盐池地区地下水化学成分演化规律研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
宁夏回族自治区盐池县是我国北方水资源比较贫乏的地区之一,地下水资源是该地区的主要供水水源。但该地区地下水的TDS高,水质整体较差,并且氟离子含量高,导致了地方病的发生。针对该地区水资源短缺、水质差以及地方病广泛发生的情况,本文在收集整理分析资料的基础上,研究了盐池地区地下水化学演化规律及其形成机制。研究成果为地下水资源合理开发利用、地下水的污染防治以及地方病的防治提供了科学依据。这对于保证当地经济的可持续发展、缓解水资源短缺矛盾,保护盐池地区地下水资源具有重要的意义。主要研究内容和结论如下:
     (1)研究区地下水可分为松散岩类孔隙裂隙孔隙水和碎屑岩类裂隙孔隙水两大类型。主要含水岩组包括新生界含水岩组、罗汉洞含水岩组、环河含水岩组以及洛河组含水岩组,各含水岩组的地下水的补给、径流及排泄条件受到了地质、地貌条件的控制。
     (2)在对研究区地形地貌、水文地质条件及水循环特征进行分析的基础上,将区内地下水划分为三个系统,分别为:高沙窝一大水坑地下水系统、盐池—马坊地下水系统以及麻黄山地下水系统。
     (3)盐池地区新生界、罗汉洞及环河含水岩组地下水化学类型从上至下分别以SO_4·HCO_3型、SO_4·Cl型和SO_4·Cl型为主。新生界含水岩组和罗汉洞含水岩组的地下水化学成分受盐池南北分水岭的影响较大,以分水岭为界,地下水分布向东西两侧呈规律性变化;环河含水岩组的地下水化学分布总体上由南向北呈规律性变化。
     (4)研究区内地下水的δ~(18)O、δD同位素特征表明:盐池地区三个含水岩组的地下水均由大气降水补给;各层位地下水中~(14)C以及氚含量的测定结果证实,环河含水岩组的地下水径流缓慢,水交替程度较弱。
     (5)利用PHREEQC对水化学分析数据进行了水文地球化学模拟。对地下水组分存在形式和矿物饱和指数进行了计算;同时沿地下水流向,对各含水岩组进行了反向地球化学模拟。模拟结果显示:在各含水岩组的地下水径流方向上,石膏的溶解和阳离子交替吸附过程中Na~+的解吸占主导地位,而方解石、白云石以及岩盐等矿物在不同的路径上对地下水中化学成分都有着不同的影响。
     (6)盐池地区地下水化学成分的影响因素主要包括地质及水文地质条件、蒸发浓缩作用、土壤易溶盐含量以及水-岩相互作用等。对地下水中氟离子成因的研究表明,气候条件、特殊的水文地质条件以及水文地球化学特征的影响是形成高氟水的主要原因,并证明了萤石为F的主要矿物来源。论文最后对在高氟水区寻找优质水源提出了建议。
In the north area of China,water resource is one of the main restricts of development and environment.There is scarce of water in Yanchi area,where groundwater is one of major water supplies.In this area,the index of TDS is higher,the water quality is worse,and the fluorine ion consentration is high,these reasons caused the endemic disease occurrence. Based on field survey and analysis of the groundwater chemistry data,this paper studied the hydrochemical characteristics of groundwater in Yanehi area.The evolution and formation of chemical composition of groundwater were analyzed and discussed indetail.The research results provided scientific base for reasonable exploration,utilization and protect of groundwater resources,which was significant tomitigate the shortage of water resources.The results are summarized as following:
     (1) The groundwater is divided to pore and crevice water in loose rock zone and crevice and pore water in fragmentary rock zone,the main water bearing layers are the water bearing layer of Cenozoic Erathem,Luohandong,Huanhe and Luohe.The conditions of recharge、flow and drainage of groundwater are controlled by the geology and terrain congdition in every water bearing layer.
     (2) Based on the character of physiognomy、hydrogeological characteristic and the character of water cycle,this ground water system can be divided to three sections:the Gaoshawo—Dashuikeng groundwater system,the Yanchi—Mafang groundwater system;and the Mahuang hill groundwater system.
     (3) The watertype of the three water bearing layer is SO_4·HCO_3,SO4·C1 and SO4·C1.In the water bearing layer of Cenozoic Erathem and Luohandong,their distribution of groundwater is influented by the north and south watershed,along the watershed,the distribution have some rules;but,the distribution of groundwater in the water bearing layer of Huanhe have some rules from south to north.
     (4) By analyzing isotopeδ~(18)O,δD of the groundwater in Yanchi area,the conclusions are obtained that the groundwater is mainly recharged by precipitation;and by analyzing isotope ~(14)C and tritium consentration,the stream current is slowly and the extent of the water alternation is weak in the water bearing layer of Huanhe.
     (5) According to the result of PHREEQC modeled results,the chemical species in ground water and saturion indexes of minerals are obtained,and the backward geochemical model was carded on different physiognomies along the flow direction of groundwater.The results showed that:the dissolution of gypsum and desorption of Na~+ is the main effect in the three different water bearing layers,and the other minerals have different infection for the chemical composition of groundwater,such as calcite,dolomite,halite etc.
     (6) The influence of the chemical component in groundwater in Yanchi area content:the condition of geology and hydrogeology,the action of evaporation and concentrate,the concentration of salty soil and the water-rock interaction.This article emphatically conducts the analysis research to fluorine ion origin in the groundwater of Yanchi area.Finally indicated,in this groundwater fluorine exceeding the allowed figure primary cause includes: the influence of geology hydrogeological conditions,mineral dissolution or deposition and hydrochemical.Finally,seeks the water source in the high fluorine water district,proposed suggestion for changing the water quality.
引文
[1]沈照理主编.水文地球化学基础[M].地质出版社,1996
    [2]李佩成.试论人类水事活动的新思维[J].中国工程科学,2000,2(2):5-9
    [3]Hounslow A W.Water Quality Data:Analysis and Interpretation[M].Boca Raton:Lewis Pulisher,1995,38-126
    [4]Laura E.Toran,James A.Saundars,Modeling alternative paths of chemical evolution of Na-HCO3-type groundwater near Oak Ridge,Tennessee,USA,Hydrogeology Journal,1999,7:355-364
    [5]Chapelle F.H Groundwater geochemistry and calcite cementation of the Aquia Aquifer in SouthernMaryland[J].Water Resources Research,1983,19(2):545-558
    [6]KenoyerWisconsin.G.1.Bowse C.J.Grounnwater chemical evolution in a sandy silicate aquifer in Northerml.Patterns and rates of chamge[J].Water Resurces Research.1992,28(2):579-589
    [7]C.M.,Herman J.S.The eoect of aunit on the geochemical evolution ofgroundwater in the upper Floridian aquifer system[J].Journal of Hydrology.1994.153:139-155
    [8]Plummer L N,Busby J F,Lee R W et al.Geochemical Modeling of the Madison Aquifer in Parts of Montana,Wyoming,and South Dakota[M].Water Resources Research.1990,26(9):1981-2014.
    [9]Weidman C,Jones.G.Development of the mollusc Arctica islandica as a palaeoceanographic tool for reconstructing annual and seasonal records of Delta super 14C and delta super 180 in the mid-to-high-latitude North Atlantic ocean[C].The International Symposium on Applications of Isotope Techniques in Studying Past and Current Environmental Changes in the Hydrosphere and the Atmosphere,Vienna,Austria,1993,04/19-23,461-470.
    [10]Thomas James M,Welch Alan H,Preissler Alan M.Geochemical evolution of ground water in Smith Creek Valley.A hydrologically closed basin in central Nevada,USA[M].APPL GEOCHEM.1989,4(5),493-510.
    [11]曾溅辉.地下水地球化学模拟[J].地质论评.1993,490-495
    [12]冯启言,韩宝平著.任丘油田水文地球化学演化与水-岩作用[M].徐州:中国矿业大学出版社.2001
    [13]Wicks C.M.,Herman J.S.The effect of a unit on the geochemical evolution of groundwater in the upper Floridian aquifer system[J].Journal of Hydrology.1994.153:139-155.
    [14]Parhurst D.L,Thorstenson D.C.and Plummer L.N.,1980,PHREEQE-A computer program forgeochemical calculations[R].U.S.Geol.Surv.Water Resour.Invest.Rept.80-96,210p
    [15]Parhurst D.L Appelo C.A.J.,1999,User's guide to PHREEQC(Version2)-A computer program for speciation,batch-reaction,one-dimensional transport,and inverse geochemical calculations[R]U.S.Geol..Surv.Water atesour.Invest.Rept.99,42-59.
    [16]Plummer L N,Parkhurst D L,and Thorstenson D C.Development of reaction models for ground-water system[M].Geochim.Cosmochim.1982,665-686
    [17]Plummet L N,Parkhurst D L,Fleming G W,and Dunkle S A.A computer program incorporating Pitzer's equations for calculation of geochemical reactions in brines[M].U.S.Geological Survey.1988
    [18]Plummet L N,Prestemon E C,and Parkhurst D L.An interactive code(NETPATH) for geochemical reactions along a flow PATH.U.S.Geological Survey Water-Resources Investigations Report.1991,90-4078
    [19]马振民,何江涛,张锡明.荷泽凸起地下热水的水文地球化学特征及成因分析[J].山东地质.2000,16(2)-24-30
    [20]王珍岩,孟广兰,王少青.渤海莱州湾南岸第四纪地下卤水演化的地球化学模拟[J].海洋地质与第四纪地质.2003,23(1):49-53
    [21]阿里木·吐尔逊,徐卫亚,萨肯·塞麦提.坝基老化的反向水文地球化学模拟[J].水利水电科技进展.2006,26(5):14-17
    [22]张建立,潘懋,贾国东等.大庆齐家水源地水文地球化学环境的模拟[J].地球学报.2003,24(3):267-272
    [23]李义连,王焰新,周来茹等.地下水矿物饱和度的水文地球化学模拟分析--以娘子关泉域岩溶水为例[J].2002,21(1):32-36
    [24]李义连,王焰新,张江华等.娘子关泉域岩溶水硫酸盐污染的地球化学模拟分析.地球科学[J].2000,25(5):468-471
    [25]郭永海,沈照理.河北平原深层碱性淡水形成的水文地球化学模拟--以保定、沧州地区为例.地球科学-中国地质大学学报[J]。2002,27(2):157-162
    [26]郭永海,沈照理.河北平原地下水化学环境演化的地球化学模拟[J].中国科学(D辑).1997,27 (4):360-365
    [27]王焰新,马腾,罗朝晖等.山西柳泉域水-岩相互作用地球化学模拟[J].地球科学.1998,23(5):519-522
    [28]王广才,陶澍,沈照理等.平顶山矿区岩溶水系统水文地球化学模拟及其应用[J]冲国科学.1998,28(3):245-249
    [29]王广才,陶澍,沈照理等.平顶山矿区岩溶水系统水-岩相互作用的随机水文地球化学模拟[J].水文地质工程地质.2000,3:9-12
    [30]陈宗宇.天津市塘沽低温热储回灌的水-岩相互作用地球化学模拟[J].1998,23(5):513-518
    [31]李明,苏笑曦,潘自林.盐池县人畜饮水的现状和对策[J].宁夏工程技术,2004,3(4):395-397
    [32]陈德浪,马光明,王生英等.盐池县改饮低氟水八年防治地方性氟中毒效果[J].地方病通报,1993,8(3):49-52
    [33]杨建,李少剑,王改平.盐池地区地下水赋存规律与水化学特征研究[J].宁夏工程技术,2006,5(4):328-331
    [34]王晓娟.银川平原地下水化学成分演化规律及其形成机制研究[D].西安:长安大学,2005
    [35]Deutsch W J,Groundwater Geochemistry Fundamentats and Applications to Contamination,Boca Raton:Lewis Publisher,1997,3-73
    [36]钱会,马致远.水文地球化学[M].北京:地质出版社,2005:18-19
    [37]钱会.水溶液组分平衡分布计算及其水文地质应用[M].西安.西安地图出版社,2002
    [38]Helgeson H C,Evolution of irreversible reactions in geochemical process involving mineralsand aqueous solutions-T.Thermodynamic relations,Geochemical et Cosmochimica Acta,1968.(32):853-857
    [39]王焰新,郭华明,阎世龙等.浅层孔隙地下水系统环境演化及污染敏感性研究[M].北京.科学出版社,2004,141-143
    [40]B.J.Merkel B.Planer-Friedrich著,朱义年,王焰新译.地下水地球化学模拟的原理及应用[M].2005,75-84
    [41]宁夏区情编写组.宁夏区情[M].宁夏人民出版社,1988:646-653
    [42]李树培.吉林省氟病区环境特征及其演化[J].中国地方病学杂志,1987,6(1):25
    [43]南京大学地质系主编.地球化学[M].北京.中国科学出版社,1979
    [44]吴海银.饮水中化学成分与地方性氟中毒患病关系的调查报告[J].中国地方病学杂志,1987,6(5):302
    [45]咸树梅.高氟区改饮低氟水人群尿氟变化规律的探讨[M].地震出版社.1987:149
    [46]戴鸿麟.地方病环境水文地质[M].北京:地质出版社,1982:11-17
    [47]刘英俊,曹励明,李北麟等.元素地球化学[M].北京:科学出版社,1984
    [48]卢莉莉.运城盆地高氟地下水的分布及成因分析[J].地下水.2006,2(28):37
    [49]鲁孟胜,吴恩江,李明健.鲁西南浅层高氟地下水成因的水文地球化学研究[J].煤田地质与勘探.2001,29(5):39-43
    [50]冯超臣,黄文峰.鲁西南平原高氟地下水水文地球化学特征[J].山东国土资源.2005,21(5):39-43
    [51]陈履安.贵州高氟地下水的分类特征及其形成机理[J].贵州地质.2001,18(4):244-246
    [52]陈履安.贵州梵净山高氟碱性地下水的发现及其地球化学意义[J].地质地球化学.1996,4:57-59
    [53]陈履安,张势从.贵州和我国北方高氟地下水氟.钙相关特征比较及其形成机理[J].贵州地质.1992,9(4):377-382
    [54]韩洪伟,吴国学,王永祥等.高氟地下水在内蒙古赤峰地区的分布于形成初探[J].世界地质.2004,23(4):376-381

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700