非平衡负载的像面扫描控制系统研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高空飞行平台搭载的侦察仪器生存能力强、安全性高;与卫星平台相比,对同样焦距的侦察设备可获得更高分辨率的地面目标图像,且机动性较强。本文以某高空轻型可见光相机的像面扫描系统为研究对像,对其视场拼接方法、系统负载非平衡特性及其稳速控制策略进行了深入研究。
     首先给出了国内外高空飞行器及侦察相机的发展现状,指出了现有视场拼接方法中机械拼接和光学拼接的优缺点,提出了采用凸轮驱动的动态扫描拼接方法。凸轮结构的特殊性、平台姿态角和相机位角造成系统负载力矩的非平衡特性,对此进行了理论分析,结果表明:作用于电机轴上的负载力矩与平台横滚角和相机位角之和(记为ε角)及凸轮转速成正比。当ε角为零时,从动件匀速段负载力矩为零,而从动件变速段负载力矩发生变化;当ε角非零时,负载力矩在凸轮旋转一周范围内均非零。负载力矩特性的分析为后续控制策略的选取提供了理论依据。
     ε角为零时,为保证凸轮转速在从动件变速段平滑过渡,分别尝试PD控制、传统超前滞后稳速控制、超前滞后多模控制及神经网络多模控制,并进行了实验验证。实验结果表明:PD控制、超前滞后多模控制及神经网络多模控制均可有效抑制从动件变速段负载力矩对凸轮转速的影响,且从动件匀速段凸轮转速稳速精度优于0.5%(均方根值)。
     ε角非零时,负载力矩在凸轮升程段和回程段表现出不同的特性,从而造成凸轮转速在两阶段存在转速降。为解决此问题,提出三种控制策略:电流速度双环控制、改变凸轮升程段或回程段校正环节放大倍数或系统输入信号。从工程实现角度考虑,最终选取改变凸轮升程段或回程段系统输入信号的方法应用于实际工程。实验结果表明:当ε角非零时,在从动件匀速段凸轮转速稳速精度优于0.7%(均方根值)。
     在ε角为零及非零时,控制系统性能指标均能满足要求。最后对相机进行了成像实验,所得图像曝光均匀、层次分明、清晰无像移,符合预期要求。
The reconnaissance instrument on the altitude-flight platform has strong viability and high security. Compared with secondary planet, the reconnaissance instrument with same focus could gain much higher resolution image, and it is also much more flexible. The image scanning system of one high altitude visible-light camera was chosen to be researching object, and the assembly method, the non-equilibrium load feature and relative control methods are discussed in detail.
     The actuality of the domestic or overseas high altitude aerocraft and reconnaissance camera was given first, and also the strongpoint and shortcoming of the mechanical assembly and optical assembly were pointed out. Then one dynamic scanning assembly actuated by cam was introduced. Some factors, such as the special structure of the cam, platform attitudes angles and camera azimuth cause the non-equilibrium feature of the system load torque, and it was analyzed in theory. In order to predigest depiction, the sums of platform roll angle and camera azimuth is marked to be angleε. The analysis result shows that load torque on the electromotor axis is directly proportional toεand cam speed. Whenεis zero, the load torque equals zero in the uniform section of the follower and it changes in the speed section of the follower. But whenεis not zero, the situation is different. The load torque doesn’t equal zero in the whole circle rotating track of the cam. The academic analysis of the load torque feature provides foundation for choosing control method.
     Whenεis zero, the methods, PD control, traditional lead and log correction, lead and log multi-model control and neural network multi-model control were used to ensure cam rotation speed transiting smoothly in the speed section of the follower. Some experiments were made to verify the methods stated above. Experimental result shows that the methods, PD control, lead and log multi-model control and neural network multi-model control could restrain the cam rotate fluctuating caused by the load torque in the speed section of the follower. At the same time, in the uniform section of the follower, the rotate speed precision of the cam is less than 0.5 %( r.m.s.).
     Whenεisn’t zero, the load torque has different feature in the lift section and return section of the cam. Those different features cause that the cam rotate speed isn’t same in the lift section and return section. In order to solve this problem, three control methods were induced, which are current-speed double loop control, changing the DC gain of the adjuster or the input signal in the cam lift section or return section. Considering the project realization, the third method was used in the project at last. The experimental result shows that whenεisn’t zero, the rotate speed precision of the cam is less than 0.7 %( r.m.s.) in the uniform section of the follower.
     Whetherεis or isn’t zero, the control system performance could satisfy the whole system. The imaging experiment was made to the camera and the gained image exposure evenly and has distinct gradations. At the same time, the image is clear and has no image motion. The image scanning system complies with expectative requirement.
引文
[1]. STEPHENS H. Near-space[J], Air Force Magazine,2005,88(7):31.
    [2].黄伟,陈逖,罗世彬,等.临近空间飞行器研究现状分析[J],中国航天,2007,(10):28-31.
    [3].何彦峰.浅析临近空间平台的军事应用[J],国防科技,2007,(6):32-35.
    [4].曹秀云.近空间飞行器成为各国近期研究的热点(上)[J],中国航天,2006,(6):32-35.
    [5].冯坤菊,王春阳.临近空间与空间作战[J],飞航导弹,2009,(3):32-34.
    [6].尹志忠,李强.临近空间飞行器及其军事应用分析[J],装备指挥技术学院学报,2006,17(5):64-68.
    [7].李怡勇,沈怀荣.发展临近空间飞行器系统的关键技术[J] .装备指挥技术学院学报,2006,17(5):52-55.
    [8].李怡勇,李智,沈怀荣.临近空间飞行器发展与应用分析[J],装备指挥技术学院学报,2008,19(2):61-65.
    [9].鲁芳,池小泉.美国临近空间飞行器的C4ISR能力及其启示[J],装甲兵工程学院学报,2010,24(3):17-20.
    [10].李小将,李志德,杨建,等.邻近空间装备体系概念及关键问题研究[J],装备指挥技术学院学报,2007,18(4):72-77.
    [11]. KA-112A全景式航空照相机[M].北京:中国人民解放军空军司令部情报部,1988,1-5.
    [12].王光. KS-146长焦距航空照相机[M].北京:中国人民解放军空军司令部情报部,1989,1-12.
    [13]. Andre G. Lareau. E-O framing camera flight test results[C]. SPIE Vol.2555:56-60, 1997.
    [14]. Andre G. Lareau. Large area E-O framing camera flight test results[C]. SPIE Vol.3128:132-140,1997.
    [15]. Andre G. Lareau. Flight Demonstration of the CA-261 Step Frame Camera[C]. SPIE Vol. 3128:17-28, 1997.
    [16]. Andre G. Lareau. Optimum Coverage E-O Framing Camera[C]. SPIE Vol. 2829:216-224, 1996.
    [17]. Cgris Kauffman. Emergence of tactical, framing infrared recommaissance[C]. SPIE Vol. 3431:130-140, 1998.
    [18]. Daniel J. Henry. Advanced Airborne ISR Demonstration System (USA) [C]. SPIE Vol. 5787:38-45, 2005.
    [19]. Andre G. Lareau. Dual band framing cameras: technology and status[C]. SPIE Vol. 4127:148-156, 2000.
    [20]. Davis Lange, William Abrams. The Goodrich DB-110 System: Multi-Band Operation Today and Tomorrow[C]. SPIE Vol. 5109:22-31, 2003.
    [21]. Richard N. Lane, John K. Delaney. DB-110 Performance Update[C]. SPIE Vol. 3431:108-116, 1998.
    [22].杨桦,郭跃,伏瑞敏. TDICCD的视场拼接[J].光学技术,2003,29(2):226-228.
    [23]. John A Sultana, B O Mark Neill. Design, analysis and testing of CCD array mounting structure[C]. SPIE Vol. 1532: 27-38, 1991.
    [24]. Paul R Jorden, David G Morris, Peter J Pool. Technology of large focal planes of CCDs[C]. SPIE Vol. 5167: 72-82, 2004.
    [25]. David Mason, Scott Horner, Earl Amodt. Mosaic focal plane development[C]. SPIE Vol. 4849: 275-282, 2002.
    [26].刘新平,王虎,汶德胜.亚像元线阵CCD焦平面的光学拼接[J].光子学报,2002,31(6):781-784.
    [27].马文礼,叶宝珠,邹德春,等.高精度10片面阵CCD光学焦平面拼接[J].光电工程,1994,21(5):17-22.
    [28]. Desheng Wen, Xinping Liu, Wei Qiao, et al. Novel subpixel imaging system with linear CCD sensors[C]. SPIE Vol. 4563: 116-122, 2001.
    [29].耿文豹,翟林培,丁亚林.光电成像系统的像面覆盖方法分析[J] .半导体光电,2009,30(3):448-450.
    [30].史磊,金光,安源,等.一种遥感相机的CCD交错拼接方法研究[J] .红外,2009,30(1):12-15.
    [31].李朝辉,王肇勋,武克用.空间相机CCD焦平面的光学拼接[J] .光学精密工程,2000,8(3):213-216.
    [32].沈忙作,陈旭男,王晋,等.线阵CCD图象传感器的焦平面光学拼接[J].光电工程,1991,18(2):1-7.
    [33].陈旭南,马文礼,杨亚涛,等.多片面阵CCD图像传感器焦平面光学拼接技术[J] .光电工程,1992,19(4):23-29.
    [34].孙东岩,张云.线阵CCD遥感侦察系统中CCD焦平面的光学拼接[J].光子学报,1993,22(2):161-166.
    [35].张星祥,任建岳. TDI CCD焦平面的机械交错拼接[J] .光学学报,2006,26(5):740-745.
    [36]. Furqan, Javaid Lqbal, Akhtar Nawaz Malik, etal. Neural Network Based Aircraft Control[C]. Proceedings of 2010 IEEE Student Conference on Research and Development. Putrajaya. IEEE Press. 2010:262-266.
    [37]. Faa-Jeng Lin, Po-Huan Chou. Adaptive Control of Two-Axis Motion Control System Using Interval Type-2 Fuzzy Neural Network [J]. IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2009,56(1):178-193.
    [38]. Chih-Min Lin, Chun-Fei Hsu. Adaptive Fuzzy Sliding-Mode Control for Induction Servomotor Systems [J]. IEEE TRANSACTIONS ON ENERGY CONVERSION, 2004,19(2):362-368.
    [39]. J Fei. Adaptive Sliding Mode Vibration Control Schemes for Flexible Structure System[C]. Proceedings of the 46th IEEE Conference on Decision and Control. New Orleans. IEEE Press. 2007:1332-1337.
    [40]. Elias B Kosmatopoulos. Adaptive Control Design Based on Adaptive Optimization Principles [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2008,53(11):2680-2685.
    [41]. YAO Z CH, WANG W H, ZHENG L Q. A Hybrid Adaptive Control for Flight Simulator Turn Table[C]. Proceedings of the 2010 IEEE International Conference on Mechatronics and Automation. Xi’an. IEEE Press. 2010:773-777.
    [42]. Rahul Upadhyay, Rajesh Singla. Application of Adaptive control In a Process control[C]. 2010 2nd International Conference on Education Technology and Computer. IEEE Press. 2010:V2_323-V2_327.
    [43]. Se-Bong Oh, Woo-Song Lee, Dong-Won Ha, etal...A Robust Model Reference Adaptive Control of Robot System Based on TMS320C3X Chips[C]. International Conference on Control, Automation and Systems 2007. Seoul. ICROS. 2007:2304-2308.
    [44].刘金琨.智能控制[M].北京:电子工业出版社,2007:4-6.
    [45].任慧,刘妍,胡高平.神经网络技术在舞台升降台控制系统中的应用[J].中国传媒大学学报自然科学版,2006,13(2):74-77.
    [46].刘俊,卢建刚.基于BP神经网络自适应PID的负载控制系统[J].控制工程,2009,16(S1):74-77.
    [47].谭永红.基于BP神经网络的自适应控制[J].控制理论与应用,1994,11(1):84-88.
    [48].徐中,孙伟,刘晓冰.单神经元自适应PID控制器的研究[J].大连理工大学学报,1999,39(5):67-72.
    [49].丁军,徐用懋.单神经元自适应PID控制器及其应用[J].控制工程,2004,11(1):27-31.
    [50].宋道金.单神经元自适应PID控制器的性能优化设计[J].计算机工程与应用,2007,43(12):199-201.
    [51].陈道炯,单世宝,宫赤坤,等.基于神经网络PID控制的系统非线性校正的研究[J].仪器仪表学报,2006,27(7):715-719.
    [52].单金玲,马彩文,李文刚.基于BP神经网络的PID控制器[J].光子学报,2005,34(5):754-757.
    [53].周延延,吴晓燕,李刚.基于BP神经网络的PID控制器研究[J].空军工程大学学报(自然科学版),2007,8(4):45-48.
    [54].张晓超,张立勋.基于模糊自整定PID的下肢康复训练步态机器人变负载控制[J].测控技术,2009,28(2):43-46.
    [55].李卓,萧德云,何世忠.基于神经网络的模糊自适应PID控制方法[J].控制与决策,1996,11(3):341-346.
    [56].黄丽莲,王茂.测试转台变负载轴系的自适应控制[J].中国惯性技术学报,2002,10(5):70-72.
    [57].刘金琨.滑模变结构控制MATLAB仿真[M].北京:清华大学出版社,2006:1-15.
    [58].刘岩,李友一,陈占军,等.模型参考自适应滑模控制方法在前向像移补偿中的应用[J].光学精密工程,2007,15(6):983-987.
    [59].武俊峰,吴一辉,安静,等.姿态飞轮变结构变速积分控制的实现[J].光学精密工程,2010,18(1):149-155.
    [60].柯芳,贾立新.自寻的飞行器横滚运动的新型变结构控制[J]. 1998,18(1): 11-17.
    [61].柯芳,樊键,尹小杰.陀螺稳定平台伺服回路的变结构控制[J]. 2009,29(6):67-69.
    [62]. R J Wai, Y C Huang, Z W Yang, etal. Adaptive fuzzy-neural-network velocity sensorless control for robot manipulator position tracking [J]. IET Control Theory and Application, 2010,4(16):1079-1093.
    [63]. Faa-Jeng Lin, Po-Hung Shen. Robust Fuzzy-Neural-Network Control for Two-Axis Motion Control System Based on TMS320C32 Control Computer[C]. Proceedings of the 2005 IEEE International Conference on Mechatronics. Taipei. IEEE Press. 2005:606-610.
    [64].苏晓鹭.自整定-多模态智能控制器的研究[J].大连大学学报,1999,20(4):44-49.
    [65].刘俊千.一种新的多模态控制系统[J].南昌大学学报(工科版),2009,31(2):157-161.
    [66].张涛,薛鹏骞,蒋静坪.基于Fuzzy-PID多模态控制的位置跟踪系统[J].江南大学学报(自然科学版),2008,17(3):304-307.
    [67].袁莉芳,胡佑德.采用多模控制技术的直流伺服系统[J].北京理工大学学报,1997,17(3):337-339.
    [68].修杰.无刷直流电机驱动系统多模态控制[J].微电机,2009,42(2):44-47.
    [69].陈占军.非平衡负载控制系统的研究[D].北京:中国科学院研究生院,2008.
    [70].张树青.画幅式航空相机像移补偿技术研究[D].北京:中国科学院研究生院,2008.
    [71].秦荣荣,崔可维.机械原理[M].长春:吉林科学技术出版社,2005:72-81.
    [72].佟首峰,刘金国,阮锦,等.推帚式TDI-CCD相机应用分析[J].系统工程与电子技术,2001,23(1):31-33.
    [73].张守一,尹仲任. CCD“刷扫”扫描成像系统的平均积分调制传递函数[J].红外研究,1982,(1):45-52.
    [74].许世文,姚新程,付苓.推帚式TDI-CCD成象时象移影响的分析[J].光电工程,1999,26(1):60-63.
    [75].佟首峰,李德志,郝志航.高分辨率TDI-CCD遥感相机的特性分析[J].光电工程,2001,28(4):64-67.
    [76].孙桓,陈作模.机械原理(第六版)[M].北京:高等教育出版社,2001:159-165.
    [77].徐正平,葛文奇,杨守旺,等.像面扫描系统负载非平衡特性分析[J].工程设计学报,2010,17(2):102-106.
    [78].张策.机械动力学(第二版)[M].北京:高等教育出版社,2005:13-15.
    [79].徐科军,张瀚,陈智渊.TMS320X281xDSP原理与应用[M].北京:北京航空航天大学出版社,2006:1-18.
    [80].刘胜,彭侠夫,叶瑰昀.现代伺服系统设计[M].哈尔滨:哈尔滨工程大学出版社,2005:69-74.
    [81].李兴华,翟林培.含有凸轮机械的机电系统建模与仿真[J],光学精密工程,1999,7(5):49-55.
    [82].刘胜,彭侠夫,叶瑰昀.现代伺服系统设计[M].哈尔滨:哈尔滨工程大学出版社,2005:95-98.
    [83].程佩青.数字信号处理教程[M].第二版,北京:清华大学出版社,2001,252-278.
    [84].毕永利,王连明,葛文奇.光电稳定平台控制系统中数字滤波技术研究[J].仪表技术与传感器,2005,(4):54-57.
    [85].毕永利.多框架光电平台控制系统研究[D].北京:中国科学院研究生院,2003.
    [86].王霆.机载CCD图像消旋控制技术研究[D].北京:中国科学院研究生院,2004.
    [87].于微波,林晓梅,刘俊萍.微型计算机控制系统[M].长春:吉林人民出版社,2002:74-90.
    [88].黄坚.自动控制原理及其应用[M].北京:高等教育出版社,2004:231-272.
    [89]. Richard C. Dorf, Robert H. Bishop.现代控制系统英文版(第十版)[M].北京:科学出版社,2007:581-634.
    [90]. Richard C. Dorf, Robert H. Bishop.现代控制系统中译本(第八版)[M].北京:高等教育出版社,2003:468-516.
    [91]. W. R. Wakeland. Bode Compensator Design [J]. IEEE Transactions on Automatic Control, 1976:771-773.
    [92]. J. R. Mitchell. Comments on Bode Compensator Design [J]. IEEE Transactions on Automatic Control, 1977:869-870.
    [93].李兴华,翟林培.神经网络用于凸轮稳速控制[J],光学精密工程,2000,8(2):165-168.
    [94].王耀南.智能控制系统(第二版)[M].长沙:湖南大学出版社,2006:1-10.
    [95].王连明,葛文奇,谢慕君.陀螺稳定平台速度环的一种神经网络自适应控制方法[J].光电工程,2001,28(4):9-12.
    [96].王连明.机载光电平台的稳定与跟踪伺服控制技术研究[D].北京:中国科学院研究生院,2002.
    [97].徐正平,李友一,葛文奇.非平衡宽覆盖像面扫描系统的神经网络控制[J],光学精密工程,2010,18(12):2680-2687.
    [98].谭浩强. C程序设计(第二版)[M].北京:清华大学出版社,2001:1-7.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700