光电平台中的LQ控制方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
陀螺稳定平台是机载瞄准吊舱自动控制系统的重要组成部分,它是视轴(LOS)稳定的主要部件,平台隔离了载机的振动,并在控制指令的驱动之下,完成对目标的稳定跟踪,是一个集光、机、电于一体的复杂系统。本文以理论与实验为基础,对某光电平台的有效控制策略进行深入研宄。本文采用线性二次型高斯控制(LQG控制)对轴系的摩擦干扰和探测器干扰进行抑制。
     本文首先介绍了航空光电平台的历史和发展过程,继而介绍了光电平台的传统控制手段。接下来系统的介绍了最优控制以及线性二次型最优控制的基本原理和优越性。
     本文分析了航空光电平台的结构及隔离原理,建立了速率陀螺的模型,电机及框架的模型,干扰源的模型,控制回路的模型,并分析了力矩刚度。本文分析了影响系统稳定精度的主要干扰因素,其中摩擦力的存在是最主要的干扰因素,为了能够精确补偿摩擦干扰,首先需要辨识得到摩擦力的模型。本文比较了几种不同的摩擦力模型,最终选定了适用于实际平台的模型。
     本文分析了二次型高斯控制(LQG控制)的原理及特点,线性二次型控制的一个重要特点是把最优性和稳定性联系到一起,可以同时实现系统的最优性和稳定性。其中的线性二次型高斯控制系统(LQG)系统属于满足分离定理条件的中性系统,其参数辨识、状态估计和控制器设计彼此独立,对于同时存在系统模型不确定性和环境不确定性的控制问题可以实现最优解,对噪声具有强大的抑制作用。
     线性二次型最优控制的核心问题在于权值矩阵Qc和Rc的选择,传统的方法主要包括仿真试凑法、数值迭代法和显式解析法。近年来以遗传算法为主的大量智能搜索算法被应用于线性二次型控制权值矩阵的设计,本文针对遗传算法存在的缺点,设计出一种改进的遗传算法用于权值矩阵的优化。
     本文的最后对上述理论和算法进行了实验分析,取得了与理论研宄和设计相一致的结果,证明了本文理论设计的正确性及其工程实用价值。
Gyro stabilized platform is an important part of the automatic control system ofairborne targeting pod,it is the main component of line-of-sight (LOS) stabilization,the platform can isolate the vibration of the loading machine, and follow the drivingcontrol instruction to complete the stable tracking of targets, is a complex systemwhich integrates light, machinery, electricity in one. On the basis of theory andexperiment, effective control strategy of a photoelectric platform is researched. Thispaper adopts linear quadratic Gauss control (LQG control) to restrain frictioninterference and interference suppression of the detector.
     This paper ifrst introduces the history and development process of AirborneOpto-Electronic Platform, then introduces the traditional control method of thephotoelectric platform. And then introduces the basic principles and superiority ofoptimal control and linear quadratic optimal control.
     This paper analyzes the structure and the principle of isolation of airborneoptoelectronic platform, established the model of rate gyro, the model of motor andframework, the model of interference source, the model of control loop, and analyzesthe torque rigidity. This paper analyzed all the interference factors which inlfuencesthe system stability precision, the friction force is the main interference factor, inorder to be able to accurately compensate the friction disturbance, the frictionmodel should be identifying ifrstly. This paper compares several different frictionmodels, and ultimately selected one for the actual platform model.
     This paper analyzes the principle and characteristics of the linear quadraticGauss control (LQG control), an important characteristic of the linear quadraticcontrol is making the optimality and stability together, it can realize the optimalityand stability of the system at the same time. The linear quadratic Gauss controlsystem (LQG) a neutral system which meeting the conditions of the separationtheorem, the parameter identiifcation, state estimation and controller design can beindependent of each other. To the system, in which the model uncertainty and theenvironmental uncertainty is existing at the same time, LQG can achieve the optimalsolution, an have a strong inhibitory effect on noise.
     The core problem of linear quadratic optimal control is how to the two weightmatrix Qc and Rc, the traditional methods mainly include trial and pick bysimulation, the numerical iteration method and the analytical method. In recent years,many intelligence algorithms are applied to select the two control weight matrix ofthe linear quadratic, such as genetic algorithm. Based on the traditional geneticalgorithm, this paper will design a kind of improved genetic algorithm and use it tooptimize the weight matrix.
     At the end of this paper, the experimental analysis of the above theory andalgorithm is showing, the results have made consistent with the research and designof the theoretical, the correctness and engineering practical value of the theorydesign is proved.
引文
[1]张敬贤,李玉丹,金伟其.微光与红外成像系统[M].北京:北京理工大学出版社,1995.
    [2]贾平,张葆.航空光电侦察平台关键技术及其发展[J].光学精密工程,2003,11(1):82-87.
    [3]黄猛,张葆,丁亚林.国外机载光电平台的发展[J].航空制造技术,2008 (9):70-71.
    [4]张秉华.机载视轴稳定跟踪伺服系统[J].嘉兴高等专科学校学报,2000, 13(4):6-8.
    [5]毕永利,刘洵.机载多框架陀螺稳定平台速度稳定环设计[J],光电工程,2004,31(2):16-18.
    [6]张永安.光纤陀螺视线稳定系统的设计与工程实现[D].哈尔滨:哈尔滨工业大学,2001.
    [7]李东明,党纪红,郝颖.惯性平台稳定回路的双闭环控制[J].应用科技,2003,30(8):48-50.
    [8]吴盛林,刘春芳.超低速高精度转台中摩擦力矩的动态补偿m.南京理工大学学报.2002,26(4):393-396.
    [9]鲍文亮,黄显林,卢鸿谦.多框架光电平台动力学建模及耦合分析[J].哈尔滨工程大学学报.2009,30(8):893-897.
    [10]沈宏海,刘晶红,张葆,戴明,贾平,魏忠和,熊经武.航空光电成像平台角位置陀螺和角速率陀螺的稳定效果分析[J].光学精密工程,2007,15(8):1293-1299.
    [11]林武文,徐锦,徐世录.红外探测技术的发展[J].激光与红外,2006, 36(9):840-843.
    [12]Peter J. Kennedy, Rhonda L. Kennedy. Direct versus indirect line of sight(LOS)stabilization[J], IEEE transactions on control systems technology,2003, Vol.11(1):3-15.
    [13]张天霄,王永富,柴天佑.基于RBF神经网络的摩擦补偿建模与控制[J].控制工程,2008,15(5):568-575.
    [14]杨辉,范永坤,舒怀亮.抑制机械谐振的一种改进的数字滤波器[J].光电工程,2004,31(增):30-39.
    [15]雷霏霖,刘建伟,吴玉敬,赵创社,桑蔚,王新伟.机载光电系统中光纤陀螺卡尔曼滤波方法应用[J].应用光学,2013,34(1):188-192.
    [16]王连明,葛文奇,谢慕君.陀螺稳定平台速度环的一种神经网络自适应控制方法[J].光电工程,2001,28(4):9-12.
    [17]王合龙,朱培申,姜世发.陀螺稳定平台框架伺服系统变结构控制器的设计和仿真[J].电光与控制,1998(2):24-29.
    [18]路顺奇,杨坤涛,张坤石.计算机控制的光电桅杆瞄准线稳定和跟踪系统[J].舰船科学技术,1999(6):42-45.
    [19]William. J. Bigley, Wideband base motion isolation control via the stateequalization technique,1990.
    [20]毕成龙,姜宏滨,卞洪林.光电跟踪最优控制的简化设计[J].舰船科学技术,2002, 24(5):40-42.
    [21]李红光,鱼云岐,宋亚民.最优控制在车载惯性平台稳定回路中的应用[J].应用光学,2007,28(3):251-256.
    [22]刘兴松,巫亚强,史国清,忽麦玲.基于干扰观测器的二次型最优控制器设计[J].火炮发射与控制学报,2007,(4):48-50.
    [23]林宝军,曲卫振.球载升空平台LQR最优控制器设计与仿真.汁算机仿真,1998,15(1):45-48.
    [24]罗公亮,秦世引.智能控制导论[M].杭州:浙江科学技术出版社,1997.
    [25]张洪钺,王青.最优控制理论与应用[M].北京:高等教育出版社,2006.
    [26]孙增沂.计算机控制理论及应用.北京:清华大学出版社,1989.
    [27]Nikouhah, Willsky A. S., Benrard C. L., Kalman Filtering and Riccati Equationsfor Descriptor Sy stems [J]. IEEE. Trans. Automatic Control,1992,37(9).
    [28]郭富强.惯导平台的隔离度研宄m.西北工业大学学报,1995, 11(2):218-222.
    [29]毕永利.多框架光电平台控制系统研宄[D].北京:中国科学院研宄生院,2003.
    [30]张智勇.移动载体稳定跟踪测控技术研宄[D].长沙:国防科学技术大学,2002.
    [31]郭富强,于波,汪叔华.陀螺稳定装置及其应用[M].西安:西北工业大学出版社,1995.
    [32]胡建辉,邹继斌.永磁同步电动机自适应反步控制的建模与仿真[J].系统仿真学报,2007,29(2):247-249,303.
    [33]郑宏辉.转台速率系统低速特性分析[D].哈尔滨:哈尔滨工业大学,2002.
    [34]周擎坤,范大鹏,张智永.摩擦对稳定跟踪平台低速性能影响的研宄[J].机械与电子,2005(12):21-23.
    [35]赵彦玲,吴淑红译.MATLAB与SIMULINK工程应用[M].北京:电子工业出版社,2002.
    [36]刘金瑕.先进PID控制MATLAB仿真第二版[M].,北京:电子工业出版社.2004.
    [37]Tsien H. S., Engineering Cybernetics[M], McGraw-Hill,1954.
    [38]Maxwell J.C., On Governors [J]. Proc. Of the Royal Society of London16(1868);in:Selected Papers on Mathematical Trends in Control Theory(Cover,1964):270-283.
    [39]Wonham W. M., On the Separation Theorem of Stochastic Control[J], SIAM J.Control6(1968):312-326.
    [40]孙增沂.计算机控制理论及应用[M].北京:清华大学出版社,1989.
    [41]唐慧妍.船舶横向运动受扰估计、建模及LQG控制研宄[D].哈尔滨:哈尔滨工程大学硕士学位论文,2005.
    [42]王福保.概率论及数理统计[M].上海:同济大学出版社,1984.
    [43]J. S. Mediteh. Stochastie Optimal Linear Estimation and Control[M],Megraw-Hill,1969.
    [44]宋小娜.LQG控制在电视导引头系统中的应用研宄[J].南京:南京理工大学硕士学位论文,2005.
    [45]K. J. Astrom,Introduction to Stochastie Theory[M], AeademiePress,1970.
    [46]李人厚,谢宋和,朱荣华.LQ逆问题研宄[J].自动化学报.1992,18(4):475-481.
    [47]冯冬青,崔玮,杨秀红.线性最优控制系统加权矩阵的仿真研宄[J].郑州工业大学学报.2000,21(1):11-14.
    [48]王耀青.LQ最优控制系统中加权阵的确定[J].自动化学报.1992,18(2):213-217.
    [49]曹洁,周鹏,陈希平.基于遗传算法的LQ控制器的权值优化[J].工业仪表与自动化装置.2001,(1):6-8.
    [50]黄卫忠,高国琴.基于遗传算法的最优控制加权阵的设计[J].计算机测量与控制.2003,11(10):761-762,772.
    [51]李敏强,寇纪淞,林丹等.遗传算法的基本理论与应用[M].北京:科学出版社,2002.
    [52]John H. Holland. Adaptation in Natural and Artiifcial System[M], MIT Press,1992.
    [53]董聪.广义遗传算法[J].大自然探索,1998,17(63): 33-37.
    [54]陈琳,黄杰,龚正虎.一种求解最小诊断代价的小生境遗传算法[J].计算机学报,2005,28(12):2019-2026.
    [55]张延年,刘斌,朱朝艳,郭鹏飞.工程结构优化设计的改进混合遗传算法[J].吉林大学学报(工学版),2005,35(1):65-69.
    [56]周明,孙树栋.遗传算法原理及应用[M].北京:国防工业出版社J999.
    [57]徐宗本,聂赞坎,张文修.父代种群参与竞争遗传算法几乎必然收敛[J].应用数学学报,2002,25(1):167-175.
    [58]史峰,王辉,郁嘉,胡斐.MATLAB智能算法30个案例分析[M].北京航空航天大学出版社,2011.
    [59]李博.高精度伺服系统的摩檫力建模及补偿[D].哈尔滨:哈尔滨工业大学硕士学位论文,2008.
    [60]James Kennedy,Russell Eberhart. Particle Swarm Optimization[C], Proc: IEEEInternational Conference on Neural Networks,1995,Vol.4:1942-1948.
    [61]Peter J.Angeline. Evolutinary Optimization Versus Particle Swarm Optimization:Philosophy and Performance Differences[C], Proceedings of the7th InternationalConference on Evolutionary Programming,1998,Vol.1447:591-600.
    [62]Maurice Clerc,James Kennedy. The Particle Swarm-Explosion, Stability, andConvergence in A Multidimensional Complex Space[J], IEEE Transactions onEvolutionary Computation,2002,6(1):58-73.
    [63]Yuhui Shi, Russell C. Eberhart. Comparing Inertia Weight and ConstrictionFactors in Particle Swarm Optimization[C], Proc: IEEE Congress on EvolutionaryComputation,2000,Vol.1:84-88.
    [64]Morten Lovbjerg, Thomas Kiel Rasmussen, Thiemo Krink. Hybrid ParticleSwarm Optimizer with Breeding and Subpopulation[C], Proceedings of the3rdGenetic and Evolutionary Computation Congress,2001,Vol.7:115-118.
    [65]Higashi N,Iba H,Particle Swarm Optimization with Gaussian Mutation[C], Proc:IEEE Swarm Intelligence Symposium,2003,Vol.4:72-79.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700