基于阿霉素纳米粒子靶向药物输送体系的制备及其应用探讨
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文根据药物输送系统的要求,以生物相容材料介孔纳米硅粒子(MSN)、水溶性富勒烯(Fullerene)纳米粒子和嵌段共聚物胶束(P(DEMA-co-APMA)-b-PEGMA)为药物体,设计与合成了三种多功能化的纳米粒子药物输送系统。本论文的研究集中于多功能化药物输送系统的制备及其应用。研究发现,我们所制备的药物输送系统具有pH值响应、光动力疗法(PDT)和叶酸靶向等功能,期望能为癌症治疗药物输送体系中的设计、合成和癌症治疗等方面的应用提供一些有益的参考。本论文的主要研究内容和结果如下:
     (1)设计与合成了以介孔纳米硅粒子(MSN)为药物体的多功能化抗癌前体药物输送体系。研究表明,具有适当粒径(180nm)的MSN药物输送体系不会出现非特异性的细胞摄入;带有叶酸基的前药纳米粒子DOX-Hydrazone-MSN-FA对叶酸受体(FR)阳性细胞具有靶向功能,叶酸基具有增强纳米粒子被FR阳性细胞内吞噬的效果;药物分子阿霉素(DOX)与体通过酸敏感的羧酸腙键连接,使得此前体药物输送体系可以稳定于体内循环,而在酸性的环境下(肿瘤或癌细胞内)能快速地释放出游离的阿霉素。
     (2)设计与合成了以水溶性富勒烯(Fullerene)纳米粒子为药物体的多功能化抗癌前体药物输送体系。在此研究中,富勒烯纳米粒子表面上的大量亲水性齐聚乙二醇(OEG)链段、酸敏感羧腙键和酰胺键会导致分子间具有强烈相互作用(如氢键)的前药体系形成聚集体。我们通过优化和控制富勒烯表面上的功能化程度,把富勒烯聚集体的尺寸控制在135nm左右。抗癌药物阿霉素与水溶性富勒烯纳米粒子通过酸敏感羧腙键相连接,主动靶向分子叶酸(FA)通过酰胺化反应与富勒烯纳米粒子结合生成对FR阳性癌细胞具有靶向功能的前药体系。此外,用可以产生单线态氧的富勒烯(Fullerene)纳米粒子为药物体可以为癌症治疗提供一种具有的双效治疗(化疗和PDT)的方法。
     (3)设计与合成了以双pH值响应的嵌段共聚物胶束(P(DEMA-co-APMA)-b-PEGMA)为药物体的多功能化抗癌药物输送体系。在此项研究中,两嵌段共聚物P(DEMA-co-APMA)-b-PEGMA疏水部分中的碱基腺嘌呤(A)与U-(CH_2)_6-U中的碱基尿嘧啶(U)互补配对形成超分子交联嵌段共聚物。因为同时具有亲疏水性相互转换和非共价交联的特点,所以超分子交联双亲性嵌段共聚物在水溶液可自主装成胶束并且有双pH值响应能力。这种新型的双pH值响应胶束不仅具有与传统共价交联聚合物胶束相似的性质,而且还能在微酸性的环境下快速释放出药物DOX。此外,在双pH值响应胶束表面引入靶向配体叶酸(FA),即可以实现胶束药物输送系统对FR阳性肿瘤或癌细胞的靶向功能。
     综上所述,本研究所制备的多功能化抗癌药物输送体系具有增强治疗癌症药效和减少阿霉素(DOX)毒副作用的效果,可望为今后药物输送体系的研究与开发提供一些依据和技术支持。
The three multi-functional nanoparticle drug delivery systems based on bio-compatibleand water-soluble mesoporous silica nanoparticles, fullerene aggregates and block copolymermicelles (P(DEMA-co-APMA)-b-PEGMA) were designed and synthesized. This thesis ismainly focused on the preparation and application of multi-functional drug delivery systems.This study demonstrates that the multi-functional drug delivery systems have strong responseto mildly acid pH values and are capable of rapidly releasing DOX, active targeting and PDTinside the cells to yield significantly enhanced drug efficacy. We expect to provide someuseful insights for designing and improving the applicability of the multi-functional drugdelivery systems in targeted anticancer prodrug systems. The main contents and results of thisthesis are as follows:
     (1) A targeted anticancer prodrug system was fabricated with180nm mesoporoussilica nanoparticles (MSN) as carriers. The anticancer drug doxorubicin (DOX) wasconjugated to the particles through an acid-sensitive carboxylic hydrazone linker which iscleavable under the acidic conditions. Moreover, folic acid (FA) was covalently conjugated tothe particle surface as the targeting ligand for folate receptors (FR) over-expressed in somecancer cells. The in vitro release profiles of DOX from the MSN-based prodrug systemsshowed a strong dependence on the environmental pH values. Thus, with180nm MSN as thecarrier for the prodrug system, good drug loading, selective targeting and sustained release ofdrug molecules within targeted cancer cells can be realized.
     (2) A multi-functional anti-cancer prodrug delivery systems based on water-solublefullerene nanoparticles was designed and synthesized. For the synthesis of thefullerene-aggregate-based targeted prodrug, a hydrophilic oligo(ethylene glycol)(OEG) linkerwas first covalently incorporated onto fullerene through fullerenol and succinic acid conjugate.After that, DOXs were conjugated onto the fullerene through the acid-sensitive carboxylichydrazone which is cleavable under acidic conditions. Moreover, an active targeting ligand(folic acid, FA) was also linked onto the fullerene through amidation reaction for targeting theFR-positive cancer cells. The large amounts of hydrophilic OEG linkers, hydrazone groupsand amide groups on the surface of fullerene could lead to strong intermolecular interactions (such as hydrogen bonding), and accordingly the prodrug readily formed aggregates. The sizeof fullerene aggregates was controlled at ca.135nm by optimizing the amounts of theconjugated functional groups. In addition, fullerene aggregates capable of generating singletoxygen1O2can provide a new method of combination therapy (chemotherapy and PDT).
     (3) A multi-functional anti-cancer drug delivery system based on dual pH-responsiveblock copolymer micelles (P(DEMA-co-APMA)-b-PEGMA) was designed and synthesized.In the present work, the complementary adenine-uracil (A:U) base pair between A inhydrophobic core of micelles and cross-linker U-(CH_2)_6-U was employed to constructsupramolecular cross-linking block copolymers micelles (P (DEMA-co-APMA)-b-PEGMA).Benefiting from the reversible conversion between hydrophobicity and hydrophilicity in thecore of micelles and noncovalent cross-linking, P(DEMA-co-APMA)-b-PEGMA andU-(CH2)6-U could self-assemble into micelles with dual pH-responsive abilities in aqueoussolution. These novel stimuli-responsive micelles not only exhibited similar properties toconventional micelles from cross-linked micelles, but also rapid dual-pH response to mildacidic stimulus. Moreover, with folic acid as the targeting ligand, the cross-linked micellardrug delivery systems could be preferably internalized by FA-positive cells.
     In summary, the multifunctional anticancer drug delivery systems have the effect ofenhanced efficacy and reduced side effects of doxorubicin (DOX) and may provide someuseful insights and alternative approachs for future research and development of new drugdelivery systems.
引文
[1] Hanahan, D., Weinberg, R.A. The Hallmarks of Cancer[J]. Cell,2000,100,57-70.
    [2] Finkel, T., Serrano, M., Blasco, M.A. The common biology of cancer and ageing[J].Nature,2007,448,767-774.
    [3] Chambers, A.F.,Groom, A.C., MacDonald, I.C. Dissemination and growth of cancer cellsin metastatic sites[J].Nature Rev. Cancer,2002,2,563-572.
    [4] American Cancer Society, Cancer Facts and Figures2008.
    [5] Skeel, R.T., Ed. Handbook of Cancer Chemotherapy[J].Lippincott Williams and Wilkins:USA,2007.
    [6] Gottesman, M. M., Fojo, T., Bates, S.E. Multidrug resistance in cancer: role ofATP-dependent transporters[J]. Nat. Rev. Cancer2002,2,48-58.
    [7] Chabner, B.A., Roberts Jr., T.G. Chemotherapy and the war on cancer. Nat. Rev. Cancer2005,5,65-72.
    [8] Kamb, A.; Wee, S., Lengauer, C. Why is cancer drug discovery so difficult?[J]. Nat. Rev.Drug Discov,2007,6,115-120.
    [9] Rautio, J., Kumpulainen, H., Heimbach, T., et al. Prodrugs: design and clinicalapplications[J].Nat. Rev. Drug Discov,2008,7,255-270.
    [10]Albert A.Chemical aspects of selective toxicity[J]. Nature,1958,182:421-423.
    [11]Sinkula A.A.Prodrug in design of biopharmceutical properties through prodrugs andanaloges.In:Roche E.B.ed[J].APA&APS.Washington,1977:76-77
    [12]刘剑锋,徐文方.新药研究的前药原理[J].齐鲁药事,2005,24,99-103.
    [13]张姑,翻司英,长思玲.前药设计在改善抗癌药物特性中的应用[J].研发前洽,2007,28(l):47-51
    [14] Sinhababu, A.K., Thakker, D.R. Prodrugs of anticancer agents[J].Advanced DrugDelivery Reviews,1996,19,241-273.
    [15] Hwang, Jimmy J., Marshall, John L. Capecitabine: fulfilling the promise of oralchemotherapy[J].Expert Opinion on Pharmacotherapy,2002,3(6),733-743.
    [16] Takiuchi, H., Ajani, J.A. Uracil-tegafur in gastric carcinoma: a comprehensivereview[J].J. Clin. Oncol,1998,16,2877-2885.
    [17] Myheren, F., Balzarini, J., Sandvold, M.L., et al. Antitumor activity of P-4055(elaidicacid-cytarabine) compared to cytarabine in metastatic and s.c. human tumor xenograftmodels[J]. Cancer Res.,1999,59,2944-2949.
    [18] Boddy, A.V., Yule, S.M. Metabolism and pharmacokinetics of oxazaphosphorines.Clinical pharmacokinetics. Clin. Pharmacokinet.2000,38,291.
    [19] Han, H.-K., Amidon, G.L. Targeted prodrug design to optimize drug delivery[J]. AAPSPharmsci,2000,2,(1): E6.
    [20] Denny, A. Prodrug strategies in cancer therapy[J].Eur. J. Med. Chem,2001,36,577-595.
    [21] Silva, A.T.A., Chung, M.C., Castro, L.F., et al. Advances in prodrug design[J]. Mini Rev.Med. Chem.2005,5,893-914.
    [22] Kratz, F., Muller, I.A., Ryppa, C., et al. Prodrug strategies in anticancer chemotherapy[J].Chemmedchem,2008,3,20-53.
    [23] Juillerat-Jeanneret L, Schmitt F.Chemical modification of therapeutic drugs or drugvector systems to achieve targeted therapy: looking for the grail[J]. Medicinal researchreviews,2007,27(4),574-590.
    [24]Y. Lu, J. Yang, E. Sega. Issues related to targeted delivery of proteins and peptides[J].AAPS J,2006,8, E466-478.
    [25] Duncan, R. The dawning era of polymer therapeutics[J].Nat. Rev. Drug Discov,2003,2,347-360.
    [26] Duncan, R. Polymer conjugates as anticancer nanomedicines[J].Nat. Rev. Cancer,2006,6,688-701.
    [27] Maeda, H. The enhanced permeability and retention (EPR) effect in tumor vasculature:the key role of tumor-selective macromolecular drug targeting[J]. Adv. Enzyme Regu,2001,41,189-207.
    [28] C.P. Leamon, P.S. Low. Delivery of macromolecules into living cells: a method thatexploits folate receptor endocytosis[J]. Proc. Natl. Acad. Sci. U. S. A,1991,88,5572–5576.
    [29] C.P. Leamon, P.S. Low. Membrane folate-binding proteins are responsible for folate–protein conjugate endocytosis into cultured cells[J].Biochem. J,1993,291,855–860.
    [30] R.J. Lee, S. Wang, P.S. Low. Measurement of endosome pH following folatereceptor-mediated endocytosis[J].Biochim. Biophys. Acta,1996,1312,237–242.
    [31] Wang, S., Lee, R.J., Mathias, C.J., et al. Synthesis, purification, and tumor cell uptake of67Gadeferoxamine-folate, a potential radiopharmaceutical for tumor imaging[J].Bioconjug.Chem,1996,7,56–62.
    [32] Mathias, C.J., Wang, S., Lee, R.J., et al. Green.Tumor-selective radiopharmaceuticaltargeting via receptor-mediated endocytosis of Gallium-67-deferoxamine-folate[J].J. Nucl.Med,1996,37,1003–1008.
    [33] Mathias, C.J., Wang, S., Waters, D.J., et al. Indium-111-DTPA-folate as a potentialfolatereceptor-targeted radiopharmaceutical, J. Nucl. Med,1998,39,1579–1585.
    [34] Ilgan, S., Yang, D.J., Higuchi, T., et al.99mTc-Ethylenedicysteine-folate: a new tumorimaging agent. Synthesis, labeling and evaluation in animals[J]. Cancer Biother. Radiopharm,1998,13,427–435.
    [35] Guo, W., Hinkle, G.. H., Lee, R.J.99mTc-HYNIC-folate: a novel receptor-based targetedradiopharmaceutical for tumor imaging[J]. J. Nucl. Med,1999,40,1563–1569.
    [36] Linder, K.E., Wedeking, P., Ramalingam, K., et al. In vitro and in vivo studies with a-and g-isomers of99mTc-OXA-Folate show uptake of both isomers in folate-receptor (+) KBcell lines[J]. Proc.47th Annu. Meet. Soc. Nucl. Med,2000,41(5):119.
    [37] Leamon, C.P., Parker, M.A., Vlahov, I.R.., et al. Synthesis and biological evaluation ofEC20: a new folate-derived99mTc-based radiopharmaceutical[J].Bioconjug. Chem,2002,13(6),1200–1210.
    [38] Konda, S.D., Aref, M., Brechbiel, M., et al. Development of a tumor-targeting MRcontrast agent using the highaffinity folate receptor[J]. Invest. Radiol,2000,35,50–57.
    [39] Ladino, C.A., Chari, R.V.J., Bourret, L.A., et al. Goldmacher.Folate-maytansinoids:target-selective drugs of low molecular weight[J]. Int. J. Cancer,1997,73,859–864.
    [40] Lee, J.W., Lu, J.Y., Low, P.S., et al. Synthesis and evaluation of taxol–folic acidconjugates as targeted antineoplastics(dagger)[J].Bioorg. Med. Chem,2002,10,2397–2414.
    [41] Steinberg, G., Borch, R.F.Synthesis and evaluation of pteroic acid-conjugatednitroheterocyclic phosphoramidates as folate receptor-targeted alkylating agents[J].J. Med.Chem,2001,44,69–73.
    [42] Aronov, O., Horowitz, A.T., Gabizon, A., D. Gibson.Folate targeted PEG as a potentialcarrier for Carboplatin analogs. Synthesis and in vitro studies[J].Bioconjug. Chem,2003,14,563–574.
    [43] Liu, J., Kolar, C., Lawson, T.A., et al. Targeted drug delivery to chemoresistant cells:folic acid derivatization of FdUMP[10] enhances cytotoxicity toward5-FU-resistant humancolorectal tumor cells[J].J. Org. Chem.,2001,66,5655–5663.
    [44] Citro, G., Szczylik, C., Ginobbi, P., et al. Inhibition of leukaemia cell proliferation byfolic acid-polylysine-mediated introduction of c-myb antisense oligodeoxynucleotides intoHL-60cells[J] Br. J. Cancer,1994,69,463–467.
    [45] Li, S., Huang, L.Targeted delivery of antisense oligodeoxynucleotides by LPDII[J].J.Liposome Res.,1997,7,63–75.
    [46] Li, S., Huang, L. Targeted delivery of antisense oligodeoxynucleotides formulated in anovel lipidic vector[J].J. Liposome Res,1998,8,239–250.
    [47] Li, S., Deshmukh, H.M., Huang, L.Folate-mediated targeting of antisenseoligonucleotides to ovarian cancer cells[J].Pharm. Res,1998,15,1540–1545.
    [48] Leopold, L.H., Shore, S.K., Newkirk, T.A., et al. Multi-unit ribozyme-mediated cleavageof bcr-abl mRNA in myeloid leukemias[J]. Blood,1995,85,2162–2170.
    [49] Ward, C.M., Acheson, N., Seymour, L.M. Folic acid targeting of protein conjugates intoascites tumor cells from ovarian cancer patients[J].J. Drug Target,2000,8,119–123.
    [50] Lu, J.Y., Lowe, D.A., Kennedy, M.D., et al. Folate-targeted enzyme prodrug cancertherapy utilizing penicillin-V amidase and a doxorubicin prodrug[J]. J. Drug Target.,1999,7,43–53.
    [51] C.P. Leamon, P.S. Low. Cytotoxicity of momordin–folate conjugates in cultured humancells[J].J. Biol. Chem,1992,267,24966–24971.
    [52] C.P. Leamon, P.S. Low. Selective targeting of malignant cells with cytotoxin–folateconjugates[J].J. Drug Target,1994,2,101–112.
    [53] Kranz, D.M., Patrick, T.A., Brigle, K.E., et al. Conjugates of folate andanti-T-cell-receptor antibodies specifically target folate-receptor-positive tumor cells forlysis[J].Proc. Natl. Acad. Sci. U. S. A,1995,92,9057–9061.
    [54] Cho, B.K., Roy, E.J., Patrick, T.A., et al. Single-chain Fv/folate conjugates mediateefficient lysis of folate-receptorpositive tumor cells[J]. Bioconjug. Chem.,1997,8,338–346.
    [55] Kranz,D.M., Manning, T.C., Rund, L.A., et al. Targeting tumor cells with bispecificantibodies and T cells[J].J. Control. Release,1998,53,77–84.
    [56] Rund, L.A., Cho, B.K., Manning, T.C., et al. Bispecific agents target endogenous murineT cells against human tumor xenografts[J].Int. J. Cancer,1999,83,141–149.
    [57] Lee, R.J., Low, P.S. Delivery of liposomes into cultured KB cells via folatereceptor-mediated endocytosis[J]. J. Biol. Chem,1994,269,3198–3204.
    [58] Lee, R.J., Low, P.S. Folate-mediated tumor cell targeting of liposome-entrappeddoxorubicin in vitro[J]. Biochim. Biophys. Acta,1995,1233,134–144.
    [59] Vogel, K., Wang, S., Lee, R.J., J. Lee, R.J., Low, P.S. Peptide-mediated release offolate-targeted liposome contents from endosomal compartments[J].J. Am. Chem.Soc.,1996,118,1581–1586.
    [60] Rui, Y., Wang, S., Low, P.S., Lee, R.J., Low, P.S.Diplasmenylcholine-folate liposomes:an efficient vehicle for intracellular drug delivery[J].J. Am. Chem. Soc,1998,120,11213–11218.
    [61] Gabizon, A., Horowitz, A.T., Goren, D., Lee, R.J., Low, P.S. Targeting folatereceptorwith folate linked to extremities of poly(ethylene glycol)-grafted liposomes: in vitro studies[J].Bioconjug. Chem,1999,10,289–298.
    [62] Zhang, Y., Kohler, N., Zhang, M. Surface modification of superparamagnetic magnetitenanoparticles and their intracellular uptake[J]. Biomaterials,2002,23,1553–1561.
    [63] Oyewumi, M.O., Mumper, R.J.Engineering tumor-targeted gadolinium hexanedionenanoparticles for potential application in neutron capture therapy[J].Bioconjug. Chem.,2002,13,1328–1335.
    [64] Oyewumi, M.O., Mumper, R.J. Influence of formulation parameters on gadoliniumentrapment and tumor cell uptake using folate-coated nanoparticles[J]. Int. J. Pharm.,2003,251,85–97.
    [65] Gottschalk, S., Cristiano, R.J., Smith, L.C., et al. Folate receptor mediated DNA deliveryinto tumor cells: potosomal disruption results in enhanced gene expression[J].Gene Ther.,1994,1,185–219
    [66] Mislick, K.A., Baldeschwieler, J.D., Kayyem, J.F., et al. Transfection of folate–polylysine DNA complexes: evidence for lysosomal delivery[J].Bioconjug. Chem.,1995,6,512–515.
    [67] Douglas, J.T., Rogers, B.E., Rosenfeld, M.E., et al. Targeted gene delivery bytropismmodified adenoviral vectors. Nat. Biotechnol,1996,14,1574–1578.
    [68] Leamon, C.P., Weigl, D., Hendren, R.W. Folate copolymer-mediated transfection ofcultured cells[J]. Bioconjug. Chem.,1999,10,947–957.
    [69] Guo, W., Lee, R.J.Receptor-targeted gene delivery via folateconjugated polyethylenimine[J].AAPS PharmSci,1999,1(4), E19.
    [70] Reddy, J.A., Dean, D., Kennedy, M.D., et al. Optimization of folate-conjugatedliposomal vectors for folate receptor-mediated gene therapy[J]. J. Pharm. Sci.,1999,88,1112–1118.
    [71] Reddy, J.A., Low, P.S.Enhanced folate receptor mediated gene therapy using a novelpH-senistive lipid formulation[J].J. Control. Release,2000,64,27–37.
    [72] Reddy, J.A., Abburi, C., Hofland, H., et al. Folate-targeted, cationic liposome-mediatedgene transfer into disseminated peritoneal tumors[J].Gene Ther.,2002,9,1542–1550.
    [73] Hofland, H.E., Masson, C., Iginla, S., et al. Folate-targeted gene transfer in vivo[J].Molec.Ther.,2002,5,739–744.
    [74] Leamon, C.P., DePrince, R.B., Hendren, R.W. Folate-mediated drug delivery: effect ofalternative conjugation chemistry[J].J. Drug Target,1999,7,157–169.
    [75] Leamon, C.P., Cooper, S.R., Hardee, G.E. Folate-liposome-mediated antisenseoligodeoxynucleotide targeting to cancer cells: evaluation in vitro and in vivo[J].Bioconjug.Chem.,2003,14,738–747.
    [76] Feener, E.P., Shen, W. C., Ryser, H.J.P. Cleavage of disulfide bonds in endocytosedmacromolecules[J].J. Biol. Chem.,1990,265,18780–18785.
    [77] McIntyre, G.D., Scott, C.F., Ritz, J., et al. Preparation and characterization ofinterleukin-2–gelonin conjugates made using different cross-linking reagents[J].Bioconjug.Chem.,1994,5,88–97.
    [78] Leamon, C.P., Pastan, I., Low, P.S. Cytotoxicity of folate–pseudomonas exotoxinconjugates toward tumor cells[J].J. Biol.Chem.,1993,268,24847–24854.
    [79] Liu, C., Tadayoni, B.M., Bourret, L.A., et al. Eradication of large colon tumor xenograftsby targeted delivery of maytansinoids[J].Proc. Natl. Acad. Sci. U. S. A.,1996,93,8618–8623.
    [80] Neville, D.M., Srinivasachar, K., Stone, R., et al. Enhancement of immunotoxin efficacyby acid-cleavable cross-linking agents utilizing diphtheria toxin and toxin mutants[J].J. Biol.Chem.,1989,264,14653–14661.
    [81] Hamann, P.R., Hinman, L.M., Beyer, C.F., et al. Flowers, I. Bernstein.An anti-CD33antibody–calicheamicin Calicheamicin conjugate for treatment of acute myeloid leukemia.Choice of linker[J]. Bioconjug. Chem.,2002,13,40–46.
    [82] Hamann, P.R., Hinman, L.M., Hollander, I., et al. a potent and selective anti-CD33antibody–calicheamicin conjugate for treatment of acute myeloid leukemia[J].Bioconjug.Chem.,2002,13,47–58.
    [83] Arcamone, F. Doxrubicin Anticancer Antibiotics[J].Academic Press: New York,1981,chapter2.
    [84]Wiernik, P.H., Crooke, S.T., Reich, S.D., et al. Current Status and New Developments[J].Academic Press: New York,1980;273–294.
    [85]Dorr, R.T., Von Hoff, D.D. Cancer Chemotherapy Handbook,2ndEd[J]. Appleton andLange: New York,1994.
    [86] Begley, D.J., Bradbury, M.W., Kreuter, J. The Blood-Brain Barrier and Drug Delivery tothe CNS[J].Marcel Dekker Inc., New York,2000
    [87] Julyan, P.J., Seymour, L.W., Ferry, D.R., et al. Preliminary clinical study of thedistribution of HPMA copolymers bearing doxorubicin and galactosamine[J]. J. Control.Release,1999,57,281-290.
    [88] Seymour, L.W., Ferry, D.R., Anderson, D., et al. Hepatic drug targeting: phase Ievaluation of polymer-bound doxorubicin[J]. J. Clin. Oncol,2002,20,1668-1676.
    [89] P. Chaudhuri, A., Paraskar, S., Soni, R. A., et al. Fullerenol-cytotoxic conjugates forcancer chemotherapy[J].ACS Nano,2009,3,2505-2514.
    [90] Chaudhuri, P., Harfouche, R., Soni, S., et al. Shape Effect of Carbon Nanovectors onAngiogenesis[J].ACS Nano,2010,4(1),574-582.
    [91] Prabaharan, M., Grailer, J.J., Pilla, S., et al. Amphiphilic multi-arm-block copolymerconjugated with doxorubicin via pH-sensitive hydrazone bond for tumor-targeted drugdelivery[J]. Biomaterials,2009,30,5757–5766.
    [92] Prabaharan,M.,Grailer, J. J., Pilla, S.,et al. Gold nanoparticles with a monolayer ofdoxorubicin-conjugated amphiphilic block copolymer for tumor-targeted drug delivery[J].Biomater,2009,30,6065–6075.
    [93] Bae, Y., Jang, W.D., Nishiyama, N., et al. Multifunctional polymeric micelles withfolate-mediated cancer cell targeting and pH-triggered drug releasing properties for activeintracellular drug delivery[J]. Mol. BioSyst.,2005,1,242–250.
    [94] Lee, Y., Park, S. Y., Mok, H., et al. Synthesis, Characterization, Antitumor Activity ofPluronic Mimicking Copolymer Micelles Conjugated with Doxorubicin via Acid-CleavableLinkage[J]. Bioconjugate Chem,2008,19,525–531.
    [95] Rousselle, C., Clair, P., Lefauconnier, J.-M., et al. J. New advances in the transport ofdoxorubicin through the blood-brain barrier by a peptide vectormediated strategy[J]. Mol.Pharmacol,2000,57(4),679–686.
    [96] Remsen, L.G., Trail, P.A., Hellstrom, I., et al. Enhanced delivery improves the efficacy ofa tumor-specific doxorubicin immunoconjugate in a human brain tumor xenograft model[J].Neurosurgery,2000,46(3),704–709.
    [97] Chen, Q., Sowa, D. A., Cai, J., Gabathuler, R. Synthesis of Doxorubicin ConjugatesThrough Hydrazone Bonds to Melanotransferrin P97[J]. Synthetic Communications,2003,33(14),2377-390.
    [98] Zhu, Y., Fang, Y., Kaskel, S. Folate-Conjugated Fe3O4@SiO2Hollow MesoporousSpheres for Targeted Anticancer Drug Delivery[J]. J. Phys. Chem. C,2010,114,16382–16388
    [99] Wang, D., Su, Yue., Jin, C., et al. Supramolecular Copolymer Micelles Based on theComplementary Multiple Hydrogen Bonds of Nucleobases for Drug Delivery[J].Biomacromolecules,2011,12(4),1370-1379
    [100] Dougherty, T., Gomer, C., Henderson, B., et al. Photodynamic therapy[J].J. Natl. CancerInst.1998,90,889-905.
    [101] Wilson, B. C., Patterson, M. S. The physics, biophysics and technology ofphotodynamic therapy[J].Phys. Med. Biol,2008,53, R61-109.
    [102] Josefsen Leanne B, Boyle Ross W.Photodynamic therapy and the development ofmetal-based photosensitisers[J]. Metal-based drugs,2008,2008,276109.
    [103] Pervaiz, S., Olivo, M. Art and science of photodynamic therapy[J].Clin. Exp. Pharmacol.Physiol,2006,33,551-556.
    [104] Castano, A. P., Mroz, P., Hamblin, M. R. Photodynamic therapy and anti-tumourimmunity[J]. Nat. ReV. Cancer,2006,6,535-545.
    [105] Konan, Y. N., Gurny, R., E. Alle′mann.State of the art in the delivery of photosensitizersfor photodynamic therapy[J]. J. Photochem. Photobiol. B,2002,66,89-106.
    [106] Wang, K., He, Q., Yan, X., et al. Encapsulated photosensitive drugs by biodegradablemicrocapsules to incapacitate cancer cells[J]. Mater. Chem,2007,17,4018-4021.
    [107] Derycke, A. S. L., Witte P. A. M. Liposomes for photodynamic therapy. Adv. DrugDelivery Rev.2004,56,17-30.
    [108] Choi, Y., McCarthy, J. R., Weissleder, R.., et al. Conjugation of a photosensitizer to anoligoarginine-based cell-penetrating peptide increases the efficacy of photodynamictherapy[J].ChemMedChem2006,1,458-463.
    [109] Nostrum, C. F., Polymeric micelles to deliver photosensitizers for photodynamictherapy[J]. Adv. Drug Delivery Rev,2004,56,9-16. b) J. Taillefer, M.-C. Jones, N. Brasseur, J.E. Vanlier, J.-C. Leroux.Preparation and characterization of pH-responsive polymeric micellesfor the delivery of photosensitizing anticancer drugs[J].J. Pharm. Sci,2000,89,52-62.
    [110] a) Wang, S., Gao, R., Zhou, F., et al. Nanomaterials and singlet oxygen photosensitizers:potential applications in photodynamic therapy[J]. J. Mater. Chem,2004,14:487-493.b)Ohulchanskyy, T. Y., Roy, I., Goswami, L. N., et al. Organically modified silicananoparticles with covalently incorporated photosensitizer for photodynamic therapy ofcancer[J]. Nano. Lett.,2007,7:2835-2842. c) Roy, I., Ohulchanskyy, T. Y., Pudavar, H. E., etal. Ceramic-based nanoparticles entrapping water-insoluble photosensitizing anticancer drugs:a novel drug-carrier system for photodynamic therapy[J]. J. Am. Chem. Soc.,2003,125:7860-7865.
    [111] Hsiung-Lin Tu., Yu-Shen Lin., Hsia-Yu Lin., et al. In vitro Studies of FunctionalizedMesoporous Silica Nanoparticles for Photodynamic Therapy [J].Adv. Mater,2009,21,172–177.
    [112] Bo Tian, Chao Wang., Shuai Zhang., et al. Photothermally Enhanced PhotodynamicTherapy Delivered by Nano-Graphene Oxide [J].ACS Nano,2011,5(2),7000–7009.
    [112] Boseung Jang, Jin-Young Park, Ching-Hsuan Tung, et al. Gold Nanorod-PhotosensitizerComplex for Near-Infrared Fluorescence Imaging and Photodynamic/Photothermal TherapyIn Vivo [J].ACS Nano,2011,5(2),1086–1094
    [113] Kratz, F., Müller, I. A., Ryppa, C., et al. Prodrug strategies in anticancerchemotherapy[J]. ChemMedChem,2008,3(1),20-53
    [114] Leamon, C. P., Reddy, J. A., Folate-targeted chemotherapy[J]. Advanced Drug DeliveryReviews,2004,56(8),1127-1141
    [115] Singh, Y., Palombo, M., Sinko, P. J. Recent trends in targeted anticancer prodrug andconjugate design[J].Current Medicinal Chemistry,2008,15(18),1802-1826
    [116] Tsume, Y., Hilfinger, J. M., Amidon, G. L. Enhanced Cancer Cell Growth Inhibition byDipeptide Prodrugs of Floxuridine: Increased Transporter Affinity and MetabolicStability[J].Molecular Pharmaceutics,2008,5(5),717-727
    [117] Sun, J., Dahan, A., Amidon, G. L., Enhancing the Intestinal Absorption of MoleculesContaining the Polar Guanidino Functionality: A Double-Targeted ProdrugApproach[J].Journal of Medicinal Chemistry,2010,53(2),624-632.
    [118] Ochs, C. J., Such, G. K., Yan, Y., et al. Biodegradable Click Capsules with EngineeredDrug-Loaded Multilayers[J]. ACS Nano,2010,4(3),1653-1663.
    [119] Rosenholm, J. M., Meinander, A., Peuhu, E., et al. Targeting of Porous Hybrid SilicaNanoparticles to Cancer Cells[J].ACS Nano,2009,3(1),197-206.
    [120] Sun, Y., Chen, Z. L., Yang, X. X., et al. Magnetic chitosan nanoparticles as a drugdelivery system for targeting photodynamic therapy[J]. Nanotechnology,2009,20(13),135102.
    [121] Zhang, W., Rong, J., Wang, Q., et al. The encapsulation and intracellular delivery oftrehalose using a thermally responsive nanocapsule[J]. Nanotechnology,2009,20(27),275101
    [122] Diez-Torrubia, A., Garcia-Aparicio, C., Cabrera, S., et al. Application of the DipeptidylPeptidase IV (DPPIV/CD26) Based Prodrug Approach to Different Amine-ContainingDrugs[J]. Journal of Medicinal Chemistry,2010,53(2),559-572.
    [123] Nesher, M., Vachutinsky, Y., Fridkin, G.., et al. Reversible Pegylation Prolongs theHypotensive Effect of Atrial Natriuretic Peptide[J]. Bioconjugate Chemistry,2008,19(1),342-348.
    [124] Li, Y., Xian, Q. R., Maitani, Y., et al. PEG-PLA diblock copolymer micelle-likenanoparticles as all-trans-retinoic acid carrier: in vitro and in vivo characterizations[J].Nanotechnology,2009,20(5),055106
    [125] Peng, C., Tsai, H., Yang, S., et al. Development of thermosensitivepoly(n-isopropylacrylamide-co-((2-dimethylamino) ethyl methacrylate))-based nanoparticlesfor controlled drug release[J]. Nanotechnology,2011,22(26),265608
    [126] Chen, Y., Chen, H., Ma, M., et al. Double mesoporous silica shelledspherical/ellipsoidal nanostructures: Synthesis and hydrophilic/hydrophobic anticancer drugdelivery[J]. Journal of Materials Chemistry,2011,21(14),5290-5298.
    [127] Chaudhuri, P., Paraskar, A., Soni, S., et al. Fullerenol-Cytotoxic Conjugates for CancerChemotherapy[J]. ACS Nano,2009,3(9),2505-2514.
    [128] Yang, X. Q., Grailer, J. J., Pilla, S., et al.Tumor-Targeting, pH-Responsive, and StableUnimolecular Micelles as Drug Nanocarriers for Targeted Cancer Therapy[J]. BioconjugateChemistry,2010,21(3),496-504.
    [129] Meng, H., Xue, M., Xia, T., et al. Use of Size and a Copolymer Design Feature ToImprove the Biodistribution and the Enhanced Permeability and Retention Effect ofDoxorubicin-Loaded Mesoporous Silica Nanoparticles in a Murine Xenograft TumorModel[J]. ACS Nano,2011,5(5),4131-4144.
    [130] Liong, M., Lu, J., Kovochich, M., et al. Multifunctional Inorganic Nanoparticles forImaging, Targeting, and Drug Delivery[J]. ACS Nano,2008,2(5),889-896.
    [131] Wang, L. S., Wu, L. C., Lu, S. Y., et al. Biofunctionalized Phospholipid-CappedMesoporous Silica Nanoshuttles for Targeted Drug Delivery: Improved Water Suspensibilityand Decreased Nonspecific Protein Binding[J]. ACS Nano,2010,4(8),4371-4379.
    [132] Chen, J., Zeng, F., Wu, S., et al. Photoreversible fluorescent modulation of nanoparticlesvia one-step miniemulsion polymerization[J]. Small,2009,5(8),970-978.
    [133] Chen, J., Zeng, F., Wu, S., et al. A core-shell nanoparticle approach to photoreversiblefluorescence modulation of a hydrophobic dye in aqueous media[J]. Chemistry--A EuropeanJournal,2008,14(16),4851-4860.
    [134] Meng, S., Su, B., Li, W., Chen, J., Zeng, F., Wu, S., et al. Enhanced antitumor effect ofnovel dual-targeted paclitaxel liposomes[J]. Nanotechnology,2010,21(41),415103
    [135] Qin, G., Li, Z., Xia, R., et al. Partially polymerized liposomes: stable against leakage yetcapable of instantaneous release for remote controlled drug delivery[J]. Nanotechnology,2011,22(15),155605.
    [136] Chu, C., Wang, Y., Huang, H., et al. Ultrafine PEG-coated poly(lactic-co-glycolic acid)nanoparticles formulated by hydrophobic surfactant-assisted one-pot synthesis for biomedicalapplications[J]. Nanotechnology,2011,22(18),185601.
    [137] Gou, M., Shi, H., Guo, G., et al. Improving anticancer activity and reducing systemictoxicity of doxorubicin by self-assembled polymeric micelles[J]. Nanotechnology,2011,22(9),095102.
    [138] Frasconi, M., Deriu, D., Annibale, A. D., et al. Nanostructured materials based on theintegration of ferrocenyl-tethered dendrimer and redox proteins on self-assembled monolayers:an efficient biosensor interface[J]. Nanotechnology,2009,20(50),505501.
    [139] Guével, X. L., Daum, N., Schneider, M. Synthesis and characterization of humantransferrin-stabilized gold nanoclusters[J]. Nanotechnology,2011,22(27),275103.
    [140] Prabaharan, M., Grailer, J. J., Pilla, S., et al. Gold nanoparticles with a monolayer ofdoxorubicin-conjugated amphiphilic block copolymer for tumor-targeted drug delivery[J].Biomaterials,2009,30(30),6065-6075.
    [141] Ke, H., Xing, Z., Zhao, B., et al. Quantum-dot-modified microbubbles with bi-modeimaging capabilities[J]. Nanotechnology,2009,20(42),425105.
    [142] Bagalkot, V., Zhang, L. F., Levy-Nissenbaum, E., et al. Quantum Dot-AptamerConjugates for Synchronous Cancer Imaging, Therapy, and Sensing of Drug Delivery Basedon Bi-Fluorescence Resonance Energy Transfer[J]. Nano Letters,2007,7(10),3065-3070.
    [143] Yu, M. K., Park, J., Jeong, Y. Y., et al. Integrin-targeting thermally cross-linkedsuperparamagnetic iron oxide nanoparticles for combined cancer imaging and drugdelivery[J]. Nanotechnology,2010,21(41),415102.
    [144] Wang, F. H., Kim, D. K., Yoshitake, T., et al. Diffusion and clearance ofsuperparamagnetic iron oxide nanoparticles infused into the rat striatum studied by MRI andhistochemical techniques[J]. Nanotechnology,2011,22(1),015103.
    [145] Guo, Z., Du, Y., Liu, X., Ng, S., et al. Enantioselectively controlled release of chiraldrug (metoprolol) using chiral mesoporous silica materials[J]. Nanotechnology,2010,21(16),165103.
    [146] Su, Y., Qiao, S., Yang, H., et al.Titanate-silica mesostructured nanocables: synthesis,structural analysis and biomedical applications[J]. Nanotechnology,2010,21(6),065604.
    [147] Harris, T. J., von Malzahn, G., Bhatia, S. N. Multifunctional nanoparticles for cancertherapy[J]. Nanotechnology for Cancer Therapy,2007,59-75.
    [148] Kresge, C.T, Leonowicz, M. E, Roth, W. J, V., et al. Ordered mesoporous molecularsieves synthesized by a liquid-crystal template mechanism[J]. Nature,1992,359(6397),710-712.
    [149] Huh S, Wiench J W, Yoo J H, Pruski M and Lin V S Y. Organic Functionalization andMorphology Control of Mesoporous Silicas via a Co-Condensation Synthesis Method[J].Chemistry of Materials,2003,15(22),4247-4256.
    [150] Lu, J., Liong, M., Li, Z. X., et al. Biocompatibility, Biodistribution, and Drug-DeliveryEfficiency of Mesoporous Silica Nanoparticles for Cancer Therapy in Animals[J]. Small,2010,6(16),1794-1805.
    [151] Lee, C. H., Lo, L. W., Mou, C. Y., et al. Synthesis and characterization ofpositive-charge functionalized mesoporous silica nanoparticles for oral drug delivery of ananti-inflammatory drug[J]. Advanced Functional Materials,2008,18(20),3283-3292.
    [152] Meng, H., Liong, M., Xia, T., et al. Engineered Design of Mesoporous SilicaNanoparticles to Deliver Doxorubicin and P-Glycoprotein siRNA to Overcome DrugResistance in a Cancer Cell Line[J]. ACS Nano,2010,4(8),4539-4550.
    [153] Park, C. Y., Lee, K., Kim, C. Photoresponsive cyclodextrin-covered nanocontainers andtheir sol-gel transition induced by molecular recognition[J]. Angewandte Chemie,International Edition,2009,48(7),1275-1278.
    [154] Zhao, Y. L., Li, Z. X., Kabehie, S., et al. pH-Operated Nanopistons on the Surfaces ofMesoporous Silica Nanoparticles[J]. J. Am. Chem. Soc.,2010,132(37),13016-13025.
    [155] Zhao, Y. N., Trewyn, B. G., Slowing, I. I., et al. Mesoporous Silica Nanoparticle-BasedDouble Drug Delivery System for Glucose-Responsive Controlled Release of Insulin andCyclic AMP[J]. J. Am. Chem. Soc.,2009,13,8398-8400.
    [156] Lai, C. Y., Trewyn, B. G., Jeftinija, D.M., et al. A mesoporous silica nanosphere-basedcarrier system with chemically removable CdS nanoparticle caps for stimuli-responsivecontrolled release of neurotransmitters and drug molecules[J]. J. Am. Chem. Soc.,2003,125,4451-4459.
    [157] Liu, R., Zhao, X., Wu, T., et al.Tunable Redox-Responsive Hybrid NanogatedEnsembles[J]. J. Am. Chem. Soc.,2008,130,14418-14419.
    [158] Vivero-Escoto, J. L., Slowing, I. I., Wu, C. W., et al. Photoinduced IntracellularControlled Release Drug Delivery in Human Cells by Gold-Capped Mesoporous SilicaNanosphere[J]. J. Am. Chem. Soc.,2009,131,3462-3463.
    [159] Lee, C. H,, Cheng, S. H., Huang, I. P., et al. Intracellular pH-Responsive MesoporousSilica Nanoparticles for the Controlled Release of Anticancer Chemotherapeutics[J]. Angew.Chem. Int. Ed.,2010,49,8214-8219.
    [160] Lin, Q., Huang, Q., Li, C., Bao, C., et al. Anticancer Drug Release from a MesoporousSilica Based Nanophotocage Regulated by Either a One-or Two-Photon Process[J]. J. Am.Chem. Soc.,2010,132,10645–106547.
    [161] Rosenholm, J. M., Peuhu, E., Bate-Eya, L. T., et al. Cancer-cell-specific induction ofapoptosis using mesoporous silica nanoparticles as drug-delivery vectors[J]. Small,2010,6,1234–1241.
    [162] Zhang, X., Clime, L., Roberge, H., et al. pH-Triggered Doxorubicin Delivery Based onHollow Nanoporous Silica Nanoparticles with Free-Standing Superparamagnetic Fe3O4Cores[J]. J. Phys. Chem. C.,2011,1151436-1443.
    [163] Vivero-Escoto, J. L., Slowing, I. I., Trewyn, B. G., et al. Mesoporous silicananoparticles for intracellular controlled drug delivery[J]. Small,2010,6,1952-1967.
    [164] Kim, T. W., Slowing, I. I., Chung, P. W., et al. Ordered Mesoporous Polymer SilicaHybrid Nanoparticles as Vehicles for the Intracellular Controlled Release ofMacromolecules[J]. ACS Nano,2011,5,360-366.
    [165] Zhao, Y. N., Sun, X. X., Zhang, G. N., et al. Mesoporous Polymer-Silica HybridNanoparticles as Vehicles for the Intracellular Controlled Release of Macromolecules[J].ACSNano,2011,5,1366-1375.
    [166] Kobler, J., M ller, K., Bein, T. Colloidal Suspensions of Functionalized MesoporousSilica Nanoparticles[J]. ACS Nano,2008,2,791-799.
    [167] Sauer, A, M,, Schlossbauer, A., Ruthardt, N., et al. Role of Endosomal Escape forDisulfide-Based Drug Delivery from Colloidal Mesoporous Silica Evaluated by Live-CellImaging[J]. Nano Lett.,2010,10,3684-3691.
    [168] Cauda, V., Engelke, H., Sauer, A., et al. Colchicine-Loaded Lipid Bilayer-Coated50nmMesoporous Nanoparticles Efficiently Induce Microtubule Depolymerization upon CellUptake[J]. Nano Lett.,2010,10,2484-2492.
    [169] Kim, H., Kim, S., Park, C. Y., et al.Glutathione-Induced Intracellular Release of Guestsfrom Mesoporous Silica Nanocontainers with Cyclodextrin Gatekeepers[J]. Adv. Mater.,2010,22,4280-4283.
    [170] Leane, M. M., Nankervis, R., Smith, A., et al. Use of the ninhydrin assay to measure therelease of chitosan from oral solid dosage forms[J]. Int. J. Pharm.,2004,271,241-249.
    [171] Schmalenberg, K. E., Frauchiger, L., Nikkhouy-Albers, L., et al.Cytotoxicity of aunimolecular polymeric micelle and its degradation products[J]. Biomacromolecules,2001,2,851-855.
    [172] Slowing, I. I., Trewyn, B. G., Lin, V. S. Y. Effect of surface functionalization ofMCM-41-type mesoporous silica nanoparticles on the endocytosis by human cancer cells[J]. J.Am. Chem. Soc.,2006,128,14792-14793.
    [173] Yu, K. O., Grabinski, C. M., Schrand, A. M., et al. Toxicity of amorphous silicananoparticles in mouse keratinocytes[J]. J. Nanopart. Res.,2009,11,15-24.
    [174] Gillies, E. R., Frechet, J. M. J. pH-responsive copolymer assemblies for controlledrelease of doxorubicin[J]. Bioconjugate Chem.,2005,16,361-368.
    [175] Lee, C. C., Cramer, A. T. Frechet, J. M. J. An intramolecular cyclization reaction isresponsible for the in vivo inefficacy and apparent pH insensitive hydrolysis kinetics ofhydrazone carboxylate derivatives of doxorubicin[J]. Bioconjugate Chem.,2006,17,1364-1368.
    [176] Prabaharan, M., Grailer, J. J., Pilla, S., et al. Amphiphilic multi-arm-block copolymerconjugated with doxorubicin via pH-sensitive hydrazone bond for tumor-targeted drugdelivery[J]. Biomaterials,2009,30,5757-5766.
    [177] Nakamura, E., Isobe.H., Functionalized Fullerenes in Water. The First10Years ofTheir Chemistry, Biology, and Nanoscience[J]. Acc. Chem. Res.,2003,36,807-815.
    [178] Feng, L., Slanina, Z., Sato, S., et al. Covalently Linked Porphyrin-La@C82Hybrids:Structural Elucidation and Investigation of Intramolecular Interactions[J]. Angew. Chem. Int.Ed.,2011,50,5909–5912.
    [179] Mateo-Alonso, A., Guldi, D. M., Paolucci, F., et al. Fullerenes: multitask components inmolecular machinery[J]. Angew. Chem. Int. Ed.,2007,46,8120–8126.
    [180] Homma,T., Harano, K., Isobe, H., et al. Nanometer-Sized Fluorous Fullerene Vesiclesin Water and on Solid Surfaces[J]. Angew. Chem. Int. Ed.,2010,49,1665–1668.
    [181] Wang, G., Liu, T., Jiao M., et al. The Cycloaddition Reaction of Ih-Sc3N@C80with2-Amino-4,5-diisopropoxybenzoic Acid and Isoamyl Nitrite to Produce an Open-CageMetallofullerene[J]. Angew. Chem. Int. Ed.,2011,50,4658–4662.
    [182] D. M. Guldi. Fullerene-porphyrin architectures; photosynthetic antenna and reactioncenter models[J]. Chem. Soc. Rev.,2002,31,22-36.
    [183] Isobe, H., Nakanishi, W., Tomita, N., et al. Nonviral Gene Delivery by TetraaminoFullerene[J]. Mol. Pharm.,2006,3,124-134.
    [184] Ikeda, A., Doi, Y., Hashizume, M., et al. An extremely effective DNA photocleavageutilizing functionalized liposomes with a fullerene-enriched lipid bilayer[J]. J. Am. Chem.Soc.,2007,129,4140-4141;.
    [185] Cecioni, S., Oerthel, V., Iehl, J., et al. Synthesis of Dodecavalent Fullerene-BasedGlycoclusters and Evaluation of Their Binding Properties towards a Bacterial Lectin[J]. Chem.Eur. J.,2011,17,3252–3261.
    [186] Zakharian, T. Y., Seryshev, A., Sitharaman, et al. A Fullerene-paclitaxelchemotherapeutic: synthesis, characterization, and study of biological activity in tissueculture[J]. J. Am. Chem. Soc.,2005,127,12508.
    [187] Lu, F., Haque, S. A., Yang, S., et al. Aqueous Compatible Fullerene-DoxorubicinConjugates[J]. J. Phys. Chem. C,2009,113,17768–17773.
    [188] Chaudhuri, P., Harfouche, R., Soni, S., et al. Shape effect of carbon nanovectors onangiogenesis[J]. ACS Nano,2010,4,574-582.
    [189] Pickering, K. D., Wiesner, M. R. Fullerol-sensitized production of reactive oxygenspecies in aqueous solution[J]. Environ. Sci. Technol.,2005,39,1359-1365.
    [190] Hotze, E. M., labille, J., Alvarez, P., et al. Mechanisms of Photochemistry and ReactiveOxygen Production by Fullerene Suspensions in Water[J]. Environ. Sci. Technol.,2008,42,4175–4180.
    [191] Yamakoshi, Y., Umezawa, N., Ryu, A., et al. Active Oxygen Species Generated fromPhotoexcited Fullerene (C60) as Potential Medicines: O-.bul.2versus1O2[J]. J. Am. Chem.Soc.,2003,125,12803-12809.
    [192] Pawlicki, M., Collins, H. A., Denning, R. G., et al. Two-photon absorption and thedesign of two-photon dyes[J]. Angew. Chem. Int. Ed.,2009,48,3244–3266.
    [193] Knop, K., Hoogenboom, R., Fischer, D., et al. Poly(ethylene glycol) in Drug Delivery:Pros and Cons as Well as Potential Alternatives[J]. Angew. Chem. Int. Ed.,2010,49,6288–6308.
    [194] Zhao, B., He, Y., Bilski, P. J., et al. Pristine (C60) and hydroxylated [C60(OH)24]fullerene phototoxicity towards HaCaT keratinocytes: type I vs type II mechanisms[J]. Chem.Res. Toxicol.,2008,21,1056–1063; g) S. Y. Park, H. J. Baik, Y. T. Oh, K. T. Oh, Y. S. Youn,E. S. Lee. A smart polysaccharide/drug conjugate for photodynamic therapy[J]. Angew.Chem. Int. Ed.,2011,50,1644–1647.
    [195] Schmalenberg, K. E., Frauchiger, L., Nikkhouy-Albers, L., et al.Cytotoxicity of aunimolecular polymeric micelle and its degradation products[J]. Biomacromolecules,2001,2,851-855.
    [196] Slowing, I. I., Trewyn, B. G., Lin, V. S. Y. Effect of surface functionalization ofMCM-41-type mesoporous silica nanoparticles on the endocytosis by human cancer cells[J].J. Am. Chem. Soc.,2006,128,14792-14793.
    [197] Yu, K. O., Grabinski, C. M., Schrand, A. M., et al. Toxicity of amorphous silicananoparticles in mouse keratinocytes[J]. J. Nanopart. Res.,2009,11,15-24.
    [198] Nabeshi, H., Yoshikawa, T., Matsuyama, K., et al. Systemic distribution, nuclear entryand cytotoxicity of amorphous nanosilica following topical application[J]. Biomaterials,2011,32,2713-2724.
    [199] Prabaharan, M., Grailer, J. J., Pilla, S., et al. Amphiphilic multi-arm-block copolymerconjugated with doxorubicin via pH-sensitive hydrazone bond for tumor-targeted drugdelivery[J]. Biomaterials,2009,30,5757–5766.
    [200] Bae, Y., Jang, W., Nishiyama, N., et al. Multifunctional polymeric micelles withfolate-mediated cancer cell targeting and pH-triggered drug releasing properties for activeintracellular drug delivery[J]. Mol. BioSyst,2005,1,242–250.
    [201] Yang, X., Grailer, J. J., Pilla, S., et al. Tumor-Targeting, pH-Responsive, and StableUnimolecular Micelles as Drug Nanocarriers for Targeted Cancer Therapy[J]. BioconjugateChem.,2010,21,496–504.
    [202] Bae, Y., Nishiyama, N., Kataoka, K. In Vivo Antitumor Activity of theFolate-Conjugated pH-Sensitive Polymeric Micelle Selectively Releasing Adriamycin in theIntracellular Acidic Compartments[J]. Bioconjugate Chem.,2007,18,1131-1139.
    [203] Gillies, E. R., Frechet, J. M. J.. pH-responsive copolymer assemblies for controlledrelease of doxorubicin[J]. Bioconjugate Chem.,2005,16,361-368.
    [204] Lee, C. C., Cramer, A. T., Frechet, J. M. J. An intramolecular cyclization reaction isresponsible for the in vivo inefficacy and apparent pH insensitive hydrolysis kinetics ofhydrazone carboxylate derivatives of doxorubicin[J]. Bioconjugate Chem.,2006,17,1364-1368.
    [205] Prabaharan, M., Grailer, Pilla, J. J., S., et al. Gold nanoparticles with a monolayer ofdoxorubicin-conjugated amphiphilic block copolymer for tumor-targeted drug delivery[J].Biomaterials,2009,30,6065-6075.
    [206] Tu, H. L., Lin, Y. S., Lin, H. Y., Y. et al. In vitro studies of functionalized mesoporoussilica nanoparticles for photodynamic therapy[J]. Adv. Mater.,2009,21,172–177.
    [207] Kataoka, K., Harada, A., Nagasaki, Y. Block copolymer micelles for drug delivery:design, characterization and biological significance[J]. Advanced drug delivery reviews,2001,47(1),113-131.
    [208] Arimura, H., Ohya, Y., Ouchi, T. Formation of Core Shell Type BiodegradablePolymeric Micelles from Amphiphilic Poly(aspartic acid)-block-Polylactide DiblockCopolymer[J].Biomacromolecules,2005,6,720–725.
    [209] Wang, Y. C., Tang, L. Y., Sun, T. M., et al.Self-Assembled Micelles of BiodegradableTriblock Copolymers Based on Poly(ethyl ethylene phosphate) and Poly(ε-caprolactone) asDrug Carriers[J]. Biomacromolecules2007,9,388–395.
    [210] Liu, J. Y., Pang, Y., Huang, W., et al. Self-Assembly of phospholipid-analogoushyperbranched polymers nanomicelles for drug delivery[J]. Biomaterials2010,31,1334–1341.
    [211] Liu, J. Y., Huang, W., Pang, Y., et al. Self-Assembled Micelles from an AmphiphilicHyperbranched Copolymer with Polyphosphate Arms for Drug Delivery[J].Langmuir2010,26,10585–10592.
    [212] R€osler, A., Vandermeulen, G. W. M., Klok, H.-A. Advanced drug delivery devices viaself-assembly of amphiphilic block copolymers[J]. Advanced drug delivery reviews,2001,53,95–108.
    [213] Zhang, L. F., Eisenberg, A. Multiple Morphologies and Characteristics of “Crew-Cut”Micelle-like Aggregates of Polystyrene-b-poly(acrylic acid) Diblock Copolymers in AqueousSolutions[J].J. Am. Chem. Soc.1996,118,3168–3181.
    [214] Liu, J. Y.,, Huang, W., Pang, Y., et al. The in vitro biocompatibility of self-assembledhyperbranched copolyphosphate nanocarriers[J]. Biomaterials2010,31,5643–5651.
    [215] Kwon, G. S., Kataoka, K. Block copolymer micelles as long-circulating drugvehicles[J]. Advanced drug delivery reviews,1995,16295–309.
    [216] Kwon, G. S., Okano, T. Adv. Polymeric micelles as new drug carriers[J]. Advanceddrug delivery reviews,1996,21,107–116.
    [217] Ko, J., Park, K., Kim, Y. S., et al. Tumoral acidic extracellular pH targeting ofpH-responsive MPEG-poly(β-amino ester) block copolymer micelles for cancer therapy[J].Journal of Controlled Release,2007,123,109–115.
    [218] Xue, Y. N., Huang, Z. Z., Zhang, J. T. et al.Synthesis and self-assembly of amphiphilicpoly(acrylic acid-b-DL-lactide) to form micelles for pH-responsive drug delivery[J]. Polymer2009,50,3706–3713.
    [219] Yang, Y. Q., Zheng, L. S., Guo, X. D. et al. pH-Sensitive Micelles Self-Assembledfrom Amphiphilic Copolymer Brush for Delivery of Poorly Water-Soluble Drugs[J].Biomacromolecules2010,12,116–122.
    [220] Lavasanifar, A., Samuel, J., Kwon, G. S. Poly(ethylene oxide)-block-poly(L-amino acid)micelles for drug delivery[J].Advanced drug delivery reviews,2002,54,169–190.
    [221] Gaucher, G., Dufresne, M. H., Sant, V. P., et al. Block copolymer micelles: preparation,characterization and application in drug delivery[J]. Journal of Controlled Release,109,169–188.
    [222] Kataoka, K., Harada, A., Nagasaki, Y. Block copolymer micelles for drug delivery:design, characterization and biological significance[J]. Advanced drug delivery reviews,2001,47,113–131.
    [223] Bae, Y. H., Yin, H. Stability issues of polymeric micelles[J]. Journal of ControlledRelease,2008,131,2–4.
    [224] Chen, H., Kim, S., He, W., et al. Fast release of lipophilic agents from circulatingPEG-PDLLA micelles revealed by in vivo forster resonance energy transferimaging.[J]Langmuir2008,24,5213–5217.
    [225] Xu, P., Gullotti, E., Tong, L., et al. Intracellular drug delivery by poly(lactic-co-glycolicacid) nanoparticles, revisited[J]. Mol. Pharmaceutics2009,6,190–201.
    [226] Jiwpanich, S., Ryu, J.-H., Bickerton, S., et al. Noncovalent Encapsulation Stabilities inSupramolecular Nanoassemblies[J]. J. Am. Chem. Soc.2010,132,10683–10685.
    [227] Huang, H. Y., Kowalewski, T., Remsen, E. E., et al. Hydrogel-Coated GlassyNanospheres: A Novel Method for the Synthesis of Shell Crosslinked Knedels[J]. J. Am.Chem. Soc.1997,119,11653–11659.
    [228] Zhang, Q., Remsen, E. E., Wooley, K. L. Shell Cross-Linked Nanoparticles ContainingHydrolytically Degradable, Crystalline Core Domains[J]. J. Am. Chem. Soc.2000,122,3642–3651.
    [229] Weaver, J. V. M., Tang, Y. Q., Liu, S. Y., et al. Preparation of shell cross-linkedmicelles by polyelectrolyte complexation[J]. Angewandte Chemie, International Edition,2004,43,1389–1392.
    [230] Li, Y., Lokitz, B. S., McCormick, C. L. Thermally responsive vesicles and theirstructural "locking" through polyelectrolyte complex formation[J]. Angewandte Chemie,International Edition,2006,45,5792–5795.
    [231] Joralemon, M. J., O’Reilly, R. K., Hawker, C. J., et al. Shell click-crosslinked (SCC)nanoparticles: a new methodology for synthesis and orthogonal functionalization[J]. J. Am.Chem. Soc.2005,127,16892–16899.
    [232] Thurmond, K. B., Kowalewski, T., Wooley, K. L. Water-Soluble Knedel-like Structures:The Preparation of Shell-Cross-Linked Small Particles[J].J. Am. Chem. Soc.1996,118,7239–7240.
    [233] Thurmond, K. B., Kowalewski, T., Wooley, K. L. hell Cross-Linked Knedels: ASynthetic Study of the Factors Affecting the Dimensions and Properties of AmphiphilicCore-Shell Nanospheres[J].J. Am. Chem. Soc.1997,119,6656–6665.
    [234] Read, E. S., Armes, S. P. Recent advances in shell cross-linked micelles[J]. Chem.Commun.2007,3021–3035.
    [235] Lee, E. S., Na, K., Bae, Y. H. Super pH-Sensitive Multifunctional PolymericMicelle[J].Nano Lett.2005,5,325–329.
    [236] Zhu, L. J., Shi, Y. F., Tu, C. L., et al. Construction and Application of a pH-SensitiveNanoreactor via a Double-Hydrophilic Multiarm Hyperbranched Polymer[J]. Langmuir2010,26,8875–8881.
    [237] Ulbrich, K., Subr, V. Polymeric anticancer drugs with pH-controlled activation[J]. Adv.Drug Delivery Rev.2004,56,1023–1050.
    [238] Jung, J., Lee, I. H., Lee, E., et al. pH-Sensitive Polymer Nanospheres for Use as aPotential Drug Delivery Vehicle[J]. Biomacromolecules2007,8,3401–3407.
    [239] Chen, W., Meng, F. H., Cheng, R., et al. pH-Sensitive degradable polymersomes fortriggered release of anticancer drugs: A comparative study with micelles[J]. J. ControlledRelease2010,142,40–46.
    [240] Shuai, X. T., Ai, H., Nasongkla, N., et al. Micellar carriers based on block copolymersof poly(.vepsiln.-caprolactone) and poly(ethylene glycol) for doxorubicin delivery[J]. J.Controlled Release2004,98,415–426.
    [241] Oh, K. T., Yin, H. Q., Lee, E. S., et al. Polymeric nanovehicles for anticancer drugswith triggering release mechanisms[J]. J. Mater. Chem.2007,17,3987–4001.
    [242] Sun, H. L., Guo, B. N.,Cheng, R., et al. Biodegradable micelles with sheddablepoly(ethylene glycol) shells for triggered intracellular release of doxorubicin[J]. Biomaterials2009,30,6358–6366.
    [243] Xu, P., Kirk, E. A. V., William, J. M., et al. Anticancer Efficacies ofCisplatin-Releasing pH-Responsive Nanoparticles[J]. Biomacromolecules2006,7,829-835
    [244] M€uller, A., Talbot, F., Leutwyler, S. Hydrogen Bond Vibrations of2-Aminopyridine2-Pyridone, a Watson-Crick Analogue of Adenine Uracil[J]. J. Am. Chem. Soc.2002,124,14486–14494.
    [245] Becke, F., Hagen, H. Badische Anilin&Soda-Fabrik Aktiengesellschaft: Germany,1968.
    [246] Thang, S. H., Chong, Y. K., Mayadunne, R. T. A., et al. A novel synthesis of functionaldithioesters, dithiocarbamates, xanthates and trithiocarbonates[J]. Tetrahedron Lett.1999,40,2435-2438.
    [247] Schmalenberg, K. E., Frauchiger, L., Nikkhouy-Albers, L., et al. Cytotoxicity of aunimolecular polymeric micelle and its degradation products[J]. Biomacromolecules2001,2,851-855.
    [248] Slowing, I., Trewyn, B. G., Lin, Vi. S.-Y. Effect of Surface Functionalization ofMCM-41-Type Mesoporous Silica Nanoparticles on the Endocytosis by Human CancerCells[J]. J. Am. Chem. Soc.2006,128,14792-14793.
    [249] Yu, K. O., Grabinski, C. M., A Schrand,. M., et al. Toxicity of amorphous silicananoparticles in mouse keratinocytes[J]. J. Nanopart. Res.2009,11,15-24.
    [250] Nabeshi, H., Yoshikawa, T., Matsuyama, K., et al. Acute phase proteins as biomarkersfor predicting the exposure and toxicity of nanomaterials[J]. Biomaterials2011,32,2713-2724.
    [251] Shuai, X. T., Ai, H., Nasongkla, N., et al. Micellar carriers based on block copolymersof poly(epsilon-caprolactone) and poly(ethylene glycol) for doxorubicin delivery[J]. J.Controlled Release2004,98,415–426.
    [252] Prabaharan, M., Grailer, J. J., Pilla, S., et al. Amphiphilic multi-arm-block copolymerconjugated with doxorubicin via pH-sensitive hydrazone bond for tumor-targeted drugdelivery[J]. Biomaterials2009,30,5757–5766.
    [253] Bae, Y., Jang, W., Nishiyama, N., et al. Multifunctional polymeric micelles withfolate-mediated cancer cell targeting and pH-triggered drug releasing properties for activeintracellular drug delivery[J]. Mol. BioSyst,2005,1,242–250.
    [254] Yang, X., Grailer, J. J., Pilla, S., et al. Tumor-Targeting, pH-Responsive, and StableUnimolecular Micelles as Drug Nanocarriers for Targeted Cancer Therapy[J]. BioconjugateChem.2010,21,496–504.
    [255] Bae, Y., Nishiyama, N., Kataoka, K.. In vivo antitumor activity of the folate-conjugatedpH-sensitive polymeric micelle selectively releasing adriamycin in the intracellular acidiccompartments[J]. Bioconjugate Chem.2007,18,1131-1139.
    [256] Gillies, E. R., Frechet, J. M. J.. pH-responsive copolymer assemblies for controlledrelease of doxorubicin[J]. Bioconjugate Chem.2005,16,361-368.
    [257] Lee, C. C., Cramer, A. T., Frechet, J. M. J. Intramolecular Cyclization Reaction IsResponsible for the in Vivo Inefficacy and Apparent pH Insensitive Hydrolysis Kinetics ofHydrazone Carboxylate Derivatives of Doxorubicin[J]. Bioconjugate Chem.2006,17,1364-1368.
    [258] Prabaharan, M., Grailer, J. J., Pilla, S., et al. Gold nanoparticles with a monolayer ofdoxorubicin-conjugated amphiphilic block copolymer for tumor-targeted drug delivery[J].Biomaterials2009,30,6065-6075.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700