电动汽车驱动和转向系统的振动与驱动电机的可靠性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着全球性能源危机的逐渐加剧,以及人们环保意识的逐渐争强,新一代节能、环保型电动汽车(Electric vehicles)的开发,越来越受到人们的普遍关注。由于电动汽车及其驱动系统的结构有别于普通燃油汽车,尤其是驱动系统,其结构以及对系统的激励有了截然不同的变化。所以,必须根据这种变化来研究其整车或部分系统的振动问题。
     驱动电机是电动汽车振动的主要振源之一,正确地了解和分析驱动电机对整车系统的激励情况,是解决电动汽车振动问题的关键所在。电机运行的可靠性也是我们研究的重点之一。
     本文在概述了电动汽车及其驱动系统(包括驱动电动机)当前状况的基础上,从电机应用和结构动力学的理论角度出发,就应用于电动汽车的SR电机(即开关磁阻电动机)激振力问题;多自由度系统电动汽车的整车振动问题;电动汽车转向系统的耦合振动问题;以及驱动电机的可靠性等问题,做了比较详细的研究。同时,对混合动力电动汽车也做了比较全面的振动分析。从而奠定和发展了有关电动汽车的振动理论。
With the deterioration of global energy crisis, as well as the strengthening of environmental protection consciousness, development and research of hybrid vehicle, as transitional vehicle to pure electric vehicle, have got attention from the countries around the world.
     There are many types of electric vehicle, including pure electric vehicle, hybrid electric vehicles and full cell electric vehicle. No matter what type it is, the motor driving system is an important part of the electric vehicle and a main vibration source of a vehicle, so the motor driving system and its vibration is the research focus. Then it is very important to develop a motor driving system with high performance and operates steadily. How to solve the vibration caused by excitation of driving motors and road roughness is a key problem for us too.
     This paper summarized the domestic and foreign vehicle vibration theory, the fundamental structures and key technologies of electric vehicles, the present condition and the development of drive system of the electric vehicle. From the view of electric machinery application and structural dynamics, we analyzed the excitation of SR motor on electric vehicle, the vibration of multiple degree of freedom, the coupled vibration of steering system and the reliability of electric vehicle drive-motor. The vibration of Hybrid electric vehicle is also analyzed in this paper, so the vibration theory of environmental-friendly electric vehicle is established.
     This paper consists of seven chapters, its research contents mainly dear with:
     Chapter one: Introduction
     In this part, background information and research motives is discussed, the present condition and the development of domestic and foreign environmental-friendly electric vehicle is introduced, including pure electric vehicle, hybrid electric vehicles and full cell electric vehicle. Review and prospect of vehicle vibration and motor reliability are also summarized in this part.
     Chapter two: Basic Theory
     The basic analysis method in vehicle vibration is synthesized in this part, including the simplified of automobile vibration system and the vibration of vehicle body and wheel double mass system. The basic structural of electric vehicle and its key technology are analyzed in details here.
     Chapter three: Research on Excitation of SR Motor on Electric Vehicle
     New type of switched reluctance motor was applied to electric vehicle. Considered electromotor as vibration source, stimulation of electromotor was analyzed in particular orientation. Expressions of radial force and torque variance were obtained by analytical method. During the course of system analysis of electric vehicle and SR electromotor, both radial force of SR electromotor and torque variance were considered. It was concluded that there are direct relationships between amplitude and initial phase in vertical orientation by numerical analysis. There are maximum and minimum of amplitude, and the way to make sure them is proposed. New reliable foundation was proposed to solve vibration problems of design and control of SR electromotor.
     For the research of the vibration excited by switched reluctance motor, if the vibration source is electric motor the impact of radial force and torque fluctuation should be considered. To improve the design of electric motor, develop its control theory and spread its application the vibration should be considered according to the application environment in the research of the structure design and control of SR electric motor.
     Chapter four: Vibration Research on Electric Vehicle Based on Switched Reluctance Motor and Driving System
     It is considered that only excitation is brought by new switched reluctance motor (SRM). The model of five-freedom-degree vehicle vibration system with switched reluctance motor and its driving system is established according as whole vehicle system. Vibration responses of whole vehicle system of electric vehicle are analyzed. The key and perfect results are obtained.
     According to the significant excitation characteristic of SRM for the research of the electric vehicle based SRM drive system and its vibration, emphasis is placed on the impact of full vehicle vibration caused by drive motor but neglect the vibration caused by road roughness. The drive motor should be view as the excitation source to analyze the steady state response of vehicle body and man-seat. This is important in whole vehicle design. So to improve the reliability and stabilization of electric vehicle, the vibration of electric vehicle motor must be suppressed and its impact to full vehicle excitation should be considered too.
     Chapter five: Research on vibration of the driving and steering system of the electric vehicle and reliability of the drive motor
     Coupling vibration of steering system and drive system of electric vehicle (structure of driving motor and drive-axle) is researched. The model of four-freedom-degree pendulum vibration is established. The influence of gyroscopic effect and road surface roughness on electromotor is analyzed. Numerical solution for system vibration response of practical vehicle model is simulated, and good results of numerical analysis are obtained. The presented method provided the theoretic basis for development of electric vehicle.
     Because of the gyroscopic effect and the excitation of road roughness and electric motor, the coupled vibration among steering wheel, electric motor and anterior driving axle is very complex and significant in typical electric motor and anterior driving axle electric vehicle。It shows strong effect to the rub-impact of rotors and stator in motor. So how to solve it is the necessary technical basis in the design of electric vehicle. Only, analyze the invalidation and reliability based on the structure of electric vehicle can solve the related problems and promote the development and research of electric vehicle.
     Chapter six: Vibration Research on hybrid electric vehicles
     According to the structure of the double power sources in HEV, a vehicle model of five-dof excited by engine and electric motor is established. An excitation expression of double excitation source was obtained by analytical method. By analyzing the vibration response for the excitation of full vehicle and man-seat, the perfect simulation of vehicle vibration was obtained. This also supplies reliable basis of theory for researching in HEV.
     Based on the excitation characteristics of engine and SR electric motor, the research of HEV and its vibration should be focus on impact of the dual excitation of drive motor drive engine on the vibration of full vehicle and man-seat, road roughness can be neglected. The drive motor and engine should be view as the excitation source respectively to analyze the steady state response of vehicle body and man-seat. This is important in whole vehicle design. To improve the stability of electric vehicle, the impact on vibration system of the different excitation should be distinguished and solved.
     Chapter seven: conclusions and prospects
     This part makes summaries conclusion of the article and prospects the correlative problem of electric vehicle and its vibration.
引文
1. 陈清泉, 孙逢春. 混合电动车辆基础. 北京: 北京理工大学出版社, 2001.
    2. 陈清泉, 孙逢春, 祝嘉光. 现代电动汽车技术. 北京: 北京理工大学出版社, 2002.
    3. Chan C C. The state of the art of electric and hybrid vehicle. Proceeding of THE IEEE, 2002.90(2), 147-275.
    4. Chan C. C. and K. T. Chan, Modern Electric Vehicle Tech-no logy. London, U.K.: Oxford Univ. 2001.
    5. Chan C. C. The 21st Century Green Transportation Means-Electric Vehicles. National Key Book Series in Chinese. Beijing: Tsing Hua University Press, 2000.
    6. 胡骅, 宋慧. 电动汽车. 北京: 人民交通出版社, 2003.
    7. 孙逢春. 科学中国人. 2006(8), 44-47.
    8. 王南. 我国电动汽车产业化“透视”. 中国高校科技与产业化, 2006,·(1-2): 56-58.
    9. 万钢. 中国“十五”电动汽车重大科技专项进展综述. 中国科技产业, 2006, 2,: 110-117.
    10. 张义民. 机械振动力学. 长春, 吉林科学技术出版社, 2000.
    11. 余志生. 汽车理论. 北京: 机械工业出版社, 1990.
    12. 何渝生. 汽车振动学. 北京: 人民交通出版社, 1990.
    13. 米奇克. 汽车动力学. 北京: 人民交通出版社, 1994.
    14. 小林阴. 汽车动力学. 北京: 机械工业出版社, 1981.
    15. 蒋国平, 王国林, 周孔亢. 汽车整车振动特性研究综述. 广西大学学报, 2001, 26(3): 194-197.
    16. 李香莲. 汽车微弱振动信号的混沌振子识别. 应用力学学报, 2005, 22(4): 268-232.
    17. Donald L Birx. Chaotic oscillators and CMFFNS for signal detection in Noisy environments. In: IEEE International Joint Conference on Neural Networks. San Diego, California, 1992: 881-888.
    18. Qu Liangsheng, Lin J ing. A difference resonator for detecting weak signals. Journal of Measurement, 1999, 26: 67-77.
    19. 严世榕. 汽车振动的一种模糊自适应控制. 计算机仿真, 2006, 23(5): 234-237.
    20. T D Gillesp ie, Fundamentals of vehicle dynamics. Danvers, MA: Society of Automotive Engineers, Inc. 1992.
    21. D Hrovat. App libation of op timely control to advanced automobile suspension design. Transaction of the SAME, J. Dyne. Syst. Meas. and Cont. 1993, 115: 328 – 342.
    22. 方子帆, 邓兆祥. 汽车振动系统状态空间模型的研究. 中国机械工程, 2005, 16(4): 353-356.
    23. Elbeheiry D C , Karnopp M E , Elaraby M E , et al. Suboptimal Cont roll Design of Active and Passive Suspensions Based on a Full Car Model. Vehicle System Dynamics, 1996, 26(3): 197-222.
    24. 黄志刚. 微型汽车五自由度模型的振动分析. 北京轻工业学院学报, 1995, 13(1): 69-78.
    25. 江浩斌. 车辆悬架特性参数的动态优化设计. 镇江: 江苏理工大学汽车与交通工程学院, 2000.
    26. 张洪欣. 汽车行驶平顺性的计算机预测. 汽车工程, 1986, (1): 21-23.
    27. 谢卫国, 汪红心. 货车平顺性预测与优化. 汽车工程, 1991, 13(3): 150-160.
    28. 顾福勇, 张代胜. 席彦擘离合器接合过程中的汽车传动系扭转振动分析. 合肥工业大学学报, 2006, 29(7): 809-813.
    29. 肖云魁等. 汽车传动轴振动信号分形维数计算. 振动、测试与诊断, 2005, 25(1): 43-47.
    30. A barbanel H, KennelM. Local false nearest neighbor rs and dynam ical dimensions from observed chaos t ic data. Physical Review E, 1993, 47(5): 3057-3069.
    31. Grassberger P, P rocaecla I. M ensuring the st range of st range at t recto rs. Physic aD, 1983, (7): 189-208.
    32. 王志军. 红旗牌 CA 2630 高级旅游车动力传动系扭振问题的研究. 长春: 吉林工业大学, 1983.
    33. 吉林工业大学汽车教研室. BJ212 汽车动力传动系统扭转振动的研究. 吉林工业大学学报, 1982, (5) : 50-60.
    34. 邬惠乐. 解放牌 CA210 型汽车动力系统的扭转振动. 吉林工业大学学报, 1986, (3): 8-20.
    35. 郭玉久. 解放牌 CA 210 型汽车动力传动系的扭转振动及系统结构参数对其扭振的影响. 长春: 吉林工业大学, 1966.
    36. 张准, 彭玉莺. 内燃机曲轴—飞轮系统扭振的复模态分析. 江苏理工大学学报, 1986, 7(2): 45-59.
    37. 彭玉莺, 张准, 解辛辛. 扭转振动的机械阻抗测试和参数识别. 江苏理工大学学报, 1985, 6(2): 81-89.
    38. 冯振东, 王占歧. 汽车传动系扭转振动的转鼓试验台法的探讨. 吉林工业大学学报, 1986,(3): 21-28.
    39. 小林明. 汽车工程手册. 北京: 机械工业出版社, 1980. 243-245.
    40. 鲁统利. 汽车动力传动系扭转振动与整车纵向振动、垂直振动耦合的研究. 长春: 吉林工业大学, 1990.
    41. 楼黎明. 汽车承载系统垂直振动与动力传动系扭转振动耦合的研究. 长春: 吉林工业大学, 1985.
    42. 殷涌光, 程悦荪. 车轴垂直振动与半轴扭振耦合机理的探讨. 农业机械学报, 1989, (4): 63-67.
    43. 金睿臣, 宋健. 路面不平度的模拟与汽车非线性随机振动的研究. 清华大学学报(自然科学版), 1999, 39(8): 76-79.
    44. 周松鹤. 汽车主体结构非线性振动的优化计算. 噪声与振动控制, 1995, 3: 2-6.
    45. 魏智, 程耀东. 发动机对车辆振动影响的分析. 振动与冲击, 1997, 16(4): 74-78.
    46. 李以农, 郑玲. 基于微分几何理论的汽车半主动悬架非线性振动控制. 中国公路学报, 2005, 18(1): 109-112.
    47. KIM C,RO P I. Sliding mode controller for vehicle ac tide suspension systems with non-linear ties. proc Inset. Mech. Engross. Chicago: EBSCO, 1998. 79-92.
    48. 卢胜文, 贾启芬, 于雯, 刘习军. 汽车多自由度悬架的非线性振动特性. 应用力学学报 2005, 22(3): 461-465.
    49. Blundell M V. The influence of rubber bush comp lance on vehicle suspension movement. Materials and Design. 1998, 19(1): 29-37.
    50. Chen Yushu, Andrew Y T L. Bifurcation and Chaos in Engineering. London: Sp ringe2Vereag, 1998.
    51. 高琦, 王全娟. 智能化技术在汽车振动控制中的应用现状与发展. 湖北汽车工业学院学报, 2006,20(2): 14-16.
    52. Yoshimura T. Active Suspension of Vehicle Using Fuzzy Logic. Int J of Systems Science, 1996,(2): 215-219.
    53. Moran A, Nagau M. Optimal Active Control of No linear Vehicle Suspension Using Neural Networks. JSME Int J, Series III, 1994, 37(4): 707-718.
    54. A. Ghazi Zadeh, A. Fahim, and M. E Gindy. Neural Network and Fuzzy Logic App Lications to Vehicle Systems: Literature Survey. Int. J. of V Ehicle Design, 1997, 18(2): 18-22.
    55. P. Calonnec, T. Derrey, E. Destobbeleer, and L. Protin. Induction Motors Reliability: Use of Fault Tree. Proceedings of EPE'95, Sevilla, Spain, 1995, Vol. 3: 281-285.
    56. W. Yin, K. Bultemeier, D. Barta, and D. Floryan. Dielectric Integrity of Magnet Wire Insulation under Multi-Stresses. Phelps Dodge Magnet Wire Company, Fort Wayne, IN,1995.
    57. G. J. Anders, J. Endrenyi, G. L. Ford. A Probabilistic Model for Evaluating the Remaining Life of Electrical Insulation in Rotating Machines. IEEE Transactions on Energy Conversion, 1990, Vol. 5, No. 4, 761-766.
    58. D. E. Schump. Predict Motor Failure with Insulation Testing. Plant Eng. 1996, Vol. 50: 94-96.
    59. J. F. Lawless. Statistical Models and Methods for Lifetime Data. John Wiley& Sons, Inc. 1982.
    60. 米永存. 一种检验电机接触可靠性的方法. 微电机, 2004, 37(2): 46-47.
    61. 方攸同. 异步电机测试技术与可靠性研究. 博士学位论文, 河北工业大学, 2000.
    62. 张文海. 信号电机接触可靠性测试分析. 微电机, 2002, 35(2): 40-41.
    63. 苏红娟, 傅桂荣, 步进电机可靠性测试仪的研制. 电机与控制应用 2006, 33 (12): 54-56.
    64. 陈东生, 宋永刚, 徐强. 基于工程可靠性分析的陀螺电机加速寿命试验设计.导弹与航天运载技术, 2005(6): 38-41.
    65. 郭同仁, 胡春雷. 调速电机可靠性试验及提高可靠性的措施. 中小型电机, 2001,28(5): 35-37.
    66. 张玉大, 朱传生, 宋伟. 可靠性工程在电机中的应用. 防爆电机, 2002(3): 43-44.
    67. 岳雪钢, 祁红宇. 提高搅拌电机运行可靠性的措施. 电机技术. 2005(2):36-37.
    68. 权利, 徐岳珠, 沈蕾. 小批量生产如何控制有刷类电机的可靠性水平. 微特电机, 2005(6): 37-39.
    69. 陶征义. 改进牵引电动机引出线结构提高牵引电动机可靠性. 内燃机车, 2000(4): 48,22.
    70. 钟晓军. 影响牵引电机工作可靠性的两个隐性因素. 机车电传动, 1999(3): 35-36.
    71. 陈强. 提高牵引电动机电枢轴承可靠性的探讨. 内燃机车, 2002(1): 17-19.
    72. 叶美桃, 彭永明. 电机悬挂座可靠性设计. 机械管理开发, 2005(5): 1-2.
    73. 刘吾林, 贾玉清, 郭彩叶, 提高 YZR 系列电机绕线转子可靠性的几点措施.防爆电机, 2002(2): 34,42.
    74. 张中, 王国江, 鲍远律. 高可靠性低速感应子式步进电动机的设计. 微特电机, 2004(1): 8-10.
    75. 黄业绪, 史忠科, 曹社平, 马义利. 提高微型陀螺电动机可靠性的研究. 微特电机, 2005(5): 5-7,23.
    76. 邓宏论,刘郭建. 液浮陀螺电机用轴承的寿命可靠性分析中国惯性技术学报 200523(2): 63-65.
    77. 窦满锋, 冯智海. 双余度稀土永磁直流电机可靠性研究. 微电机, 2004, 37(6): 6-7,24.
    78. 刘宝友, 方攸同, 徐兰栓. 三相异步电动机可靠性和经济分析. 中小型电机, 2002, 29(1): 42-45.
    79. 薛枫. 浅谈潜水电机结构可靠性的改进. 电机技术, 2002(1): 43-44.
    80. 姚晓明, 同步电动机励磁系统可靠性的改善. 安装, 2002(1): 34-35.
    81. 王炳杰. ZQDR—410 直流牵引电动机运行可靠性分析. 铁道标准设计, 2000, 20(6~7): 75-76.
    82. 刘建成, 谷细凤, 刘卫国. 机车牵引电机电器故障可靠性分析系统. 机车电传动 2000(2):27-29.
    83. 曹计昌, 宋玉. 机车牵引电机电器故障可靠性诊断分析系统. 郑州工业高等专科学校学报, 2000·6(1): 28-30.
    84. 孙宝玉. 牵引电机故障分析及提高运用可靠性的办法. 内燃机车, 2006, 393(11): 32-34.
    85. 朱利湘. 提高 ZQDR—410 牵引电动机可靠性的措施. 机车电传动, 2000(2): 32-35.
    86. 姬惠刚, 刘荣强, 孙涛. 提高脉流牵引电机的运行可靠性. 铁道机车车辆, 2002(增刊): 126-128.
    87. 娄长冈, 危翔, 葛卫. 提高牵引电机运用可靠性的综合治理办法. 机车电传动, 2001(4): 48-50.
    88. 何传五, 李东, 陀螺电机可靠性研究. 航天控制, 2002(4): 74-81.
    89. 冯智海. 航空航天用稀土永磁直流电机可靠性研究. 硕士学位论文, 西北工业大学, 2005.
    90. 黄洪剑, 林瑞光. 无刷直流电机可靠性及其故障模式分析. 电机与控制学报, 2000, 4(4): 198-201.
    91. 张倩丽, 付学玲. 可靠性与电机质量论述. 微电机, 2007, 40(1): 75-76.
    92. 方攸同, 陆俭国. 变频器供电对异步电机绝缘系统可靠性的影响。电工技术杂志 2000(7): 1-3.
    93. 王国华, 高压电机匝间绝缘的可靠性探讨. 铁合金 2004175(2): 28-30.
    94. 勒丽丽. 船用异步电动机可靠性数据的统计分析 开封大学学报 199913(2): 16-20.
    95. 李宝库. 力矩电动机绝缘结构可靠性分析. 微特电机 2000(5): 43-44.
    96. 吴国忠, 许懿洋. 步进电机驱动电源的设计及其可靠性分析. 中小型电机2003 ,30(6): 50-54.
    97. 张寅孩, 蔡骊, 熊宇, 张仲超. 高可靠性单相异步电机频繁高速启动触发电路. 电力电子技术, 2003, 37(2): 63-65.
    98. 王灿, 马瑞卿, 李玲娟, 徐仲春. 高可靠性混合式步进电机驱动系统研究. 微电机, 2006, 39(9): 54-60.
    99. 朱桂荣, 戴苏明. 交流异步电机保护器的可靠性及抗干扰设计. 苏州丝绸工学院学报 2000,20(4): 51-54.
    100.姜晶. 一种高性能、高可靠性的步进电机控制方法. 林业机械与木工设备1999, 27(2): 13-14.
    101.杜海江. 石新春. 高压无换向器电机的可靠性设计. 高压电器, 2005, 41(2): 119-121.
    102.孙亚宁, 乔登攀. 三相异步电动机 Y-? 降压启动的可靠性设计. 有色金属设计, 2005, 32(1)46-49.
    103.赵健. 一种高可靠性的电机起动控制方式. 应用能源技术, 2004(6): 27-28.
    104.吴建华. 开关磁阻电机设计与应用. 北京: 机械工业出版社, 2001.
    105.王宏华. 开关型磁阻电动机调速控制技术. 北京: 机械工业出版社, 1999.
    106.Rajashekara K. History of electric vehicles in General Motors, IEEE Transactions on Industry Applications, vol. 30. 1994.897-904.
    107.Wakefield E H. History of the Electric Automobile: Battery-only powered Cars. Warrendale. P A: Society of Automotive Engineers, 1994.
    108.Shirnizu H, Harada J, Bland C, Kawakami K and Chan L. Advanced concepts in electric vehicle design, IEEE Transactions on Industrial Electronics, Vol. 44. 1997. 14-18.
    109.Wakefield E H. History of the Electric Automobile: Hybrid Electric Vehicles. Warrendale, P A: Society of Automotive Engineers, 1998.
    110.孙逢春, 张承宁, 祝嘉光. 电动汽车. 北京: 北京理工大学出版社, 1997.
    111.Michael H Westbrook. The Electric Car. London: The Institution of Electrical Engineers, 2001.
    112.Wouk V. Hybrids: then and now. IEEE Spectrum, Vol. 32. 1995. 16-21.
    113.Toyota Electric & Hybrid Vehicles. Toyota, 2000.
    114.Toyota Prius Product Information. Toyota, 2000.
    115.Van Mierlo J. Views on hybrid drive train power management. Proceedings of the 17th International Electric Vehicle Symposium, 2000.
    116.Chan C C, Chau K T, Jiang J Z, Xia W, Zhu M and Zhang R. Novel permanent magnet motor drives for electric vehicles. IEEE Transactions on Industrial Elec-tronics, Vol. 43. 1996. 331-339.
    117.Chan C C, Chau K T and Yao J M. Soft-switching vector control for resonant snub-ber based inverters. Proceedings of IEEE International Conference on Industrial Electronics, 1997. 605-610.
    118.吴建华, 陈永校. 开关磁阻电机转矩波动的计算和测量. 中小型电机, 1997, 24(2): 14-16.
    119.Chan C C, Jiang J Z, Chen G H, Wang X Y and Chau K T. A novel polyphase multipole square-wave permanent magnet motor drive for electric vehicles. IEEE Transactions on Industry Applications, Vol. 30. 1994. 1258-1266.
    120.Chan C C and Wang H Q. New scheme of sliding-mode control for high perfor-mance induction motor drives. IEE proceedings-B, Vol. 143. 1996. 177-184.
    121.汤蕴珍. 电机内的电磁场. 北京: 科学出版社, 1984.
    122.陈永校, 诸自强, 应善成. 电机噪声的分析和控制. 浙江大学出版社出版,1987.
    123.吴建华, 陈永校. 开关磁阻电动机的噪声及其抑制方法. 中小型电机, 1997, 24(3): 20-23.
    124.王宏华. 开关磁阻调速电机定子振动抑制. 电工技术学报, 1998, 13(3): 9-12.
    125.Chan C C, Jiang J Z. Xia W ang Chau K T. Novel wide range speed control of permanent magnet brushless motor drives. IEEE Transactions on Power Electron-ics, Vol. 10. 1995. 539-546.
    126.Chan C C. Zhan Y J and Chau K T. Fuzzy variable structure control of switched reluctance motor dtive for EVs. Proceedings of 13th International Electric Vehicle Symposium, Vol. II. 1996. 573-578.
    127.宁海永, 江泉 2, 石志飞. 开关型磁阻电动机的振动分析. 北方交通大学学报, 2003, 27(5): 90-93.
    128.张式勤, 刘芸芸, 吴建华. 开关磁阻电机定子振动的有限元分析. 中小型电机, 2004, 31(1): 5-8.
    129.孙剑波,詹琼华,黄进. 开关磁阻电机的定子振动模态分析. 中国电机工程学报, 2005,25(22): 148-152.
    130.Cameron D E, Lang J H, Umans S D. The Origin of Acoustic Noise in Variable-Reluctance Motors. Proc of IEEE IAS Annual Meeting, 1989, 28(6): 108-115.
    131.范正翘, 王平. 开关磁阻电动机转矩脉动的智能抑制方法. 微特电机,2000(2): 28-30.
    132.王忠建, 王宏华. 开关磁阻电动机振动特性的有限元分析. 噪声与振动控制, 2003(3): 14-16.
    133.袁晓玲,王宏华,沈祖诒,路天航. 开关磁阻电动机控制参数及运行工况对其振动特性影响的频域分析. 机械制造与自动化, 2004,33(1): 45-47,51.
    134.刘华. 开关磁阻电动机和电动汽车用电动机. 电机技术 1997(3): 43-45,49.
    135.王宏华, 王忠建. 开关磁阻电动机冲击振动特性分析. 中小型电机, 2001,28(4): 28-31,58.
    136.宋慧, 胡骅. 电动汽车的现状及发展(I). 汽车电器, 2000(1): 51-55.
    137.宋慧, 胡骅. 电动汽车的现状及发展(II). 汽车电器, 2000(2): 53-57.
    138.宋慧, 胡骅. 电动汽车的现状及发展(III). 汽车电器, 2000(1): 51-56.
    139.宋慧, 胡骅. 电动汽车的现状及发展(IV). 汽车电器, 2000(1): 51-55.
    140.宋慧, 胡骅. 电动汽车的现状及发展(V). 汽车电器, 2000(5): 44-48.
    141.宋慧, 胡骅. 电动汽车的现状及发展(VI). 汽车电器, 2000(6): 42-46.
    142.谢强, 陈思忠. 电动汽车开发的关键技术及前景. 北京汽车, 2003(2): 28-9,19.
    143.孙逢春, 程夕明. 电动汽车动力驱动系统现状及进展. 汽车工程, 2000,22(4): 220-224, 229.
    144.曹秉刚等. 电动汽车技术进展和发展趋势. 西安交通大学学报, 2004,38(1): 1-5.
    145.翟丽, 张壮志, 郑兴伟. 电动汽车驱动系统牵引电机及其控制技术. 汽车电器 2003(3): 9-11.
    146.张金平, 张奕黄. 电动汽车用开关磁阻电机的 DSP 控制系统. 电机电器技术, 2002(4): 2-4.
    147.闫大伟, 陈世元. 电动汽车驱动电机性能比较. 汽车电器, 2004(2): 4-6.
    148.兰召华, 黄妙华. 对国内外几个电动汽车发展计划及相关策略的研究. 试验与研究,2002(5): 43-48.
    149.马宪民. 电动汽车电气驱动系统的新技术. 公路交通科技, 2002, 19(5): 144-147.
    150.Camerson D E. Lang J H, Umans S D. The origin and reduction of acoustic noise in doubly salient variable-reluctance motors. IEEE Trans. on Industry Application. 1992, 28(6): 1250-1255.
    151.Besbes M, Ren Z. Vibration diagnostic for doubly salient variable reluctance motors. Proc. of ICEM94, Paris, France, 1994.
    152.吴建华, 陈永校, 王宏华. 开关磁阻电机定子固有频率的计算. 中国电机工程学报, 1997. 17(5): 326-329.
    153.Cai W. Pillay P. Omekanda A. Analytical formulae for calculating SRM modal frequencies for reduced vibration and acoustic noise design. IEEE IEMDC, Boston. MA, 2001, 203-207.
    154.Khwaja M. Rahman, and Steven E. Schulz“High-performance fully digital switched reluctance motor controller for vehicle pro-pulsion” IEEE TRANSATIONS ON INDUSTRY APPLICATIONS, Vol. 38, No.4, Jily-Aug. 2002.
    155.Robert B,Inderka, Marcus Menne, Member, IEEE, and Rik w.A.A.De Doncker, Fellow, IEEE “Control of switched reluctance drives for electric vehicleapplications” IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, Vol. 49,No.1, Feb.2002.
    156.吴建华.基于物理模型开关磁阻电机定子模态和固有频率的研究.中国电机工程学报.2004, 24(8): 109-114.
    157.王宏华.基于几两步换相控制策略的 SR 电机直接数字控制系统设计.中国电机工程学报.2001,21(7);18-21.
    158.王旭东,王喜莲,王炎等。开关磁阻电动机电流双幅值斩波控制.中国电机工程学报 2000, 20(4): 83-86.
    159.王旭东,张弈黄,王喜莲,等.无位置传感器开关磁阻电动机位置的检测与预报.中国电机工程学报.2000, 20(1): 5-8.
    160.詹琼华. 开关磁阻电动机. 武汉: 华中理工大学出版社, 1992.
    161.Lee S U, Besant C B. Vibration analysis of a prototype of a small-scale high-speed generator for a hybrid electric vehicle. Proceedings of the Institution of Mechanical Engineers Part D-Journal of Automobile Engineering, 2001, 215(D4): 441-453.
    162.Kosaka M, Uda H, Bamba E. A study on a controller to suppress periodic speed variation. Journal of Low Frequency Noise Vibration and Active Control, 2003, 22(1): 33-45.
    163.Oshinoya Y, Arai H, Ishibashi K. Experimental study on active seat suspension for a small vehicle. International Journal of Applied Electromagnetics and Mechanics, 2004, 19(Sp. Iss 1-4): 437-443.
    164.王宏华. 开关磁阻调速电机定子振动抑制. 电工技术学报, 1998, 13(3): 10-11.
    165.Cameron D E, Lang J H, Umans S D. The Origin of Acoustic Noise in Variable-Reluctance Motors. Proc of IEEE IAS Annual Meeting, 1989, 28(6): 108-115.
    166.隋永枫, 吕和祥. 陀螺效应对转子横向振动的影响分析. 计算力学学报, 2003, 20(6):711-714.
    167.陈 南. 汽车振动与噪声控制. 北京: 人民交通出版社, 2005.
    168.张义民, 王顺, 刘巧伶, 闻邦椿. 具有相关失效模式的多自由度非线性结构随机振动系统的可靠性分析. 中国科学 E 辑 2003, 33(9): 854-812.
    169.张义民, 刘巧伶, 闻邦椿. 非线性随机系统的独立失效模式可靠性灵敏度. 力学学报,2003, 35(1): 117-120.
    170.张义民, 刘巧伶, 闻邦椿. 质量偏心旋转机械转子-机匣系统碰摩的失效研究.振动工程学报, 2003, 16(1): 52-55.
    171.张义民, 闻邦椿, 具有独立失效模式的多自由度非线性振动系统的可靠性分析.航空学报, 2002, 23(3): 252-254.
    172.方丹. 混合动力电动汽车的系统设计与仿真. 硕士学位论文, 西北工业大学, 2004.
    173.吴彤峰, 过磊, 李新春. 混合动力电动汽车结构与控制策略技术分析. 广西工学院学报, 2005, 16(3): 4-8.
    174.黄榕清, 姜招良. 浅议汽车混合动力系统的布置. 汽车研究与开发, 1999(5): 15-17.
    175.David Hermance , et al. Hybrid Electric Vehicles Take to the Street. IEEE Spectrum, 1999, (11): 48-52.
    176.Karen L.Butler , et al. A Matlab2Based Modeling and Simulation Package for Electric and Hybrid Electric Vehicle Design. IEEE Trans. On Vehi. Tech, 1999, 48(11): 1770-1778.
    177.Jeon S I, et al. Driving Simulation of a Parallel Hybrid Electric Vehicle Using Receding Horizon Control. ISIE 2001, Pu2 san, Korea.
    178.麻友良, 陈全世. 混合动力电动汽车的结构与特性分析. 汽车研究与开发, 2000(4): 20-22.
    179.梁龙, 张欣, 李国岫, 王浩. 并联式混合动力电动汽车动力总成系统的仿真研究. 北方交通大学学报, 2002, 26 (4): 57-62.
    180.张翔, 赵韩, 钱立军, 张炳力. 混合动力轿车的建模与仿真. 计算机仿真, 2005, 22 (1): 233-237.
    181.茅靖峰, 赵德安, 吴爱华. 混合动力汽车用开关磁阻起动/发电机控制系统设计. 微电机, 2006,39(1): 82-85.
    182.施凯, 赵德安, 茅靖峰, 陈建锋. 混合动力汽车中开关磁阻电动/发电机纯硬件控制器的研究. 中小型电机, 2005, 32 (4): 31-34.
    183.段岩波, 张武高, 黄震. 混合动力电动汽车技术分析. 柴油机,2002, (6): 43-46.
    184.陈全世, 杨宏亮, 田光宇. 混合动力电动汽车结构分析. 汽车技术, 2001, (9): 6-11.
    185.张义民, 薛玉春, 贺向东, 袁涛. 基于开关磁阻电机驱动系统的电动汽车振动研究. 汽车工程, 2007, 29 (1): 46-49.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700