坝基老化岩—水—化学作用数值模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大坝的老化是国内外许多大坝出现各类病态问题甚至发生事故的主要原因之一,但从系统性和深度等方面大坝老化研究主要集中在上部混凝土及金属结构的老化研究上,而由于坝基本身组成与结构以及所处环境的复杂性,缺少老化过程的系统研究,尤其是定量研究相当薄弱,还不足于满足全面评价坝基长期稳定性的需要。本文围绕数值化地模拟坝基老化过程这个主题进行了深入的研究,其所做的主要工作如下:
     1.通过国内外众多大坝出现的各类病态问题和事故的归纳,按照从问题到本质、从现象到实质的思维方法,总结出了坝基老化的概念及其实质,从不同角度强调了坝基老化研究的必要性和意义,阐述了坝基老化研究的现状、存在的问题以及趋势,并以大坝修建后应力环境、水环境以及化学环境变化所引起的物理机械作用和岩—水化学作用对坝基岩土体物理化学特性影响的时效性为出发点提出了坝基老化研究的范围、目的和基本思路。
     2.从水文地球化学的观点出发,对坝基老化的具体工程表现即所引起的各类工程问题进行了详细的分类和论述;深入探讨了坝基老化的岩—水化学作用过程及其影响因素;提出了坝基岩—水系中化学反应的平衡热力学和化学动力学两种定式化方法,并讨论了它们各自的优点、局限性和应用平衡热力学定式化方法所要满足的局部平衡条件;建立了坝基老化岩—水—化学作用数值模拟方法体系,并详细阐明了其中反向模拟、正向模拟和岩—水—化学耦合模拟三种方法的基本思想、原理、优点和局限性、适用条件和范围等。
     3.按照从结果到原因的反向思维方式,利用随机误差最小原理、质量守恒原理和电中性原理建立了反向坝基老化模型,利用L1优化问题的Barrodale—Roberts算法对模型进行了求解,并将模型应用到新安江大坝右坝段坝基老化数值模拟分析当中取得了满意的结果。
     4.利用质量作用原理、质量守恒原理和电中性原理建立了正向坝基老化模型,联合利用Newton—Raphson法和Barrodale—Roberts算法对模型进行了求解,并通过模型在坝基帷幕老化的温度依赖性以及三峡大坝坝基老化数值模拟分析中的成功应用验证了它的实用性和可靠性。
     5.根据渗流、溶质迁移以及岩—水间地球化学反应三个过程在坝基老化中的实际耦合模式,建立了坝基老化的岩—水—化学耦合模型,联合利用有限体积差分法、线性方程组的迭代算法、Newton—Raphson法和Barrodale—Roberts
Dam ageing is one of the main causes of various abnormal problems and even accidents occurred in many dams. Presently, the research on dam ageing is mainly focused on the ageing of dam concrete and metal structures, however there is a lock of systematic research, especially quantitative research, on dam foundation ageing. Due to this reason, aiming at the numerical simulation of dam foundation ageing, the following studies are carried out in this paper:1. Through generalizing various abnormal problems and accidents occurred in dams, the concept and nature of dam foundation ageing are summarized; From the point of different aspects, the necessity and significance of systematic research on dam foundation ageing are emphasized; The present status, existing questions and trends of dam foundation ageing research are set forth; The scope, aim and study line of dam foundation ageing research are brought forward, according to the effect of mechanical and chemical processes (which are arose from the stress, water and chemical environment changing after construction of the dam) to the dam foundation material properties.2. From the point of hydro-geochemistry, various adverse engineering problems arose from dam foundation ageing are detailedly classified and profoundly discussed; The hydro-geochemical process of dam foundation ageing are clarified; Equilibrium and kinetic formulation methods of chemical reactions in the dam foundation water-rock interaction system are put forward, and their advantages, disadvantages and the Local Equilibrium Condition required for the equilibrium formulation are discussed; The numeric Hydro-Geo-Chemical modeling system of dam foundation ageing are established, and main ideas, principles, advantages, disadvantages and applicability of Inverse, forward and coupled hydro-geo-chemical models in the system are discussed in detail.3. The inverse model for dam foundation ageing is established by using mole balance and charge balance equations; By using Barrodale—Roberts algorithm, numerical solution to the model is performed; Applying the model to the ageing status analyses of Xin an Jiang Dam foundation, satisfactory results are obtained.4. The forward model for dam foundation ageing is established by using mass action, mole balance and charge balance equations; By the incorporated using of Newton—Raphson and Barrodale—Roberts algorithms, numerical
    solution to the model is performed; Applying the model to the temperature dependency analyses of grout curtain ageing and status analyses of Three Gorges Dam foundation ageing, practicability and reliability of it are certified.5. Based on the real interaction modes between flow, transport and water-rock chemical reactions in the dam foundation ageing process, the coupled hydro-geo-chemical model for dam foundation ageing is established; Numerical solution to the model is performed by incorporated using of Finite Volume Difference method, iterative algorithm for linear equations, Newton — Raphson algorithm and Barrodale—Roberts algorithm; Applying the model to the 2-dimensional ageing analyze of a dam foundation, the ultimate target of comprehensive characterizing of dam foundation ageing process in space and time is achieved.
引文
[1] A. Chilakapati. RAFT-A Simulator for Reactive Flow and Transport of Groundwater Contaminants. US Department of Energy. 1995. 7
    [2] Albert J. Valocchi, Bruce E. Rittmann. Modelling of coupled process in subsurface transport of reactive contaminants. Sixth semi-annual progress report and final report. 1996, 1
    [3] Ari Luukkonen, Sami Partamies, Petteri Pitkanen. Olkiluoto Hydrogeochemistry——A 3-D Modelling Approach for Sparse Data Set. Technical report. 2003
    [4] Barrodale .I, Roberts .F.D.K. Ll solution to linear equations subject to linear equality and inequality constraints. Transactions on Mathematical Software, 1980(6): 231~235.
    [5] Benjamin S. Kirk, Graham F. Carey, Robert J. MacKinnon. Positivity-Preserving Algorithms for Reactive Transport Processes. Technical report, SIAM Geosciences. 2003.3
    [6] C.I. Steefel. New Directions in Hydrogeochemical Transport Modeling: Incorporating Multiple Kinetic and Equilibrium Reaction Pathways. U.S. Department of Energy. 2000, 2.
    [7] C.I. Steefell, S.B. Yabusaki. OS3D/GIMRT Software for Modeling Multicomponent-Multidimensional Reactive Transport: User manual & Programmer's guide (Version 1.0). 1996.5
    [8] Christian Wagner. Numerical methods for diffusion-reaction-transport processes in unsaturated porous media. Computing and Visualization in Science, 1998(1): 97~104.
    [9] Craig M. Bethke. A user's guide to The Geochemist's Workbench(GWB ). University of Illinois. 2005.1
    [10] Dr. Bruce Herbert. Application of Geochemical Speciation Models for Groundwater Chemistry Modelling and Evaluation of Remediation Technologies. Technical report, Department of Geology and Geophysics Texas A&M University.
    [11] D. Craw. Water-rock interaction and acid neutralization in a large schist debris dam, Otago, New Zealand. Chemical Geology. 2000(171): 17~32.
    [12] David L. Parkhurst, C.A.J. Appelo. User's guide to PHREEQC (Version2)—a computer program for Speciation, batch-reaction, one-dimensional transport and inverse geochemical calculations. US Department of the Interior, US Geological Survey. 1999
    [13] Dorothy Frances Payne. A new, fully coupled, reaction-transport-mechanical approach to modeling the evolution of natural gas reservoirs in the Piceance Basin. Indiana University. PhD thesis. 1998
    [14] D. H. Bacon, M. D. White, B. P. McGrail. Subsurface Transport Over Reactive Multiphases (STORM): A General, Coupled, Nonisothermal Multiphase Flow, Reactive Transport, and Porous Medium Alteration Simtiator, Version 2 User's Guide. Pacific Northwest National Laboratory, Richland. 2000,
    [15] David W. Blowes, K. Ulrich Mayer. Multicomponent Reactive Transport Modeling. Technical report, Department of Earth Sciences, University of Waterloo. 1999, 9
    [16] David R. Mott, Elaine S. Oran, Bram van Lee. A Quasi-Steady-State Solver for the Stiff Ordinary Differential Equations of Reaction Kinetics. Journal of Computational Physics, 2000(164): 407~428.
    [17] Eric Sonnenthal, Nicolas Spycher, Tianfu Xu. Linking reaction, transport, and hydrological parameters in unsaturated fractured rock: Toughreact implementation and application. Proceedings Tough Symposium, 2003: 243~249.
    [18] Eric Rufe, Michael F. Hochella Jr. Quantitative Assessment of Reactive Surface Area of Phlogopite During Acid Dissolution. Science, 1999(285): 874~876.
    [19] F.C.Cesbron, F.J. Malassenet. Comparision of mean-square and absolute value distortion measures in fractal coding of still images. Research paper, The European Platform of the Georgia Institute of Technology.
    [20] F. Batlle, J.Carrera, C. Ayora. A comparison of lagrangian and enlerian formulations for reactive transport modeling.
    [21] FENG Qiyan, HAN Baoping. Hydrogeochemical simulation of water-rock interaction under water flood recovery in Renqiu oil field Hebei Province China. Chinese Journal of Geochemistry, 2002(2): 156~162.
    [22] GUO Musun, LI Jinghai. The multi-scale attribute of transport and reaction systems. Progress in Natural Science, 2001(2): 81~86.
    [23] G.A. Watson. Approximation in normed linear spaces. Journal of Computational and Applied Mathematics, 2000(121): 1~36.
    [24] G.T. Yeh, K.M. Salvag. HYDROGEOCHEM 2.0: A Coupled Model of Hydrologic Transport and Mixed Geochemical Kinetic/Equilibrium Reactions in Saturated-Unsaturated Media. 1997.9
    [25] G.T. Yeh, Hwai-Ping Cheng. 3DHYDROGEOCHEM: A 3-Dimensional Model of Density-Dependent Subsurface Flow and Thermal Multispecies-Multicomponent Hydrogeochemical Transport. US Environmental Protection Agency Subsurface Protection and Remediation Division. 1999.7
    [26] GUO Yonghai, SHEN Zhaoli, ZHONG Zuoshen. Hydrogeochemical modeling of groundwater chemical environmental evolution in Hebei Plain. Science in China(Series D), 1997(5): 502~508.
    [27] Glenn E. Hammonda, Albert J. Valocchia and Peter C. Lichtnerb. Modeling Multicomponent Reactive Transport on Parallel Computers Using Jacobian-Free Newton Krylov with Operator-Split Preconditioning. Dept. of Civil and Environmental Engineering, University of Illinois.
    [28] H.Gao, A.Butler, H.Wheater. Chemically reactive multicomponent transport in soil and groundwater: model development and evaluation. Environmental Geology, 2001(41): 274~279.
    [29] H.Gao, A.Butler, H.Wheater. Chemically reactive multicomponent transport in soil and groundwater: model demonstration. Environmental Geology, 2001(41): 280~284.
    [30] Henning Prommer. PHT3D-A Reactive Multicomponent Transport Model for Saturated Porous Media: User's Manual (Version 1.0). 2002. 1
    [31] H Prommer, D. A. Barry, C. Zheng. MODFLOW/MT3DMS-based reactive multicomponent transport modeling. Ground Water, 2003(41): 247~257.
    [32] ICOLD, "World Register of Dams". Committee on the Dictionary, the Glossary and World Register of Dams. 1998
    [33] ICOLD, "World Register of Dams-Short Version-China only". Committee on the Dictionary, the Glossary and World Register of Dams. 2000
    [34] ICOLD, Ageing of Dams and Appurtenant Works-Review and Recommendations. Committee on Dam Ageing, 1993.
    [35] ICOLD, Deterioration of Dams and Reservoirs-Examples and Their Analyses. Committee on Deterioration of Dams and Reservoirs, 1983.
    [36] Jiazheng Pan, Jing He. Large Dams in China-A fifty-Year Review . Beijing: China Waterpower Press, 2000.8: 1~22.
    [37] John P.BUEHLER (USA) , Behaviour and Deterioration of Dams-General Report. 9thICOLD Congress, Istanbul (Turkey), 1967.
    [38] Jacques COMBELES (France), Ageing of Dams and Remedial Measures-General Report. 17thICOLD Congress, Vienna (Austria), 1991.
    [39] James Crawford. Geochemical Modelling-A Review of Current Capabilities and Future Directions. Swedish Environmental Protection Agency, 1999, 9.
    [40] Jerry D. Allison, David S. Brown, Kevin J. Novo-Gradac. MINTEQA2/PRODEFA2, A geochemical assessment model for environmental sytems: Version3.0 user's manual. US Environmental Protection Agency, Environmental research laboratory office of research and development. 1991.3
    [41] Jan van de Lee, Laurent de Windt. User's manual for geochemical model CHESS: version3.0. Ecole des Mines de Paris, Centre d'Informatique Geologique Fontaineleau France. 2002. 4
    [42] Juan Meza. OPT++ —— An Object-Oriented Toolkit for Nonlinear Optimization. High Performance Computing Research, Lawrence Berkeley National Laboratory. 2003. 8
    [43] Jeong Kim, Franklin W.Schwartz, Jianyou Shi. Modelling the coupling between flow and transport devoloped by chemical reactions and density differences using toughreact. Proceedings Tough Symposium, 2003: 1~8.
    [44] Jurgen Gaiser. Numerical simulation of a model for transport and reaction of radionuclides with an explicit coupling method between transport and reaction. Proceedings of ALGORITMY Conference on Scientific Computing, 2002: 86~93.
    [45] Joseph E Kanney. Numerical solution of reactive transport problems in subsurface systems. University of North Carolina. PhD thesis. 2002
    [46] Ju-Ping Tian, Kai-Lun Yao. Ageing of random porous media following fluid deterministic displacement, freezing, thawing. The European Physical Journal B, 2000(14): 543~549.
    [47] J.L.Potdevin, W.Chen, A.Park etc. CIRF:A general reaction—transport code: Mineralization fronts due to the infiltration of reactive fluids. 7th WRI Symposium, 1992: 1047~1040.
    [48] Jay P. Boris, Elaine S. Oran, Gopal Patnaik. Coupling Multiple Stiff Processes in Reactive Flow Simulations. Laboratory for Computational Physics and Fluid Dynamics U.S. Naval Research Laboratory Washington D.C. 2000: 25~27.
    [49] Jurgen Geiser. Operator Splitting Methods for Transport Equations with Nonlinear Reactions. Third M.I.T. Conference on Computational Fluid and Solid Mechanics, Massachusetts Institute of Technology Cambridge, USA, June 14-17, 2005,
    [50] Janet S. Herman, Aaron L. Mills, Isabelle M. Cozzarelli. Alteration of Reactive Mineral Surfaces by Groundwater. Proceedings of the Workshop on Monitoring Oxidition—Reduction Processes for Groundwater Restoration, Dallas, Texas. 2000: 25~27.
    [51] K.G.Rathod, A.R.Jani, M.M.Jajal. Control and evaluation of aging for masonry gravity dams. Dam Safety, Balkema, Rotterdam, 1998: 721~728.
    [52] Klaus Ulrich Mayer. A numerical model for multicomponent reactive transport in variably saturated porous media. University of Waterloo, Waterloo, Canada. PhD thesis. 1999
    [53] M.S.Bloom, Y.Gu. Thermodynamic modeling of geochemical processes: The CSIRO-Monash THERMOCHEMISTRY System. 7th WRI Symposium, 1992: 1065~1069.
    [54] Michael P. Friedlander, Michael A. Saunders. A globally convergent linearly constrained Lagrangian method for nonlinear optimization. Mathematics and Computer Science Division, Argonne National Laboratory. 2002.12
    [55] Michael E.Coltrin, Ryan R.Wixom, David S.Dandy. Surfkin: A Program To Solve Transient And Steady State Heterogeneous Reaction Kinetics. Sandia National Laboratories. 2000.5
    [56] Mingliang Xie, Sebastian Bauer, Olaf Kolditz. Non-isothermal multicomponent reactive transport in partially saturated porous media: Part Ⅱ Application to bentonite. Technical report, University of Tubingen, Germany. 2004
    [57] M.Sauter, R.Liedl. Hydrogeochemical processes at the fracture/matrix boundary of fractured sandstones. 9th WRI Symposium, 1998: 905~908.
    [58] N.Neub, Heidelberg. A sparse-matrix storage method for adaptively solving large systems of reaction-diffusion-transport equations. Computing, 2002(68): 19~36.
    [59] N.F. Ghogomu, R. Therrien. Reactive mass transport modelling in discretely-fractured porous media. Universite Laval, Quebec, Canada
    [60] Plummer L.N, Geochemical modeling of water—rock interaction: Past, present, future. 7th WRI Symposium ,1992: 23~33.
    [61] Plummer L.N, Parkhurst D.L, Thorstenson D.C. Development of reaction models for groundwater systems. Geochimica et Cosmochimica Acta, 1983(47): 665~685.
    [62] Plummer L.N. Geochemical modeling: A comparison of forward and inverse methods. First Canadian/American Conference on Hydrogeology, Practical Applications of Ground Water Geochemistry. Worthington Ohio National Water Well Association, 1984: 149~177.
    [63] Plummet L.N, Back W. The mass balance approach: Applications to interpreting the chemical evolution of hydrologic systems. American Journal of Science, 1980(280): 130~142.
    [64] Plummer L.N, Busby J.F, Lee R.W etc. Geochemical modeling of Madison aquifer in parts of Montana, Wyoming, and South Dakota. Water Resources Research, 1990(26): 1981~2014.
    [65] Plummer L.N, Prestemon E.C, Parkhurst D.L. An interactive code (NETPATH) for modeling NET geochemical reactions along a flow PATH. U.S. Geological Survey Water-Resources Investigations Report, 1991.
    [66] Paul Brwn, Xiaolin Luo, Jhon Mooney. The modelling of flow and geochemical reactions in weste piles. 2nd International Conference on CFD in the Minerals and Process Industries, Melbourne, Australia. 1999: 169~174.
    [67] Paul T. Lin, Marzio Sala, John N. Shadid. Performance of Fully-Coupled Algebraic Multilevel Domain Decomposition Preconditioners for Incompressible Flow and Transport. International Journal for Numerical Methods in Engineering, 2002(2): 1~16.
    [68] P.P. Kostrobii, M.V. Tokarchuk, Y.A. Humenyuk. Nonequilibrium statistical operator method: Generalized transport equations of diffusion-reaction processes. The European Physical Journal B, 2003(364): 555~565.
    [69] Robert B.JANSEN (USA) , Deterioration or Failure of Dams—General Report. 13thICOLD Congress, New-Delphi (India), 1979.
    [70] Richard A. Waltz. Knitro (Version 4.0) an optimization software package—User's Manual. Ziena Optimization, Inc Northwestern University. 2004.10
    [71] Richard H. Byrd, Nicholas I.M. Gould, Jorge Nocedal. An Algorithm for Nonlinear Optimization Using Linear Programming and Equality Constrained Subproblems. Report, Optimization Technology Center. 2003.5
    [72] Rafael A Garcia-Delgado, Antonis D Koussis. Ground-water solute transport with hydrogeochemical reactions. Ground Water, 1997(35): 243~249.
    [73] Shen Chonggang, Zheng Liandi. Large Dam Construction in China over the Past Fifty Years. Electricity, 2000(4): 26~36.
    [74] S.L.Shvartsev. The water-rock system synergy. Earth Science Frontiers, 2001(1): 36~46.
    [75] Stephen. P, Roger. K. The Gaussian Hare and the Laplacian Tortoise: Computability of Squared-Error versus Absolute-Error Estimators. Statistical Science, 1997(12): 279~300.
    [76] Sergei Fedotoy. Front Propagation into an Unstable State of Reaction-Transport Systems. Physical Review Letters, 2001(86): 926~929.
    [77] Seongjai Kim. A Numerical Algorithm for Fluid Flow in 3D Naturally Fractured Porous Media. 1995.8: 1~39.
    [78] T.Roth, U.Marti. Aging of dam instrumentation. Dam Safety, Balkema, Rotterdam, 1998: 1091~1095.
    [79] T.Ekstrom. Degradation of concrete dams due to lime leaching. Dam Safety, Balkema, Rotterdam, 1998: 647~654.
    [80] T.P.Clement. RT3D (Version 1.0) A Modular Computer Code for Simulating Reactive Multi-species Transport in 3-Dimensional Groundwater Systems. US Department of Energy. 1997
    [81] Tianfu Xu, Eric Sonnenthal, Nicolas Spycher. Modelling multiphase non-isothermal fluid flow and reactive geochemical transport in variably saturated fractured rocks: applications to supergene copper enrichment and hydrothermal flows. American Journal of Science, 2001(301): 34~59.
    [82] Tianfu Xu, Karsten Pruess. Modelling multiphase non-isothermal fluid flow and reactive geochemical transport in variably saturated fractured rocks: Methodology. American Journal of Science, 2001(301): 16~33.
    [83] Tianfu Xu, Eric Sonnenthal, Nicolas Spycher. TOUGHREACT: A New Code of the TOUGH Family for Non-isothermal Multiphase Reactive Geochemical Transport in Variably Saturated Geologic Media. Technical report, Earth Sciences Division, Lawrence Berkeley National Laboratory. 2004. 5
    [84] Tianfu Xu, Eric Sonnenthal, Nicolas Spycher. Using Youghreact to Model Reactive Fluid Flow And Geochemical Transport In Hydrothermal Systems. GRC Annual Meeting, Morelia, Mexico. 2003: 1~12.
    [85] USCOLD, Lessons from Dam Incidents USAII: New-York, American Society of Civil Engineers, 1988.
    [86] United States Society on Dams(USSD), Ageing of Dam Foundations. USSD Committee on Foundations, 2001, 3.
    [87] USGS. User's guide to PHAST—A Program for Simulating Ground-Water Flow, Solute Transport, and Multicomponent Geochemical Reactions. 2004. 3
    [88] Vorgelegt von. Development and evaluation of a reactive hybrid transport model. Universitat zu Gottingen. PhD thesis. 2004
    [89] W.M.White. Geochemistry[M]. New York: Prentice Hall. 1999.9
    [90] W. E. Glassley, W. L. Bourcier, J. We Johnson. Review of Existing Reactive Transport Software. U.S. Department of Energy. 1998, 2.
    [91] W. Glassley, N.D. Rosenberg. Predicting Mineral Alteration at the Potential Nuclear Waste Repository at Yucca Mountain, NV With Reactive Transport Modeling. Technical report, Lawrence Livermore National Laboratory. 1998,4
    [92] Yunwei Sun, T.Prabhakar Clement. A Decomposition Method for Solving Coupled Multi-Species Reactive Transport Problems. Transport in Porous Media, 1999: 327~346.
    [93] Yueting Chen. Using Reactive Transport Modeling to Evaluate the Source Term at Yucca Mountain. Duke Engineering & Services. 2001
    [94] A.C.Lasaga,R.J.Kirpatrick(主编),朱金初等(译).地球化学过程动力学[M].北京:科学出版社.1989年.
    [95] 艾瑶,高明.玄武岩地区水—岩作用的数值模拟.水文地质工程地质,1998(3):9~16.
    [96] C.C.安托诺夫(荷兰)等.老化混凝土坝运行能力评价准则.水利水电快报,1995(24):18~21.
    [97] C.E.莫金列夫斯卡娅等.混凝土坝岩基的老化—工程地质状况.地质勘测,2002(24):1~2.
    [98] 曾溅辉.地下水地球化学模拟.地质论评,1993(6):490~495.
    [99] 陈家玮,杨瑞琰,鲍征宇.地球化学反应模型的发展及其应用.地质科技情报,2002(2):101~104.
    [100] 陈芸,高明.水—岩作用模型及其在水—玄武岩反应中研究中的应用.南京大学学报,1994(1):118~123.
    [101] 储茵.坝址环境水—岩作用研究.河海大学硕士学位论文,1997.3.
    [102] 方晓阳.21世纪环境岩土工程展望.岩土工程学报,2000(1):1~11.
    [103] 冯启言,韩宝平.任丘油田水文地球化学演化与水—岩作用研究[M].中国矿业大学出版社.2001年7月第1版.
    [104] 郭学鑫,李明.试论黄河下游重力式砌石坝工程的老化.人民黄河,1993(5):33~35.
    [105] 郭永海,沈照理,钟佐桑.河北平原地下水环境演化的地球化学模拟.中国科学,1997(4):360~365.
    [106] 篮俊康.山东淄博市临淄区地下水水—岩作用模型.桂林工学院学报,1996(4):410~414.
    [107] 李义连,杨玉环,卢学实.水—岩相互作用模拟的研究进展.水文地质工程地质,2003(3):95~99.
    [108] 李雨新,钱会.地下水化学组分存在形式计算方法.水文地质工程地质,1991(6):25~28.
    [109] 李宽良.水文地球化学热力学[M].北京:原能出版社.1993年.
    [110] 林宝玉.水工混凝土建筑物老化、病害及修补.全国第三届大坝安全学术讨论会论文集,1996.10:155~164.
    [111] 刘西拉.重大土木与水利工程安全性及耐久性的基础研究.土木工程学报,2001(6):1~7.
    [112] 刘西拉,方东平,宋晓冰.沿着结构“生命周期”的探索.中国土木工程学会第九届年会论文集,2001:3~11.
    [113] 罗建群,罗金好.水工混凝土建筑物老化病害及防治.北京:中国农业科技出版社,1995.9.
    [114] 马永锋,生晓高.大坝失事原因分析及对策探讨.人民长江,2001(10):53~55.
    [115] 马元珽.国际大坝委员会第21届全会技术问题评述.水利水电快报,2003(23):25~27.
    [116] 马晓辉,彭汉兴,杨光中.坝址环境与三峡坝基帷幕耐蚀性探讨.中国三峡建设,2001(3):22~23.
    [117] 马晓辉,彭汉兴,杨光中等.大坝环境水质特征与化学潜蚀.水利学报,2001(10):44~47.
    [118] 马晓辉,彭汉兴,杨光中.新安江大坝坝基页岩性状变化研讨.河海大学学报,1999(4):101~106.
    [119] 毛晓敏,刘翔,Barry D A.PHREQC在地下水溶质反应—运移模拟中的应用.水文地质工程地质,2004(2):20~24.
    [120] 彭汉兴,宋汉周,严安康等.新安江水电站坝址环境水特征与作用.水利学报,1994(2):40~45.
    [121] 钱天伟,李书绅,武贵宾.地下水多组分反应溶质迁移模型的研究进展.水科学进展,2002(1):116~121.
    [122] 饶纪龙.地球化学中的热力学[M].北京:科学出版社.1979年.
    [123] 汝乃华,牛运光.土石坝的事故统计和分析.大坝与安全,2001(1):31~37.
    [124] 沈崇刚.中国大坝建设现状及发展.中国电力,1999(12):12~19.
    [125] 沈照理.水文地球化学基础[M].北京:地质出版社,1986.
    [126] 沈照理,王焰新.水—岩相互作用研究的回顾与展望.中国地质大学学报,2002(2):127~133.
    [127] 石培泽,马金珠,赵华.民勤盆地地下水地球化学演化模拟.干旱区地理,2004(3):305~309.
    [128] 水工混凝土建筑物老化病害的防治及评估的研究.国家自然科学基金项目(59139090).北京:1996.
    [129] 宋恩来.国内几座大坝事故原因分析.大坝与安全,2000(2):41~44.
    [130] 宋汉周,周祖权.探查坝基帷幕体防渗缺陷的水文地球化学方法.大坝观测与土工测试,2001(2):13~16.
    [131] 谭凯旋,张哲儒,王中刚.矿物溶解的表面化学动力学机理.矿物学报,1994(3):207~214.
    [132] 汤连生,王思敬.水—岩化学作用对岩体变形破坏力学效应的研究进展.地球科学进展,1999(5):433~439.
    [133] 汤连生,王思敬.水—岩土化学作用与地质灾害防治.中国地质灾害与防治学报,1999(3):61~69.
    [134] 陶书明.黄河下游砌石坝老化问题不容忽视.治黄科技信息,1997(2):9~11.
    [135] 童海涛.新安江坝址区水—岩作用水文地球化学随机模拟.河海大学硕士学位论文,2003.3.
    [136] 童海涛,宋汉周.水—岩作用模拟的可信度分析及其应用初探.西部探矿工程,2003(7):67~69.
    [137] 童海涛,宋汉周.水—岩作用系统的随机水文地球化学模拟.水科学进展,2004(2):211~215.
    [138] 王广才,卢晓霞,陶澍等.地球化学模型的应用现状及发展趋势.煤炭学报,1997(2):117~121.
    [139] 王丽,王金生,林学钰.水文地球化学模型研究进展.水文地质工程地质,2003(6):105~109.
    [140] 王东胜,曾溅辉.地下水化学组分存在形式的计算及其意义.水文地质工程地质,1999(6):48~51.
    [141] 王广才,陶澍,沈照理等.平顶山矿区岩溶水水文地球化学模拟及其应用.中国科学,1998(3):245~249.
    [142] 王广才等.水—岩化学平衡模拟中误差传递及灵敏度分析.水文地质工程地质,1999(6):31~34.
    [143] 王广才,沈照理等.平顶山矿区岩溶水系统水—岩相互作用的随机水文地球化学模拟.水文地质工程地质,2000(3):9~11.
    [144] 王焰新,马腾,罗朝晖等.山西柳林泉域水—岩相互作用地球化学模拟.地球科学,1998(5):519~522.
    [145] 王锦国,周志芳,汤瑞凉.水—岩作用的线性规划模型与应用研究——以溪洛渡水电工程为例.水科学进展,1999(2):118~122.
    [146] 文冬光,沈照理,钟佐燊.水—岩相互作用的地球化学模拟理论及应用[M].中国地质大学出版社.1998年12月第1版.
    [147] 吴中如.老坝病变和机理探讨.中国水利,2000(9):55~57.
    [148] 杨保全,杨光中,叶桂萍.大坝坝基水质与渗流特征.河海大学学报,2001(2):91~95.
    [149] 张翠云,刘文生.河北平原浅层地下水地球化学演化模拟.地学前缘,1996(2):245~248.
    [150] 张丽萍.三峡坝区花岗岩风化分带的化学风化特征指标研究.浙江大学学报(理学版),2003(4):471~476.
    [151] 张丽萍,朱大奎,杨达源.长江三峡坝区花岗岩风化壳化学元素迁移特征.地理学报,2001(5):517~522.
    [152] 赵伦山,张本仁.地球化学[M].北京:地质出版社.1998年.
    [153] 郑西来,刘洪俊.山东氧化铝场地下水系统的环境地球化学反应模型.地球化学,1990(3):270~276.
    [154] 周翠英,彭泽英,尚伟等.论岩土工程中水—岩相互作用研究的焦点问题.岩土力学,2002(1):124~128.
    [155] 周祖权.平衡常数法和饱和指数法及其在水—岩作用模拟中的应用.河海大学硕士学位论文.2000.12
    [156] 朱艳红.龙滩水电站坝区水—岩化学作用及其环境工程地质效应研究.河海大学硕士学位论文.2002.5

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700