甜樱桃(Prunus avium L.)果实发育期氮素代谢特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本实验以甜樱桃品种“红灯”(Prunus avium L. var. Hongdeng)为试材,于2009-2010年在山东农业大学园艺实验站进行,利用稳定性同位素~(15)N示踪技术,研究了在果实发育关键时期叶面施入~(15)N-尿素各器官对肥料的吸收、分配和利用特性;研究了在控释肥作用下,不同形态的氮素对甜樱桃生长发育的影响,旨在为生产上指导樱桃合理施用氮肥,实现樱桃的高产、优质提供理论与实践依据。研究结果如下:
     1.叶片最高吸收速率发生在涂抹~(15)N-尿素后6h,平均吸收速率为0.11503 mg/g·h,涂抹24h达吸收的最高峰,为0.9353mg/g,之后开始下降,下部叶和新梢中~(15)N含量在24h有所增长,24h达到最高峰,达到0.1205mg/g、0.1401mg/g,二者含量基本一致。梢顶嫩叶中~(15)N含量高于下部叶和新梢,含量相对稳定,未出现明显的吸收峰值。这说明甜樱桃叶片吸收、运转~(15)N-尿素可以同时进行,吸收主要发生在涂抹后24h之内。
     2.各个器官Ndff%均在24h时达到了最高峰,随后Ndff%持续下降并趋于稳定。叶片涂抹~(15)N-尿素168h后,各器官Ndff%依次为新梢﹥梢顶嫩叶﹥下部叶。这表明:早春叶面喷施尿素,甜樱桃吸收~(15)N-尿素优先分配到新梢和嫩叶等新生器官中,而向下仅有少量的运输。
     3.叶片不同部位对~(15)N-尿素的吸收效果不同,正面+背面全部涂抹的叶片~(15)N吸收量最高,背面次之,正面涂抹的最低。叶片正面、背面和正面+背面在6h时吸收迅速,然后平缓增长,在48h均达到吸收高峰,之后开始下降。正面~(15)N含量一直维持在很低的水平,在48h时达到高峰为0.2081mg/g·DW。
     4.果实不同发育期涂抹~(15)N-尿素,叶片吸收~(15)N优先分配到新生器官(叶片、新梢、果实)中,用于植株新生器官的形态建造。果实膨大期各解析部位叶片Ndff%值较高,为同期各器官之首,其次为新梢Ndff%达0.31%,再次为果实(0.22%);当果实进入硬核期时,果实分配势迅速增加到1.87%,仅次于多年生枝叶和两年生枝叶(2.04%、2.03%);果实着色成熟期,两年生枝叶Ndff%最高,为2.05%,新梢嫩叶与果实Ndff%值次之,分别是1.92%、1.91%;果实完熟期,最高的为新梢嫩叶(2.62%),其次是新梢和两年生枝,分别为2.26%、2.22%,再其次才是果实(1.97%)。
     5.在果实膨大期,~(15)N主要积累在以多年生叶(包括两年生枝叶和多年生枝叶,下同)为主的营养器官上,占总吸收量的92%,果实次之,为0.0799%, ~(15)N主要是外运到叶片、新梢等新生器官中;在果实硬核期,~(15)N分配率最高的仍为多年生叶,为52.33%,其次是果实(23.06%);在果实着色期和完熟期,~(15)N的分配率依次为多年生叶﹥新生器官﹥果实﹥多年生枝。
     6.不同的施肥形态和方式明显的提高了叶片干重、鲜重、叶面积、叶绿素含量及比叶重。T1处理叶片鲜重、干重比对照提高了18.7%、51.42%,叶面积增加了46.44%;全铵处理叶绿素a含量最高,与对照CK1相比,提高了6.69%,与全硝处理相比提高了12.11%,但全铵处理叶绿素b含量与对照(CK1、CK2)差异显著,提高了28.99%、15.58%;从时期ⅱ开始,各处理比叶重的增长速度与对照间差异明显,以氨基酸液肥的增长速度最快,到时期ⅳ时,T1的增长率为106.44%,为CK1、CK2的2.08倍、1.70倍。
     7. T1处理叶片可溶性糖和蛋白含量最高,与空白对照相比分别提高了187.55%、36.14%。CK2与CK1间可溶性糖及蛋白差异显著,分别提高了96.93%、12.84%;T3处理叶片硝态氮含量为对照的1.88倍。而T2处理也促进了植株体内硝态氮的积累,为对照的1.72倍。T1及T4处理极显著的抑制了叶片硝态氮的积累,与对照相比降低了37.65%、41.53%;各处理都促进了体内铵态氮的积累,以T1及T2最为显著,分别是对照的2.67倍、2.51倍。
     8. T1处理NR活性比CK1、CK2分别高50.41%、40.79%,各形态氮素间差异显著,氨基态及酰胺态氮素显著高于单一NO_3~--N、NH_4~+-N,四个形态氮素中,NH_4~+-N处理NR活性最低;NH_4~+-N处理的GS活性最高,比CK1和CK2分别高44.76%、39.08%,NH_4~+-N处理GS活性为NO_3~--N处理的1.3倍;T1、T4处理GOGAT活性最高,在硬核期分别比对照高20.88%、16.48%和19.11%、14.61%;果实发育前期,全铵处理(T4)、氨基酸液肥处理(T1)与其他处理GDH活性差异显著,在硬核期比对照增加了20.58%和18.19%、18.41%和15.96%;T1处理GOT、GPT活性最大,且持续高活性的时间最长,在完熟期,T1处理活性为CK1的1.41倍、1.48倍。
     9.各处理均提高了果实的品质,其中T1的处理效果最明显,与空白对照相比,单果重、可溶性固形物、糖酸比、可溶性糖、VC分别提高了12.97%、14.93%、77.97%、28.7%、6.54%。可滴定酸降低了35.19%。
In order to provide a theoretical and practical basise that how to apply fertilizer in a rational way and achive high yield and high quality of sweet-cherry,“Hongdeng”(Prunus. aviumL. var.Hongdeng) was used in the experiment as research materials.The experiment was done in Shandong Agricultural University between 2009 and 2010.Using ~(15)N stable isotope tracer technique to study the critical period of development in the fruit of spraying into the various organs of ~(15)N -urea fertilizer absorption,distribution and utilization characteristics.Studing on the effect of growth and development of sweet cherry in the different forms of nitrogen with the controlle of release fertilizer.The main results were as follows:
     1. Most uptake of ~(15)N by leaves occurred during the first 6 hours following application of urea.The mean rate of absorption during these 6 hours was 0.11503 mg/g·h. ~(15)N content peaked 24 hours(0.9353mg/g) after urea application and then decreased。~(15)N content in Lower leaves and new shoot peaked 24 hours and the content of them were same.The ~(15)N content of younger leaves was higher than lower leaves and new shoot and the content was stable with none of obvious peak.This showed that:The absorption and running of ~(15)N-urea can occur at the same time, the absorption mainly occured within 24h after the application.
     2. The peak of every organ Ndff% achieved in 24hours and then with a decrease the Ndff% made a stable at last.After applied ~(15)N-urea 168 hours,the Ndff% of organs was:new shoot﹥younger shoot﹥lower shoot.This shows that:Appling urea in early spring,the ~(15)N-urea that absorbed by sweet-chreey distribut to new shoot and younger leaves in priority and just little transport to lower organs.
     3. The absorption of ~(15)N-urea in leaves of different parts was different. The front+the back can absorbed the highest ~(15)N,the back followed and the front is the lowest.The different part of leaves absorbed quickly in 6 hours and with a peak in 48 hours then started to decrease.The ~(15)N content in the front stabled in a lower level and his peak happened in 48 hours(0.2081mg/g·DW).
     4. Applied ~(15)N -urea in the fruit development ,the ~(15)N priority assigned to the new organs (leaves, shoots, fruit) in the form of new organs for the plant construction. In the fruit enlargment stage,the Ndff% of leaves were the highest and new shoot followed(0.31%),the fruit is the third(0.22%);When the fruit came to the hardcore stage,the Ndff% of the fruit increased to 1.87% and just lower than the leaves of perennial branches and two years old branches(2.04%、2.03%);In the mature fruit color stage, the leaves of two years old branches was the highest(2.05%),and younger shoot(1.92%) and fruit(1.91%)followed.In fruit ripe stage,younger shoot was the highest(2.62%), new shoot(2.26%) and two years old branches(2.22%) followed.The fruit was the third(1.97%).
     5. In the fruit enlargement stage, ~(15)N mainly accumulated in the perennial leaves (including the biennial and perennial foliage leaves, the same below) based on vegetative organs, 92% of the total absorption, fruit, followed by the 0.0799%, ~(15)N mainly sinotrans to leaves, shoots and other organs in the newborn; In the Hardcore stage, ~(15)N distribution rate remains the highest perennial leaves, is 52.33%, followed by fruits (23.06%); In the Color stage and the ripe stage, ~(15)N distribution rate were perennial leaves> new organs> Fruit> perennial branches.
     6. Different forms and methods of fertilizer significantly increased leaf dry weight, fresh weight, leaf area, chlorophyll content and specific leaf weight. T1 treatment leaf fresh weight, dry weight was increased by 18.7%, 51.42%, leaf area increased by 46.44%; Ammonium handling all the chlorophylla content, and compared with the control CK1, increased 6.69%, compared with the full nitrate treatment increased 12.11%, but all the chlorophyll b content of ammonium treatment and control (CK1, CK2) significant difference, increased 28.99 %, 15.58%; From the beginning period ofⅡ, specific leaf weight of each treatment and control differences between the growth rate significantly, to the fastest growth rate of amino acid liquid fertilizer, to the period whenⅳ, T1 growth rate of 106.44 percent, as CK1, CK2 was 2.08, 1.70.
     7. T1 processing soluble sugar and protein was the highest compared with the control increased by 187.55%, 36.14%. T2 treatment also promoted the accumulation of nitrate plant body, 1.72 times the control. T1 and T4 treatment significantly inhibited the accumulation of nitrate in leaves compared with the control decreased 37.65%, 41.53%; each treatment have contributed to the accumulation of ammonium nitrogen in the body to the most significant T1 and T2, respectively, in control 2.67 times, 2.51 times.
     8. NR activity of T1 treatment higher than CK1, CK2, respectively, 50.41%、40.79%, the significant difference between nitrogen forms, state, and amide amino nitrogen were significantly higher than that of a single state of NO_3~-N,NH_4~+-N.The four forms of nitrogen in the , NH_4~+-N treatment were the lowest NR activity.Early fruit development, full-ammonium treatment (T4), amino acid fertilizer treatment (T1) deal with other significant difference between GDH activity in the hard core of an increase of 20.58% compared to the control and 18.19%, 18.41% and 15.96%.The GOT and GPT activity of T1 is the largest and the longest sustained high activity in the ripe stage.
     9. All treatments increased fruit quality, the treatment effect of T1 is the most significant .And compared with the control, fruit weight, soluble solids, sugar acid ratio, soluble sugar, VC increased by 12.97%, 14.93% and 77.97% 28.7%, 6.54%. Titratable acidity decreased 35.19%.
引文
阿夫多宁等著,(苏少泉等译).植物的根外追肥[M],科学出版社,1995.1-8.
    白宝璋,孙存华,田文勋等.植物生理学实验教程[M].中国农业科技出版社,1998.
    陈建生,唐拴虎,徐培智等.控释肥料氮素释放规律及其对叶类蔬菜生长的影响[J].中国农学通报,2004,20(3):135-137.
    陈晓飞,宁书菊,魏道智,张洪平.氮素营养水平对水稻幼苗氮代谢的影响[J].中国生态农业学报,2008,16(3):517-573.
    崔文芳,王俊超.不同施肥结构对番茄营养品质和硝酸盐含量的影响[J].长江蔬菜,2008,9:33-36.
    戴廷波,曹卫星,荆奇.氮形态对不同小麦基因型氮素吸收和光合作用的影响[J].应用生态学报, 2001,12(6): 849-852.
    范国荣,刘勇,刘善军等.氮素营养在落叶果树中利用的研究[J].江西农业大学学报,2004,26(2):192-195.
    范巧佳,张毅,杨世民,袁继超,郑顺林等.氮素形态对川芎生长,产量与阿魏酸和总生物碱含量的影响[J].植物营养与肥料学报,2010,16(3): 720-724.
    顾曼如,束怀瑞,周宏伟.苹果氮素营养研究Ⅲ根外追15N及其吸收、运转特性[J].园艺学报,1985,12(2):89-94.
    顾曼如.15N在苹果N素营养研究中的应用[J].中国果树,1991(12):46-48.
    韩振海,曾骧.晚秋叶施尿素和生长调节剂度富士苹果幼树贮藏氮素的影响[J].园艺学报,1992,19(1):15-21.
    侯国梅.追施氮肥对大豆体内氮素运转与分配的影响[D].东北农业大学,2009.
    胡晓辉.钙对低氧胁迫下黄瓜幼苗碳,氮代谢影响的研究[D].南京农业大学,2006.
    黄国存,田波.高等植物中的谷氨酸脱氢酶及其生理作用[J].植物学通报,2001,18(4):396-401.
    黄见良,邹应斌,彭少兵等.水稻对氮素的吸收、分配及其在组织中的挥发损失[J].植物营养与肥料学报,2004,10(6):579-581.
    霍光华,罗来水,肖德星.桃花器官发育后期营养元素含量与雄性育性的关系[J].园艺学报,2000,27(5):364-366.
    江景勇,张加正,沈蔷,卢秀友,洪莉,赵永彬.氨基酸叶面肥和套袋对荧光7号油桃果实品质的影响[J].浙江农业科学,2009,32(4):673-675.
    蒋立平.氮素形态对柑桔根系生长的影响[J].中国柑桔,1990,19(3):14-16.
    李宝珍,辛伟杰,徐国华.氮饥饿水稻利用不同形态氮素的差异及其生理机制[J].土壤学报,2007,44(2):274-276.
    李彩凤,马凤呜,赵越等.氮素形态对甜菜氮糖代谢关键酶活性及相关产物的影响[J].作物学报,2003,29(1):128-132.
    李庆逵,朱兆良,于天仁主编.中国农业持续发展中的肥料问题[M].江西科学出社,1998,25-36.
    李苏红.不同配方氨基酸液肥对烤烟产质量和某些生理特性的影响[D].河南农业大学,2007.
    李学俊,文建雷,韩书成等.氮素形态对玉米幼苗生物机制及生物量的影响[J].西北农林科技大学学报:自然科学版,2008,36(3):192-196.
    李延菊.设施栽培“早红珠”油桃对叶面施15N-尿素的吸收、分配和利用特性研究[D].山东农业大学,2005.
    李影林主编.临床医学检验手册[M],长春:吉林科学技术出版社,1987:363-367.
    李志,史宏志,刘国顺,王道支,祖朝龙,杨永锋.施氮量对皖南砂壤土烤烟碳氮代谢动态变化的影响[J].土壤,2010,42(1):8-13.
    李祝贺,吕德国,秦嗣军,刘国成,刘坤.不同形态氮肥处理对樱桃植株生长发育影响的研究[J].辽宁林业科技,2007,40(3):42-44.
    梁成刚,陈利平,汪燕,刘佳等.高温对水稻灌浆期籽粒氮代谢关键酶活性及蛋白质含量的影响[J].中国水稻科学,2010,24(4):398~402.
    林碧英,张瑜,毛美华.不同施肥水平对温室樱桃番茄果实品质的影响[J].中国农学通报,2010,26(4):137-141.
    林清华,李常健,彭进等.NaCl对水稻谷氨酸合酶和谷氨酸脱氢酶的胁迫作用[J].武汉植物学研究,2000,18(3):206-210.
    刘华山,赵会杰,孟凡庭.惠满丰对小麦生理调节及增产效应研究[J].华北农学报.1997,12(增刊):133-136.
    刘秀敏.氮素形态对茶树生理特性和茶叶品质的影响[D].河南农业大学,2009.
    刘玉杰,韩建国,刘雨坤.不同施肥处理对高羊茅草坪质量的影响[J].中国草地,2001,23(6):27-33.
    马建军,边卫东,于凤鸣.日光温室甜樱桃果实中矿质营养元素含量的生长季变化[J].河北农业大学学报,2006,6(1):13-14.
    马新明,王志强,王小纯,王书丽.氮素形态对不同专用型小麦根系及氮素利用率影响的研究[J].应用生态学报,2004,15(4): 655-658.
    马宗斌,王小纯,何建国,马新明.氮素形态对小麦花后不同器官内源激素含量的影响[J].植物生态学报,2006,30(6):991-997.
    孟凡丽,苏晓田,张力飞,衣冠东.氨基酸液肥涂干对”新嘎拉”苹果坐果率和果实品质的影响[J].北方果树,2009,6(11):9-10.
    莫良玉,吴良欢,陶勤南.高等植物GS/GOGAT循环研究进展[J].植物营养与肥料学报,2001,7(2):223-231.
    莫良玉,吴良欢,陶勤南.高温胁迫下水稻氨基酸态氮与铵态氮营养效应研究[J].植物营养与肥料学报,2002,8(2): 157-161.
    彭福田.氮对苹果果实发育及产量、品质的调控[D].山东泰安:山东农业大学博士论文,2001.
    彭琳,黄凯.早地油菜施用硼、相和稀土肥的肥效试验[J].土壤肥料,1979,8(6):38-39.
    师进霖,姜跃丽,宋云华.氮素形态对黄瓜幼苗生长及氮代谢酶活性影响[J].中国农学通报,2009,25(22):225-227.
    束怀瑞,顾曼如,黄化成.苹果氮素营养研究施氮效应[J].山东农学院学报,1981,(2)23-31.
    束怀瑞等.果树栽培生理学[M].北京:农业出版社,1993,74-94.
    孙俊宝,王建新.樱桃叶绿素含量测定方法研究[J].山西农业科学,2010,38(3):18-19.
    孙协平,宋凯,刘金义,张继祥,张连忠.不同时期整枝套无纺布袋对甜樱桃微环境和品质的影响[J].中国农学通报,2009,25(01):160-164.
    王百群,张卫,余存祖.用15N示踪法研究不同土壤水分条件下小麦对氮的吸收利用[J].核农学报.1999,13(6):362-367.
    王茂,陵军成,常永义,马玉玺,莫宝山.氨基酸液肥灌根对红地球葡萄产量和果实品质的影响[J].中外葡萄与葡萄酒,2009,23(05):26-27.
    王小彬,蔡典雄,张镜清等.旱地玉米氮吸收及其氮肥利用率研究[J].中国农业科学,200134(2):179-186.
    王燕华,陶磅,贾克功.葡萄花芽分化与花器官发育的研究进展[J].中国果树,2005(2):51-52.
    王月福,姜东,于振文,曹卫星.氮素水平对小麦籽粒产量和蛋白质含量的影响及其生理基础[J].中国农业科学,2003,36:513-520.
    王月福,于振文,李尚霞等.氮素营养水平对冬小麦氮代谢关键酶活性变化和籽粒蛋白质含量的影响[J].作物学报,2002,28(6):743-748.
    吴兵,王秋堂等.缓释·控释包膜复合肥在番茄甜椒上的施用效果.科技推广,2004.
    吴海卿,杨传福,孟兆江.应用~(15)N示踪技术研究土壤水分对氮素有效性的影响[J].土壤肥料,2000,11(1):16-18.
    吴良欢,蒋式洪,陶勤南.植物转氨酶(GOT和GPT)活度比色测定方法及其应用[J].土壤学报,1998,29(3):136-138.
    吴殊菊.爱丰有机腐殖酸液肥在小麦上的试验效果研究[J].黑龙江农业科学,2004,41(2):23-24.
    谢建昌.世界肥料使用现状与前景[J].植物营养与肥料学报,1998,4(4):321-330.
    徐季娥,林裕益,吕瑞江等.鸭梨秋施~(15)N-尿素的吸收与分配[J].园艺学报,1993,20(2):145-149.
    徐加林,别之龙,张盛林.不同氮素形态配比对生菜生长、品质和保护酶活性的影响[J].华中农业大学学报,2005,24(3): 290-294.
    许秀成,李菂萍,王好斌.包裹型缓释/控制释放肥料专题报告第二报世界缓释/控制释放肥料生产、消费现状[J].磷肥与复肥,2000,15(4:5-7.
    许秀成,李菂萍,王好斌.包裹型缓释/控制释放肥料专题报告第一报概念区分与评价标准[J].磷肥与复肥,2000,15(3):1-6.
    许秀成,王好斌,李菂萍.包裹型缓释/控制释放肥料专题报告第三报包膜(包裹)型控制释放肥料各国研究进展[J].磷肥与复肥,2000,15(6):7-12.
    许振柱,周广胜.植物氮素营养代谢及其研究进展[J].中国农业科学,2004,12(4)521-522.
    许振柱,周广胜.植物氮代谢及其环境调节研究进展.应用生态报,2004,15(3):511-516.
    颜冬云,张民.控释复合肥对盆栽一串红生长发育与品质的影响[J].园艺学报,2004,31(6):773-777.
    颜冬云,张民.控释复合肥对番茄生长效应的影响研究[J].植物营养与肥料学报,2005,11(1):110-115.
    杨安民,刘有良,刘漫道等.促丰宝Ⅲ液肥对小麦生长发育及产量构成因素的影响[J],甘肃林业科技,2004,13(11)41-44.
    杨兴洪,罗新书.桃、杏枝条萌芽前对~(15)N-尿素的吸收和萌芽后的运转与分布[J].果树科学,1990,7(1):25-30.
    杨兴洪.苹果、桃和杏春季根外追氮的效应研究[D].山东农业大学园艺系硕士学位论文,1989.
    杨秀芹.梁郅光.陈超.张万满.曹霞等.不同肥料对大樱桃叶片和果实品质的影响[J].河北科
    技师范学院学报,2007,21(04)44-47.
    杨雅杰.应用~(15)N-尿素研究硅对水稻吸收肥料氮的影响[J].黑龙江农业科学,2003,(3):15-16.
    杨子文,应用~(15)N自然丰度技术量化陇东首稽生物固氮的研究[D].兰州大学硕士文,2010.
    应奇才,钟国庆,邱明.水稻叶片中可溶性蛋白质提取介质的比较[J].杭州师范学院学报(自然科学版),2004,3(1);34-35.
    于佰双.~(15)N示踪技术在大豆研究领域的应用概况[J].黑龙江省农业科学.1995,35(5):32-36.
    俞巧钢,朱本岳,叶雪珠.控释肥在柑桔上的应用研究[J].浙江农业学报,2001,13(4):210-213.
    张传来,周瑞金,金新富,杨成海.氨基酸液肥对红酥脆梨果实主要营养成分含量的影响[J].湖北农业科学,2010,49(6):1386-1387.
    张富仓,康绍忠,李志军.氮素形态对白菜硝酸盐累积和养分吸收的影响[J].园艺学报, 2003, 30 (1): 93-94.
    张桂荣,黄明霞.喷施氨基酸液肥提高苹果产量和质量的效果[J].落叶果树,2006,38(3):25-26.
    张浩,王正银.缓释/控释肥料研究进展[J].黑龙江农业科学,2002(5):18~20.
    张润,金纬玲.高美施在番茄上的应用效果[J].长江蔬菜.1997,(11):30-31.
    赵凤霞.‘早大果’甜樱桃(Prunus avium L.) ~(15)N吸收、分配及利用特性研究[D].山东农业大学硕士论文,2008.
    赵俊晔,于振文.高产条件下施氮量对冬小麦氮素吸收分配利用的影响[J].作物学报,2006,32(4):484-490.
    赵瑞英,刘永厚.实用叶面喷施新技术[M].江西科技出版社,1991,25-30.
    赵世杰,史国安,董新纯.植物生理学实验指导.中国农业科学技术出版社[M],2002.
    赵晓梅,江英,吴玉鹏,刘宽,张志强.果蔬中VC含量测定方法的研究[J].食品科学,2006,03(27):197-198.
    周珊庆,陈开铗,李合松等.应用~(15)N示踪技术研究水稻对氮素的吸收利用[J].湖南农学院学报,1991,17(4):665-669.
    庄舜尧,曹志洪.叶面肥的研究与发展[J].土壤,1998(5):230-234.
    AnuschkaHeeb,TomErlcsson,etal.Effec to fnitrate-ammonium,organic-nitrogen-based fertilizers on growth and yield of tomatoes[J].JapanesePlantNutrition and SoilScience, 2005,168:123-129.
    Becker T W,Carrayol E,Hirel B.Glutamine synthetase and glutamate dehydrogenase isoforms in maize leaves:localization,relative proportion and their role in ammonium assimilation or nitrogen transport[J].Planta,2000,211:800-806.
    Bondada.B.R,Syvertsen.J.P,and Albrigo L.G.2001.Urea nitrogen uptake by citrus leaves [J],Hortscience.36(6):1061~1065.
    Boyton,D.,D.Margolis and C.R.Gross.Exploratory studies on nitrogen metabolism by McIntosh apple leaves sprayed with urea.Proc.Am.Soc.Hortic.Sci.1953.62:135~146.
    Cain,J.C.Absorption and metabolism of urea by leaves of coffee, cacal, and banana.[J]. Proc.Amer.Hort.Sci.1956.67:279~286.
    Chapin F S III, Moilanen L, Kielland K. Preferential use of organic nitrogen for growth by a non-mycorrhizal arctic sedge[J]. Nature,1993, 361:150-153.
    Cook,J.A.and J.Boynton.Some factors affecting the absorption of urea by McIntosh apple leaves[J].Proc.Amer.Soc.Hort.Sci.1952,59:82~90.
    Dong S F,Cheng L L,Carolyn F.Scagel and Leslie H.Fuchigami.Nitrogen absorption,tran- slocation and distribution from urea applied inautumn to leaves of young potted apple (Malus domestica)trees.[J].Treephysiology,2002.22:1305~1310.
    FanMS, Liu X J, JiangRFet al. Cropyields, internal nutrient effi-ciency, and changes in soil properties in rice-wheat rotations undernon-flooded mulching cultivation[J]. Plant Soil, 2005, 277: 265-276.
    Freiberg,S.R.and P.Payne.Foliar absorption of urea and urease activity in banana plants[J]. Proc Am.Soc.Hortic.Sci.1957.69:226~234.
    Fuji T et al.Research and development of coated fertilizers(ceracoat).In Proceedings of the symposium on fertilizer[J].Present and future.1989,78-100.
    Gooding M Jet al.Foliar urea fertilization of cereals:a review[J].Fertilizer Research,1992.
    Hepburn C,Arizal R.Slow-release fertilizers based on natural rubber.Br.Polym [J]. 1988,20(6):487~495.
    John G,Scandalios.Oxygen stress and superoxide dismutases[J].Plant Physiol,1993,
    Kanno H.Sboji S and Ito T.Response of dent corn to cositus application using controlled availability fertilizers[J].Bull.Exp.Farm.Tohoku Univ.1993,9:23~29(in Japanese).
    Kato.T.Nitrogen metabolism and utilization incitris[J].Horti-cultural Reviews,1986,8:18 1-216.
    Khemira H.Influence of canopy orientation on fruiting of‘Anjou’pears and postharvest urea spray on ovule longevity and fruit set of‘Comice’pears[D].Corvallis:Oregon State University,1991.
    Klein,I.and S.A.Weinbaum..Foliar application of urea to olive:translocation of urea nitr- ogen as influenced by sink demand and nitrogen deficiency[J].Am.Soc.Hortic.Sci. 1984, 109:356~360.
    Landels S P.Controlled release rertilizers:supply and demand trends in US non-farm markets.Proc ACS National Meeting:Division of fertilizers and soil chemistry.August. 1994.
    Landels S P.US markets for controlled release fertilizers:Present size and value,projected demand,trends,and opportunities for new CRF products[J].In Scheib RM(ed)controlled release fertilizer workshop,TVA, Alabama,1991,87-101.
    Maeck,G.and R.Tischner(1990).Glutamine synthetase oligomers and isoforms in sugar beet(Beta vulgaris L.)[J].Planta 181(1):10-17.
    Mason,P A and J.Pelham.Genetic factors affecting the response of treesto mineral nutrie- nts.In,MGR Cannel1 and F.T.Last(eds.),Tree Physiology and Yield Improvement.1976. 437-448.
    Mo L Y, Wu L H, Tao Q N. Effects of amino acid-N and ammonium-N on wheat seed- lings understerile culture. Chinese Journal ofAppliedEcology, 2003, 14 (2): 184-186.
    Mochizuki,T and Kamakura,J.Studies on the nitrogen nutrition of apple trees.Ⅱ.The relationships between the time of nitrogen and its distribution among the parts of fruit bearing trees[J].Bull.Fac.Agr.Hirosaki Univ.1971,17:102-109.
    Owen A G, JonesD L. Competition for amino acids between wheat roots and rhizosphere microorganisms and the role of amino acids in plant N acquisition[J]. SoilBiology& Biochemistry, 2001, 33: 651-657.
    Rosecrance,R.C.,R.S.Johnson and S.A.Weinbaum.The effect of timing of post-harvest foliar urea sprays on nitrogen absorption and partitioning in peach and nectarine trees[J].Hortic.Sci.Biotechnol.1998.73:856~861.
    Rosecrance,R.C.,R.S.Johnson and S.A.Weinbaum.The effect of timing of post-harvest foliar urea sprays on nitrogen absorption and partitioning in peach and nectarine trees [J].Hortic.Sci.Biotechnol.1998.73:856~861.
    Saenz JL,DEjong TM,Weinbaum SA.Nitrogen stimulated increases in peach yield areassociated with extended fruit development period and increased fruit sink capacity[J]. J Amer Soc Hort Sci,1997,122(6):772-777.
    ShingoMatsumoto, NoriharuAe, MakotoYamagata. Possible directuptake oforganic nitrogen from soilby chingensai (Brassica campestrisL. ) and carrot (Daucus carotaL. ). SoilBiology& Biochemistry, 2000, 32: 1301-1310.
    Stassen PJC,Terblanche JH,Strydom DK.The effect of time and rate ofnitrogen applic- ation on development and composition of peach trees[J].Agoplantae,1981,13:55-61.
    Theodore K R.Norman T.Carbon,Nitrogen and Nutrient Interactions in Beta vulgaris L. as Influenced by Nitrogen Source,NO3-versus NH4+[J].Plant Physiology,1995,107(2): 221-224.
    Turkey H B,Witter S H and Bukovac M J.Nutrient Uptake of plants inter Symposium[J]. AgrochimicaPisa,Florenz,1962,384-413
    Virtanen A I, LinkolaH. Organic nitrogen compounds as nitrogen nutrition for higher plants[J]. Nature, 1946, 158: 515.
    Vogelmann TC, bickson R E, Larson P R. Comparative distribution and metabolism of xylem borne amino compounds and sucrose in shoots of Populus deltoides[J]. Plant physiology, 1985, 77: 418-428.
    WangH J. Growth and quality of pakchoi (Brassica chinensisL. ) as affected by inorganic and organic nitrogen nutrition and itsmechanisms (ph.D thesis) [D].Zhejiang,,Hang Zhou, ZhejiangUniversity, 2006.
    Wu LH, Mo LY, Fan Z L,etal.Absorption of Glycine by Three Agricultural Species Under Sterile Sand Culture Conditions[J]. Pedosphere, 2005,15: 286-292.
    Wu LH, TaoQ N. Effects of amino acid-N on rice nitrogen nutrition and itsmechanism[J]. Acta Pedologica Sinica, 2000, 37 (4): 464-473.
    Zhang C L, GaoZM, ZhangY D, TangWM.The effectsofdifferentnitrogen forms and their concentration combinationson the growth andquality of spinach[J]. Journal of Nanjing AgriculturalUniversity, 1990, 13 (3): 70~74 ( in Chinese)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700