor RpoZ is regulated by PhoP and has an important role in antibiotic biosynthesis and morphological differentiation in Streptomyces coelicolor. Appl Environ Microbiol,2011,77(21): 7586-7594
    [145]Santos-Beneit F, Rodriguez-Garcia A, Sola-Landa A, et al. Cross-talk between two global regulators in Streptomyces:PhoP and AfsR interact in the control of afsS, pstS and phoRP transcription. Mol Microbiol,2009,72(1):53-68
    [146]Seipke R F, Kaltenpoth M and Hutchings M I. Streptomyces as symbionts:an emerging and widespread theme? FEMS microbiol rev,2012,36(4):862-876
    [147]Sello J K and Buttner M J. The gene encoding RNase Ⅲ in Streptomyces coelicolor is transcribed during exponential phase and is required for antibiotic production and for proper sporulation. J Bacteriol,2008,190(11):4079-4083
    [148]Sharma U K and Chatterji D. Transcriptional switching in Escherichia coli during stress and starvation by modulation of σ70 activity. FEMS Microbiol Rev,2010,34(5):646-657
    [149]Shikura N, Yamamura J and Nihira T. barSl, a gene for biosynthesis of a y-butyrolactone autoregulator, a microbial signaling molecule eliciting antibiotic production in Streptomyces species. J Bacteriol,2002,184(18):5151-5157
    [150]Shu D, Chen L, Wang W, et al. afsQl-Q2-sigQ is a pleiotropic but conditionally required signal transduction system for both secondary metabolism and morphological development in Streptomyces coelicolor. Appl Microbiol Biotechnol,2009,81(6):1149-1160
    [151]Sola-Landa A, Moura R S and Martin J F. The two-component PhoR-PhoP system controls both primary metabolism and secondary metabolite biosynthesis in Streptomyces lividans. Proc Natl Acad Sci USA,2003,100(10):6133-6138
    [152]Stapleton M R, Norte V A, Read R C, et al. Interaction of the Salmonella typhimurium transcription and virulence factor SlyA with target DNA and identification of members of the SlyA regulon. J Biol Chem,2002,277(20):17630-17637
    [153]Stevenson C E, Assaad A, Chandra G, et al. Investigation of DNA sequence recognition by a streptomycete MarR family transcriptional regulator through surface plasmon resonance and X-ray crystallography. Nucleic Acids Res,2013,41(14):7009-7022
    [154]Stratigopoulos G, Bate N and Cundliffe E. Positive control of tylosin biosynthesis:pivotal role of TylR. Mol Microbiol,2004,54(5):1326-1334
    [155]Strauch E, Takano E, Baylis H A, et al. The stringent response in Streptomyces coelicolor A3(2). Mol Microbiol,1991,5(2):289-298
    [156]Stutzman-Engwall K J, Otten S L and Hutchinson C R. Regulation of secondary metabolism in Streptomyces spp. and overproduction of daunorubicin in Streptomyces peucetius. J Bacteriol, 1992,174(1):144-154
    [157]Sun P, Zhao Q, Yu F, et al. Spiroketal formation and modification in avermectin biosynthesis involves a dual activity of AveC. J Am Chem Soc,2013,135(4):1540-1548
    [158]Swiatek M A, Gubbens J, Bucca G, et al. The ROK-family regulator Rok7B7 pleiotropicaly affects xylose utilization, carbon catabolite repression and antibiotic production in Streptomyces coelicolor. J Bacteriol,2013,195(6):1236-1248
    [159]Takano E, Nihira T, Hara Y, et al. Purification and structural determination of SCB1, a γ-butyrolactone that elicits antibiotic production in Streptomyces coelicolor A3(2). J Biol Chem, 2000,275(15):11010-11016
    [160]Takano E. Gamma-butyrolactones:Streptomyces signalling molecules regulating antibiotic production and differentiation. Curr Opin Microbiol,2006,9(3):287-294
    [161]Tang Z, Xiao C, Zhuang Y, et al. Improved oxytetracycline production in Streptomyces rimosus M4018 by metabolic engineering of the G6PDH gene in the pentose phosphate pathway. Enzyme Microb Technol,2011,49(1):17-24
    [162]Titgemeyer F, Reizer J, Reizer A, et al. Evolutionary relationships between sugar kinases and transcriptional repressors in bacteria. Microbiology,1994,140(9):2349-2354
    [163]Uchida M, Takamatsu S, Arima S, et al. Total synthesis and absolute configuration of avenolide, extracellular factor in Streptomyces avermitilis. J Antibiot,2011,64(12):781-787
    [164]Uguru G C, Stephens K. E, Stead J A, et al. Transcriptional activation of the pathway-specific regulator of the actinorhodin biosynthetic genes in Streptomyces coelicolor. Mol Microbiol,2005, 58(1):131-150
    [165]van Wezel G P and McDowall K J. The regulation of the secondary metabolism of Streptomyces: new links and experimental advances. Nat Prod Rep,2011,28(7):1311-1333
    [166]van Wezel G P, Krabben P, Traag B A, et al. Unlocking Streptomyces spp. for use as sustainable industrial production platforms by morphological engineering. Appl Environ Microbiol,2006, 72(8):5283-5288
    [167]van Wezel G P, Mahr K, Konig M, et al. GlcP constitutes the major glucose uptake system of Streptomyces coelicolor A3 (2). Mol Microbiol,2005,55(2):624-636
    [168]Waldvogel E, Herbig A, Battke F, et al. The PII protein GlnK is a pleiotropic regulator for morphological differentiation and secondary metabolism in Streptomyces coelicolor. Appl Microbiol Biotechnol,2011,92(6):1219-1236
    [169]Wang J, Wang W, Wang L, et al. A novel role of 'pseudo' γ-butyrolactone receptors in controlling y-butyrolactone biosynthesis in Streptomyces. Mol Microbiol,2011,82(1):236-250
    [170]Wang L Q, Tian X Y, Wang J, et al.Autoregulation of antibiotic biosynthesis by binding of the end product to an atypical response regulator. Proc Natl Acad Sci USA,2009,106(21): 8617-8622
    [171]Wang R, Mast Y, Wang J, et al. Identification of two-component system AfsQl/Q2 regulon and its cross-regulation with GlnR inStreptomyces coelicolor. Mol Microbiol,2013,87(1):30-48
    [172]Wang X J, Yan Y J, Zhang B, et al. Genome sequence of the milbemycin-producing bacterium Streptomyces bingchenggensis. J Bacteriol,2010,192(17):4526-4527
    [173]White J and Bibb M. bldA dependence of undecylprodigiosin production in Streptomycescoelicolor A3(2) involves a pathway-specific regulatory cascade. J Bacteriol,1997, 179(3):627-633
    [174]Wietzorrek A and Bibb M. A novel family of proteins that regulates antibiotic production in streptomycetes appears to contain an OmpR-like DNA-binding fold. Mol Microbiol,1997, 25(6):1181-1184
    [175]Wilkinson S P and Grove A. HucR, a novel uric acid-responsive member of the MarR family of transcriptional regulators from Deinococcus radiodurans. J Biol Chem,2004,279(49): 51442-51450
    [176]Wilson D J, Xue Y Q, Reynolds K A, et al.Characterization and analysis of the PikD regulatory factor in the pikromycin biosynthetic pathway of Streptomyces venezuelae. J Bacteriol,2001, 183(11):3468-3475
    [177]Xu G, Wang J, Wang L, et al. "Pseudo" y-butyrolactone receptors respond to antibiotic signals to coordinate antibiotic biosynthesis. J Biol Chem,2010,285(35):27440-27448
    [178]Xu W, Huang J, Lin R, et al. Regulation of morphological differentiation in S. coelicolor by RNase Ⅲ (AbsB) cleavage of mRNA encoding the AdpA transcription factor. Mol Microbiol, 2010,75(3):781-791
    [179]Yamada Y, Sugamura K, Kondo K, et al. The structure of inducing factors for virginiamycin production in Streptomycesvirginiae.J Antibiot,1987,40(4):496-504
    [180]Yan N. Structural advances for the major facilitator superfamily (MFS) transporters. Trends Biochem Sci,2013,38(3):151-159
    [181]Yang C and Glover J R. The SmpB-tmRNA tagging system plays important roles in Streptomycescoelicolor growth and development. PloS one,2009,4(2):e4459
    [182]Yang Y H, Song E, Kim E J, et al. NdgR, an IclR-like regulator involved in amino-acid-dependent growth, quorum sensing, and antibiotic production in Streptomyces coelicolor. Appl Microbiol Biotechnol,2009,82(3):501-511
    [183]Yu Q, Bai L Q, Zhou X F, et al. Inactivation of the positive LuxR-type oligomycin biosynthesis regulators OlmRl and OlmRll increases avermectin production in Streptomyces avermitilis. Chin Sci Bull,2012,57(8):869-876
    [184]Yu Z, Zhu H, Dang F, et al. Differential regulation of antibiotic biosynthesis by DraR-K, a novel two-component system in Streptomyces coelicolor. Mol Microbiol,2012,85(3):535-556
    [185]Zhao X, Wang Q, Guo W, et al. Overexpression of metK shows different effects on avermectin production in various Streptomyces avermitilis strains. World J Microbiol Biotechnol,2013, 29(10):1869-1875
    [186]Zhu D, Wang Y, Zhang M, et al. Product-mediated regulation of pentalenolactone biosynthesis in Streptomyces species by the MarR/SlyA family activators PenR and PntR. JBacteriol,2013, 195(6):1255-1266
    [187]Zhuo Y, Zhang W, Chen D, et al. Reverse biological engineering of hrdB to enhance the production of avermectins in an industrial strain of Streptomyces avermitilis. Proc Natl Acad Sci USA,2010,107(25):11250-11254
    [188]Zianni M, Tessanne K, Merighi M, et al. Identification of the DNA bases of a DNase I footprint by the use of dye primer sequencing on an automated capillary DNA analysis instrument. J Biomol Tech,2006,17(2):103-113
    [189]范与庆nsdA基因中断及orfX基因整合表达对阿维链霉菌次级代谢的影响: [硕士学位论文].武汉:华中农业大学,2007
    [190]郭佳.阿维菌素生物合成相关基因的功能研究:[博士学位论文].北京:中国农业大学,2011
    [191]王晓芳.阿维链霉菌调节基因aveR1, aveR2缺失对阿维菌素产量的影响及缺火突变株发酵条件的优化:[硕十学位论文].北京:中国农业大学,2005

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700