泻火补肾汤对脑出血神经干细胞移植后大鼠脑微血管内皮细胞的保护作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景:脑出血后多遗留有不同程度的偏瘫、失语等残疾,致使患者生活质量严重下降。神经干细胞(neural stem cells,NSCs)的发现给脑血管疾病的治疗带来新的希望,但由于脑出血后内源性神经干细胞发生的数目有限,不足以修复脑出血后神经损伤,因此采用外源性神经干细胞移植治疗脑出血很有必要。然而脑出血后血脑屏障破坏,大量血液细胞侵入脑内。其中免疫细胞激活导致细胞因子释放,改变了脑内原有的“免疫免”环境。出血后脑内存在的大量细胞因子既可促进小胶质细胞等细胞主要组织相容性复合物(MHC)分子的表达,促进抗原递呈及识别;又可诱导神经干细胞MHC分子的表达,诱发免疫排斥反应,加重组织损伤。
     根据免疫反应理论,脑出血血脑屏障损伤后用NSCs移植治疗可能发生移植物抗宿主反应(GVHD)。即以TH1为主,TH2、CTL参与的细胞免疫反应。TH1释放的IFN-γ、TNF-α等细胞因子可诱导血管内皮细胞(Endothelial cell,EC)血管细胞黏附分子-1(vascular cell adhesion molecule,VCAM-1)的表达,促进白细胞黏附、变形、游出,侵入脑组织引起炎症反应。因此血管内皮细胞无论在脑出血的炎症反应或免疫排斥过程中,均起着关键作用。
     目的:本研究旨在通过观察泻火补肾汤对脑出血NSCs移植后大鼠及干扰素-γ(interferon gamma,IFN-γ)干预后大鼠脑微血管内皮细胞(rat cerebral microvascular endothelial cells,RCMECs)血管细胞粘附分子-1、转化生长因子-β1(transforming growth factor-β1,TGF-β1)、Fas、FasL表达及细胞凋亡的影响,探讨泻火补肾汤在NSCs移植免疫反应中对微血管内皮细胞的保护作用及可能机制。
     方法:1)体外实验:用新生7-10天SD乳鼠分离原代鼠脑微血管内皮细胞,培养、传代后以Ⅷ相关抗原抗体鉴定。取2-8代细胞进行分组实验。分空白组、IFN-γ刺激组、正常血清组、泻火补肾汤血清组共四组进行处理。分别用RT-PCR及ELISA检测VCAM-1、TGF-β1的mRNA和蛋白表达水平,TUNEL检测细胞凋亡,RT-PCR及免疫细胞化学方法观察Fas、FasL mRNA及蛋白表达。2)体内实验:90只SD大鼠随机分为正常组(n=10)、假手术组(n=20)、脑出血组(n=20)、NSCs移植组(n=20)及泻火补肾汤组(n=20),用Ⅶ型胶原酶注入苍白球复制脑出血模型,术后2d进行NSCs移植,移植后第4d、7d分两批处死动物。分别采用RT-PCR及ELISA检测VCAM-1、TGF-β1 mRNA和蛋白表达水平,TUNEL检测细胞凋亡,RT-PCR及免疫组织化学方法观察Fas、FasL mRNA及蛋白的表达。
     结果:
     体外实验:
     1.RT-PCR及ELISA检测显示:IFN-γ刺激后可见RCMECs形态改变,细胞活力下降,VCAM-1、TGF-β1 mRNA及蛋白表达水平均升高(P<0.01)。泻火补肾汤血清处理后细胞形态及活力改善,VCAM-1及TGF-β1表达降低,与正常血清组、IFN-γ刺激组比较差异显著(P<0.05)。
     2.TUNEL检测显示:IFN-γ刺激后RCMECs大量凋亡,泻火补肾汤处理后TUNEL阳性细胞明显减少,与正常血清组、IFN-γ刺激组比较差异有显著性(P<0.01)。
     3.免疫组化及RT-PCR检测显示:IFN-γ刺激后,RCMECs Fas、FasL蛋白及mRNA表达均增加(P<0.01)。泻火补肾汤组处理后Fas表达降低(P<0.05),FasL表达明显增加,与正常血清组、IFN-γ刺激组比较差异显著(P<0.01)。
     体内实验:
     1.RT-PCR显示正常组及假手术组大鼠脑内见微量VCAM-1mRNA表达,脑出血组大鼠VCAM-1 mRNA表达较正常组、假手术组增多(P<0.05),NSCs移植后VCAM-1 mRNA表达明显增加(P<0.05),泻火补肾汤组表达明显低于NSCs移植组(P<0.01),除正常组外各组7d VCAM-1mRNA表达较4d均有下降(P<0.05)。血清VCAM-1表达与脑内VCAM-1 mRNA表达趋势一致。TGF-β1mRNA在正常大鼠脑内有微量表达,NSCs移植组较脑出血组表达增强(P<0.01),泻火补肾汤组表达更强,与其它各组比较有显著性差异(P<0001);除正常组和假手术组外,各组7d TGF-β1mRNA表达较4d均有下降(P<0.05)。ELISA检测显示各组血清TGF-β1水平较正常组下降,以NSCs移植组最低。7d与4d比较,除正常组外各组TGF-β1均有回升,以泻火补肾汤组最明显。
     2.TUNEL检测显示:正常鼠脑中未见凋亡细胞,脑出血后出血区周围可见凋亡细胞。NSCs移植后凋亡细胞增多(P<0.05);泻火补肾汤干预后TUNEL阳性细胞明显减少(P<0.05);除正常组外,各组7d时TUNEL阳性细胞较4d减少。
     3.免疫组化定性检测示脑出血组及NSCs移植组脑内均有Fas、FasL蛋白的表达。RT-PCR半定量检测示正常组大鼠脑内有少量FasmRNA表达,假手术组、脑出血组、NSCs移植组Fas mRNA表达增加,以NSCs移植组最强(P<0.05),泻火补肾汤组明显低于NSCs移植组(P<0.05)。除正常组外7d时各组Fas mRNA表达较4d下降。正常组及假手术组大鼠脑内仅见微量FasL mRNA表达,脑出血组、NSCs移植组、泻火补肾汤组FasL mRNA表达增强,以泻火补肾汤组最强(P<0.05)。且同组内前后比较表达下降(P<0.05)。
     结论
     1.IFN-γ体外干预大鼠脑微血管内皮细胞,建立的的免疫损伤反应模型中存在细胞活力下降,VCAM-1、TGF-β1和Fas、FasL表达上调;
     2.脑出血大鼠移植NSCs后出王见VCAM-1、TGF-β1和Fas、FasL表达上调,细胞凋亡增加;提示脑内存在炎症和免疫反应增强,
     3.泻火补肾汤能抑制脑出血NSCs移植后的炎症和免疫反应,保护脑微血管内皮细胞。其机制可能是通过:1)下调VCAM-1表达、上调TGF-β1的表达;2)调节Fas、FasL表达,通过Fas/FasL通路促进免疫细胞凋亡,诱导免疫耐受。
Background and Objective
     The study aimed to observe the effects of Xiehuo Bushen Decoction on the expression of vascular cell adhesion molecule(VCAM-1), transforming growth factor beta (TGF-β1), Fas, Fas Ligand and apoptosis in rats brain of neural stem cells (NSCs)-transplanted experimental intracerebral hemorrhage and cultured interferon(IFN-γ)-induced cerebral microvascular endothelial cells (RCMECs), to explore the mechanism of Xiehuo Bushen Decoction (XHBS) in protecting RCMECs in NSCs-transplanted intracerebral hemorrhagic rat brains.
     Methods
     1. RCMECs were obtained from 7-10 days old neonate SD rats. The cultured RCMECs were randomly divided into control group, IFN-γgroup, serum control group and XHBS serum group. We observed the expression of VCAM-1 and TGF-β1 by enzyme-linked immunosorbent assay (ELISA) and reverse transcriptase polymerase chain reaction (RT-PCR), the expression of Fas and FasL by immunohistochemistry and RT-PCR, as well as the apoptosis by TdT-mediated dUTP-biotin nick end labeling (TUNEL).
     2. Ninety rats were randomly divided into five groups including normal group (n=10), sham operation group (n=20), intracerebral hemorrhage group (n=20), NSCs-transplanted group (n=20) and XHBS-treated group(n=20). The intracerebral hemorrhage model was induced by injecting 0.4UⅦcollagenase into right globus pallidus(1.4mm posterior, 3.2mm lateral to bregma, and 5.6mm depth from the cortical surface) with stereotaxic apparatus. BrdU-labled NSCs were transplanted to subventricle zone (SVZ) 2 days later. The expression of VCAM-1 and TGF-β1, Fas, FasL and apoptosis was assayed by the same technique as those in in vitro respectively.
     Results
     1. VCAM-land TGF-β1 mRNA expressed remarkably in cultured RCMECs after induced with IFN-γ(P<0.01 vs control group). Their expression were decreased after treated with XHBS serum (P<0.05 vs IFN-γgroup), The concentration of VCAM-1 and TGF-β1 in supernatant changed similar to that of the mRNA. The cell viability of XHBS serum group were higher than that of IFN-γgroup by MTT (P<0.05).
     2. The number of TUNEL positive cells which was very small in control group, increased markedly in IFN-γgroup (P<0.01 vs control group) and decreased in XHBS serum group (P<0.05 vs serum control group).
     3. The expression of Fas mRNA and protein in RCMECs was increased remarkably after induced by IFN-γ(P>0.05 vs control group) and decreased in XHBS serum group (P<0.01 vs serum control group). The expression of FasL was gradually up-regulated in IFN-γgroup, serum control group and XHBS serum group, and there is significant difference between IFN-γgroup and XHBS serum group (P<0.05).
     4. VCAM-1 expressed at low level in normal group and sham operation group, it was up-regulated remarkably in intracerebral hemorrhage group and NSCs transplanted group. The expression of VCAM-1 was down-regulated significantly in XHBS-treated group (P<0.05 vs NSCs-transplanted group). TGF-β1 mRNA also can be seen mildly in normal group and sham operation group (P<0.05). It was higher in intracerebral hemorrhage group than in sham operation group (P<0.05). The expression was up-regulated markedly in XHBS-treated group (P<0.05 vs NSCs-transplanted group).
     5. There was no TUNEL positive cells in the rat brains of normal group and some in sham operation group. The number of TUNEL positive cells increased significantly in model group and NSCs-transplanted group, and there was no difference between the two groups. The number of apoptosis cells decreased markedly in XHBS-treated group(P<0.05 vs NSCs-transplanted group).
     6. Fas expressed at low level in the rat brains of normal group and sham operation group. The expression of Fas mRNA and protein in intracerebral hemorrhage group and NSCs-transplanted group increased at 4d (P<0.01 vs normal group and sham operation group). It expressed mainly in neurons and endothelial cells around hematoma. it was down-regulated remarkably in XHBS-treated group(P<0.05 vs NSCs-transplanted group). There was little FasL mRNA expressed in normal group and sham operation group. The trend of FasL expression increased gradually in intracerebral hemorrhage group, NSCs-transplanted group and XHBS-treated group. The expression of FasL from 4d to 7d is ascendant.
     Conclusions
     1. Expression of VCAM-1, TGF-β1, Fas and FasL was up-regulated in IFN-γ-treated rat cerebral microvascular endothelial cells to simulate host-rejection in vitro, accompanied by celluar morphological change and viability reduction.
     2. Expression of VCAM-1, TGF-β1 and Fas/FasL was up-regulated in brain of NSCs-transplanted intracerebral hemorrhagic rats, which indicated intensification of inflammatory and immunological reaction.
     3. Xiehuobushen decoction can ameliorate host rejection following NSCs-transplantation in intracerebral hemorrhagic rat brains, which may be attributed to its inhibition of inflammation by reducing VCAM-1 activation and promoting TGF-β1 expression, and protection of rat brain microvascular endothelial cells by modifying Fas/FasL pathway.
引文
[1] 杨期东主编.神经病学(7年制),第一版.北京:人民卫生出版社,2002.118
    [2] Brown RD, Whisuant JP sicks JD, et. al. Stroke incidence prevalence and survival secular trends in Rochester, Minnesota, through 1989[J]. Stroke. 1996, 27: 373-380
    [3] 杨期东,周艳红,王文志,等.中国三社区人群脑卒中发病类型的分布特征[J].中华医学杂志,2002,13:875-878.
    [4] Armstrong RJ , Watts C , Svendsen CN , et al. Survival , neuronal differentiation, and fiberout growth of propagated human neuralprecursor grafts in an animal model of Huntingtons disease[J]. Cell Transplant, 2000, 9: 55-64.
    [5] Tzeng SF, Wu Jp. Responses of microglia and neural progenitors to me chanicalbr ainin jury[J]. Neuroreport, 1999, 11: 2287-92
    [6] Liy, Chopp M. Temporal profile of nestin expression after focal cerebral ischemiain adult rat[J]. Brain Res, 1999, 838: 1-10
    [7] Clas B. Johansson, stefan Momma, Diana L. Clarke, et al. Identification of a neural stem cell in the adult mammalian central nervous system[J]. Cell, 1999, 8: 25-34
    [8] Grigorian GA, Gray JA, Rashid T, et al. Conditionally immortal neuroepithelial stem cell grafts restore spatial learning in rats with lesions at the source of cholinergic forebrain projections [J]. Rest Neuro Neur Sci, 2000, 17: 1-12.
    [9] Jin K, Minami M, Lan JQ, et al. Neurogenesis in dentate subgranular zone and rostral subventricular zone after focal cerebral ischaemia in rats[J]. Proc Natl Acad Sci, 2001, 98: 4710-4715.
    [10] GrayJA., Grigoryan G., VirleyD, etal. Conditionallyim mortalized, mu ltipotentiala nd multifunctiomaln eurals tem cell lines as an approach to clinical transplantation[J]. Cell Transplantation, 2000, 9: 153-168
    [11] Wiiling AE, Vendrme M, Mallery J , et al. Mobilized peripheral blood cells administered intravenously produce functional recovery in stroke[J]. Cell Transplant, 2003, 12: 449-454.
    [12] Willing AE, Lixian J, Milliken M, et al. Intravenous versus intrastriatal cord blood administration in a rodent model of stroke[J]. Neur Sci Res. 2003, 73:296-307.
    [13] Sloan D. J, Wood M. J, and charlton H, M. The immune response to intracerebral neural grafts[J]. TINS. 1991, 14(8): 341-346
    [14] Eun Mi Lee, Jae Young Kim, Bum Rae Cho, et al Down-regulation of MHC class I expression in human neuronal stem cells using viral stealth mechanism[J]. Biochemical and Biophysical Research Communications 2005, 326: 825-835
    [15] Lois C , Buyua A. Long-distance neuronal migration in the adult mammalion brain [J]. Science. 1994, 264 (5162): 1145.
    [16] Modo M, Rezai P, et al. Transplantation of neural stem cells in rat model of stroke assessment of short-term graft survival and acute host immunological response[J]. Brain Res. 2002, 958(1): 70-82
    [17] Nickerson P, Steurer W, Steiger J, Zheng X, Steele AW, Strom TB. Cytokines and the ThlyTh2 paradigm in transplantation[J]. Curr Opin Immunol 1994, 6: 757-764.
    [18] Mosmann TR, Sad S. The expanding universe of T-cell subsets: Th1, Th2 and more[J]. Immunol Today 1996, 17: 138-146.
    [19] Paludan SR. Interleukin-4 and interferon-γ: The quintessence of a mutual antagonistic relationship[J]. Scand J Immunol 1998, 48: 459-468.
    [20] Farrar MA, Schreiber RD. The molecular cell biology of interferon-g and its receptor[J]. Ann Rev Immunol 1993, 11: 571-611
    [21] Nicolaidou E, Okada Y, Zho XT, et al. Prolongation of skin allograft survival is associated with reduced Thl cytokine responses in the wky→F344 rat model[J]. Transplantation 1999, 68: 1393
    [22] Maria Svenvika, Christina Ekerfelt Increased IFN-γresponse to transplantation antigens measured by cytokine MLC: indications for a bi-phasic response pattern [J]. Transplant Immunology 2003, 11: 101-105
    [23] Affleck DG, Bull DA, Albanil A, et al. Interleukin-18 production following murine cardiac transplantation: correlation with histologic rejection and the induction of IFN-gamma. [J]. J Interferon Cytokine Res. 2001 Jan; 21(1): 1-9.
    [24] 唐映梅.血管内皮细胞和移植排斥反应[J].中华器官移植杂志.2005,26(10):636-638
    [25] Denton MD, Davis SF, Baum MA, et al. The role of the graft endothelium in transplant rejection: evidence that endothelial activation may serve as a clinical marker for t he development of chronic rejection[J]. Pediat r Transplant. 2000, 4: 252-260.
    [26] Fabrega E, Castro B, Crespo J, et al. Different time course of circulating adhesion molecules and hyaluran during hepatic allograft rejection[J]. Transplantation. 2000, 69: 569-573.
    [27] Totth A, Sebestyen A, Barna G, etal.TGF beta 1 induces caspase-dependent but death-receptor independent apoptosis in lymphoid cells [J]. Anticancer Res. 2001, 21: 1207-1212
    [28] Wallick SC, Figari IS, Morris RE, etal. Immunoregulatory role of transforming growth factor beta in development of killer cells: comparison of active and latent TGF-beta 1 [J]. J Exp Med, 1990, 172 (6): 1777
    [29] Osnat BK, Curt IC. FasLigand as a Tool for Immunosuppression and Generation of Immune Tolerance[J]. Stem Cells. 2004, 22; 908-924
    [30] Griffith TS, Yu X, Herndon JM et al. CD95-induced apoptosis of lymphocytes in an immune privileged site induces immunological tolerance. Immunity 1996, 5: 7-16.
    [31] 刘柏炎,黎杏群,张花先,等.脑溢安颗粒对实验性大鼠脑出血后NSC增殖的影响[J].中国临床康复杂志.2003,7(25):3428-3430.
    [32] 武衡,黎杏群,唐涛.脑溢安对脑出血大鼠脑内脑源性神经营养因子表达的影响[J].湖南医科大学学报.2003, 28(5):485-489
    [33] Tang T, Li XQ, Wu H, et al. Endogenous neural stem cells activate following in experimental intracerebral hemorrhagic rat brain[J]. C JIM. 2004. 10(4): 284-288
    [34] 周光炎主编.免疫学原理.上海:上海科学技术文献出版社.第一版2000年,32,300-304,181~182,87-88,204,198
    [35] 王宁生,雷燕,刘平,等.关于血清药理学的若干思考.中国中西医结合杂志.1999,19(5):263-266
    [36] Rosenberg GA, Mun-Bryce S, Wesley M, et al. Collagenase-induced intracerebral hemorrhage in rats. Stroke. 1990, 21 (5): 801-807.
    [37] 包新民,舒斯云.大鼠脑立体定位图谱.北京:人民卫生出版社,1991
    [38] Dvora SK. Th1/Th2 cytokines in the central nervous system Intern. J. Neuroscience[J]. 2002, 112: 665-703,
    [39] Donald Wong, Rukmini Prameya, Katerina Dorovini-Zis. Adhesion and migration of polymorphonuclear leukocytes across human brain microvessel endothelial cells are differentially regulated by endothelial cell adhesion molecules and modulate monolayer permeability[J]. Journal of Neuroimmunology .2007,184:136-148
    [40] Priya Chaudhary, Gail H. Marracci, et al Lipoic acid inhibits expression of ICAM-1 and VCA M-1 by CNS endothelial cells and T cell migration into the spinal cord in experimental autoimmune encephalomyelitis[J]. Journal of Neuroimmunology. 2006,175:87-96
    [41] Hitoshi Kimura, Ilker Gules, Toshinari Meguro, et al Cytotoxicity of cytokines in cerebral microvascular endothelial cell[J]. Brain Research 2003,990:148-156.
    [42] Qing Wang , Xian Nan Tang, Midori A. et al. The IFNlammatory response in stroke [J] Journal of Neuroimmunology .2007,184:53-68
    [43] Xue M, Del Bigio MR. Intracortical hemorrhage injury in rats relationship Between blood fractions and brain cell death[J]. Stroke. 2000,31:1721-1727.
    [44] Osborn L . Direct expression cloning of vascular cell adhesion molecule 1, a cytokine-induced endothelial protein that binds to lymphocytes[J].Cell. 1989,59(6):1203-ll.
    [45] Domanski L. Gryczman M, Pawlik A.,Circulating adhesion molecules during kidney allograft reperfusion[J]. Transplant Immunology. 2006,16 :172-175.
    [46] Isobe M, Suzuki J, Yagita H,et al. Immunosuppression to cardiac allografts and soluble antigens by anti-vascular cellular adhesion molecule-1 and anti-very late antigen-4 monoclonal antibodies[J].J Immunol. 1994,153(12):5810-5818
    [47] Orosx CG, Ohye RG, Pelletier RP et al. lkeatment with anti-vascular cell adhesion molecule 1 monoclonal antii induces long-term murine cardiac allograft acceptance [J]. Zhqdantation 1993,56:453-460.
    [48] Damle NK, Klussman K, Leytze G, et al Costimulation of T lymphocytes with integrin ligands intercellular adhesion molecule-1 or vascular cell adhesion molecule-1 induces functional expression of CTLA-4, a second receptor for B7[J]. J Immunol .1994,152 (6): 2686-2697
    [49] Schlegel PG, Vaysburd M, Chen Y, etal. Inhibition of T cell costimulation by VCAM-1 prevents murine graft-versus-host disease across minor histocompatibility barriers[J]. J Immunol. 1995,155(8):3856-3865.
    [50] Reinhold D, Bank U, Buhling F,et al.Transforming growth factor-β1 inhibits DNA synthesis of PWM-stimulated PBMC via suppression of IL-2 and IL-6 production[J]. Cytokine .1994,6:382-388.
    [51] Reinhold D, Bank U, Buhling F, et al Transforming growth factorβ1 inhibits Interleukin-10mRNA expression and production in pokeweed mitogen-stimulated peripheral blood mononuclear cells and T cells[J]. J Interferon Cytokine Res 1995, 15: 685-690.
    [52] Massague J. TGF-βsignal transduction. Annu Rev Biochem. 1998, 67: 753-791.
    [53] Piek E, Helden CH, Djike PT, et al. Specificity, diversity, regulation in TGF-b superfamily signaling [J]. FASEB J. 1999, 13: 2105-2124.
    [54] Munger JS, Harpel JC, Gleizes PE, et al. Latent transforming growth factor-beta: structural features and mechanisms of activation[J] . Kidney Int. 1997, 51(5): 1376-1382.
    [55] Mcdonald NQ, Hendrikson WA. A structural superfamily of growth factors containing a cystine knot motif[J]. Cell. 1993, 73 (30): 421-424.
    [56] Heldin CH, Miyazano K, Dijke P, et al. TGF-beta signaling from cell membrance to nucleus through smads protein[J]. Nature. 1997, 390: 465-471.
    [57] David A, Chetritt J, Guillot C, et al Interleukin-10 produced by recombinant adenovirus prolongs survival of cardiac allografts in rats[J]. Gene Ther. 2000, 7(6): 505-510.
    [58] Patil S, Wildey GM, Brown TL, et al Smad7 is induced by CD40 and protects B-lymphocytes from transforming growth factor-beta -induced growth inhibition and apoptosis[J]. J Biol Chem. 2000, 275(49): 38363-38370.
    [59] Hutchinson Ⅳ. The role of transforming growth factor-beta in transplant rejection[J]. Transplant Proc. 1999, 31 (7A) : 95213.
    [60] Vaux DL, Korsmeyer SJ. Cell death in development[J]. Cell. 1999, 96: 245-254.
    [61] Meier P, Finch A, Evan G. Apoptosis in development[J]. Nature. 2000, 407: 796-801.
    [62] Siegel RM, Chan FK, Chun HJ et al. The multifaceted role of Fas signaling in immune cell homeostasis and autoimmunity[J]. Nat Immunol. 2000, 1: 469-474.
    [63] Opferman JT, Korsmeyer SJ. Apoptosis in the development and maintenance of the immune system[J]. Nat Immunol. 2003, 4: 410-415.
    [64] 钟红兴.Fas 系统、细胞凋亡与移植免疫[J].中华器官移植杂志.2001,22(3):191-192
    [65] Smyth MJ, Trapani JA. Granzymes: exogenous proteinases that induce target cell apoptosis[J]. Immunol Today. 1995, 16(4): 202-206.
    [66] Ferguson TA, Griffith TS. The role of Fas ligand and TNF-related apoptosis-inducing ligand (TRAIL) in the ocular immune response[J]. Chem Immunol Allergy. 2007, 92: 140-154.
    [67] Griffith TS, Yu X, Hemdon JM, et al. CD95-induced apoptosis of lymphocytes in an immune privileged site induces immunological tolerance[J]. Immunity. 1996, 5(1): 7-16.
    [68] Stuart PM, Yin X, Plambeck S, et al. The role of Fas ligand as an effector molecule in corneal graft rejection[J]. Eur J Immunol. 2005, 35(9): 2591-2597.
    [69] Bellgrau D, Gold D, Selawry H, et al. A role for CD95 ligand in preventing graft rejection[J]. Nature. 1995, 377(6550): 630-632.
    [70] Khar A, Varalakshmi C, Pardhasaradhi BV, et al. Depletion of the natural killer cell population in the peritoneum by AK-5 tumor cells overexpressing fas-ligand: a mechanism of immune evasion[J]. Cell Immunol. 1998, 189(2): 85-91
    [71] Jerzak M, Bischof P. Apoptosis in the first trimester human placenta: the role in maintaining immune privilege at the maternal-foetal interface and in the trophoblast remodelling[J]. Eur J Obstet Gynecol Reprod Biol. 2002, 100(2): 138-42.
    [72] 张承烈.安胎中药研究进展[J].浙江中医学院学报.2001,25(4):67-68
    [73] 许均,归绥琪.抗磷脂抗体阳性流产的中医药治疗[J].上海中医药大学学报.2000,14(3):33-34
    [74] 李大金,李超荆,朱影,等.免疫异常增高型反复自然流产的中西医结合治疗[J].中国中西医结合杂志.1997,17(7):390-392
    [75] 归绥琪,许均,俞而概,等.封闭抗体缺乏性自然流产者的中药治疗[J].上海医科大学学报.1997,24(3):217-219
    [76] 骆和生,罗鼎辉,主编.免疫中药学-中药免疫药理与临床[M].北京:中国协和医科大学、北京医科大学联合出版社.1999,317
    [77] 俊贇,陈耀俊,叶珊珊.中西医结合治疗舍格林综合征[J].黑龙江医学.2003,27(9):673
    [78] 汤文璐,李俊,徐叔云.丹皮总苷的抗炎免疫作用及部分机制研究[J].中国药理学通报.2002,18(6):656-660
    [79] 黄正明,杨新波,田文辉.肝癌的药物治疗[J].世界华人消化杂志.2002,10(8):958
    [80] 颜正华主编.中药学.北京:人民卫生出版社.2000,116-806
    [1] Massague J. The transforming growth factor-beta family[J]. Annu Rev Cell Biol 1990, 6: 597-641.
    [2] Graycar JL, Miller DA, Arrick BA, etal. Human transforming growth factor- β 3: recombinant expression, purification and biologic activities in comparison with transforming growth factors- P land P 2[J].Mol Endocrinol.1989, 3:1977-1986.
    [3] Brand T, Schneider MD. The TGF beta superfamily in myocardium ligands , receptors , transduction, and function[J]. J Mol Cell Cardiol .1995,27(1):5-18.
    [4] Moses HL, Pietenpol JA, Munger K, etal. TGF beta regulation of epithelial cell proliferation: role of tumor suppressor genes[J].Princess Takamatsu Symp. 1991,22:183-95.
    [5] Sosroseno W, Herminajeng E. The immunoregulatory roles of transforming growth factor beta[J]. Brit J Biomed Sci 1995;52:142-148.
    
    [6] Olofsson A, Miyazono K, Kanzaki T, etal.: Transforming growth factor- β 1, β 2 and β 3 secreted by a human glioblastoma cell line: identification of small and different forms of large latent complexes[J].J Biol Chem 1992, 267:19482-19488.
    
    [7] Govinden R, Bhoola KD. Genealogy, expression, and cellular function of transforming growth factor-beta[J]. Pharmacol Ther, 2003, 98(2):257-265
    [8] Munger JS, Harpel JG,Gleizes PE,etal. Latent transforming growth factor-beta: structural features and mechanisms of activation[J] .Kidney Int.1997, 51(5):1376-82.
    [9] Grawford SE ,Stellmach V,Murphy Ullrich JE ,etal . Thrombospondin-1 is a major activator of TGF-betal in vivo [J]. Cell. 1998,93 :1159-1170.
    [10] Crawford SE, Stellmach V, Murphy-Ullrich JE, etal . Thrombospondin-1 is a major activator of TGF-betal in vivo[J].Cell.1998,93 (7):1159-1170.
     [11] Miller LA ,Barnett NL ,Sheppard D,etal.Expression of the beta 6 integrin subunit is associated with sites of neutrophil IFNlux in lung epithelium[J].J Histochem Cytochem.2001,49 (1) :41-48.
    [12] Tohs,Itoh F,Goumans MJ,et al. Signaling of TGF-β family members through Smad proteins[J]. Eur J Biochem ,2000 ,267(24):6954-6967.
    [13] Angles CE. Structural basis for the pathophysiology of lipoprotein(a) in the athero-thrombotic process [J].Braz J Med Biol Res.1997,30(11):1271-1280.
    [14] Blobe GC,Shiemann WP,Lodish HF: Role of transforming growth factor β in human disease[J]. N Engl J Med .2000,342:1350-1358.
    [15] Visser JA,Themmen APN: Downstream factors in transforming growth factor-β family signaling[J]. Mol Cell Endocrinol.1998,146:7-17.
    [16] Bonewald LF.Regulation and regulatory activities of transforming growth factor b[J]. Crit Rev Eukaryot Gene Expr.1999,9:33-44.
    [17] Saitoh M,Nishitoh H,Amagasa T,etal. Identification of important regions in the cytoplasmic juxtamembrane domain of type I receptor that separate signaling pathways of transforming growth factor-b[J].J Biol Chem. 1996,271: 2769-2775.
    [18] Attisano L,Wrana JL.Signal transduction by the TGF-beta superfamily[J]. Science.2002,296(5573) :1646-1647.
    [19] Sirard C,Kim S,Mirtsos C,etal.Targeted disruption in murine cells reveals variable requirement for Smad4 in transforming growth factor β -related signaling[J].J Biol Chem.2000, 275(3):2063-2070.
    [20] Tsukazaki T,Chiang TA, Davison AF,et al. SARA ,a FYVE domain protein that recruits Smad 2 to the TGF-beta receptor [J]. Cell.1998 ,95(6) :779-791.
    [21] Nakao A,Afrakhte M,Moren A,etal.Identification of Smad7,a TGF-beta-inducible antagonist of TGF-beta signalling[J] .Nature, 1997,389 (6651): 631-635.
    [22] Kimura N , Matsuo R ,Shibuya H, et al . BMP22 induced apoptosis is mediated by activation of the TAK12p38 kinase pathway that is negatively regulated by Smad 6 [J]. J Biol Chem.2000,275 (23): 17647-17652
    [23] Feng XH, Zhang Y, Wu RY, etal . The tumor suppressor Smad 4PDPC4 and transcriptional adaptor CBPPp300 are coactivators for smad3 in TGF-beta-induced transcriptional activation [J].Genes Dev.1998,12(14): 2153-2163.
     [24] Liberati NT,Datto MB,Frederick JP,et al.Smads bind directly to the Jun family of AP-1 transcription factors[J] . Proc Natl Acad Sci USA, 1999, 96 (9): 4844-4849.
    [25] Mulder KM. Role of Ras and Mapks in TGFbeta signaling[J]. Cytokine Growth Factor Rev.2000,11 (122) :23-35.
    [26] Hayashida T, Decaestecker M, Schnaper HW. Cross-talk between ERK MAPkinase and Smad signaling pathways enhances TGF-beta-dependent responses in human mesangial cells[J]. FASEB J. 2003, 17 (11) :1576-1578.
    [27] Itoh S,Ten Dijke P.Negative regulation of TGF-β receptor/Smad signal transduction [J]. Curr Opin Cell Biol. 2007,19(2):176-84.
    [28] Zhu H, Kavsak P, Abdollah S, etal . A Smad ubiquitin ligase targets the BMP pathway and affects embryonic pattern formation[J] .Nature. 1999,400 (6745): 687-693.
    [29] Wallick SC, Figari IS, Morris RE, etal. Immunoregulatory role of transforming growth factor beta (TGF-beta) in development of killer cells: comparison of active and latent TGF-beta 1[J]. J Exp Med. 1990, 172: 1777-1784.
    [30] Waltenberger J, Miyazono K, Funa K, etal. Transforming growth factor-beta and organ transplantation. [J]. Transplant Proc. 1993, 25: 2038-2040.
    [31] Sun J, McCaughan GW,Matsumoto Y, etal.Tolerance to rat liver allografts. I. Differences between tolerance and rejection are more marked in the B cell compared with the T cell or cytokine response. [J] Transplantation. 1994, 57(9): 1349-1357.
    [32] Josien R, Douillard P, Guillot C, etal. A critical role for transforming growth factor-beta in donor transfusion-induced allograft tolerance[J]. J Clin Invest. 1998, 102(11): 1920-1926.
    [33] Hutchinson Ⅳ. The role of transforming growth factor-beta in transplant rejection[J]. Transplant Proc. 1999, 31(7A): 95213S.
    [34] Letterio JJ, Geiser AG, Kulkarni AB, et al. Autoimmunity associated with TGF-betal-deficiency in mice is dependent on MHC class Ⅱ antigen expression. [J]. J Clin Invest. 1996, 98: 2109-2119.
    [35] 张毅,陈磐,张雁云,等.转化生长因子β1对鼠造血祖细胞产生树突状细胞的调控作用[J].中华医学杂志.1999,79(3):178-180.
    [36] TakuyaT, Kalsuhiko K, Adrian E, etal. Retroviral delivery of transforming growth factor-β1 to myeloid dendritic cells: inhibition of T cell priming ability and IFNluence on allograft survival[J]. Transplantation, 2002, 74: 112-119.
    [37] Bommireddy R, Ilona O, Moying Y. etal. TGF-β1 inhibits Ca~(2+)-Calcineurinmediated activation in thymocytes [J]. J Immunol. 2003, 170: 3645-3652.
    [38] Khanna A, Caims V, Becker C, etal. Transforming growth factor- beta mimics and anti-TGF-beta antibody abrogates the in vivo effects of cyclosporine- demonstration of a direct role of TGF- beta in immunosuppression and nephrotoxicity of cyclosporine[J]. Transplantation, 1999, 67: 882-889.
    [39] Lee JI, Ganster RW, Geller DA, etal. Cyclosporine A inhibits the expression of costimulatory molecules on in vitro-generated dendritic cells: association with reduced nuclear translocation of nuclear factor kappa B in hematopoietic progenitors[J]. Blood. 1994, 83(11): 3138-3142
    [40] Inge TH, Hoover SK, Susskind BM, etal. Inhibition of tumor-specific cytotoxic T-lymphocyte responses by transforming growth factor beta 1[J]. Cancer Res. 1992, 52(6): 1386-1392.
    [41] Roth MD, Golub SH. Human pulmonary macrophages utilize prostaglandins and transforming growth factor beta 1 to suppress lymphocyte activation[J] J Leukoc Biol. 1993, 53(4): 366-371.
    [42] Maeda H, Tsuru S, Shiraishi A. Improvement of macrophage dysfunction by administration of anti-transforming growth factor-beta antibody in EL4-bearing hosts[J]. Jpn J Cancer Res. 1994. 85(11): 1137-1143
    [43] Ardehali A, Reddy R, Laks H. Gene therapy and heart transplantation[J]. Expert Opinlnvestig Drugs. 2000 9(5): 1021-1027
    [44] Strobl H, Walter K. TGF-betal regulation of dendritic cells [J]. Microbes and IFNection. 1999, 1(15): 1283-1290
    [45] Totth A, Sebestyen A, Bama G, etal. TGF beta 1 induces caspase-dependent but death-receptor independent apoptosis in lymphoid cells [J]. Anticancer Res. 2001, 21: 1207-1212
    [46] Qin L, Chavin KD, Ding Y, etal. Gene transfer for transplantation. Prolongation of allograft survival with transforming growth factor-beta 1 [J]. Ann Surg. 1994, 220(4): 508
    [47] Mostafa AS, Mohamed, Helen Robertson, Trevor A Booth, etal. TGF-β1 expression in renal transplantation[J]. Transplantation. 2000, 60(5): 1003-1005
    [48] Bickerstaff AA, VanBuskirk AM, Wakely E, etal. Transforming growth factor-beta and interleukin-10 subvert alloreactive delayed type hypersensitivity in cardiac allograft acceptor mice[J]. Transplantation. 2000, 69(7): 1517-1520
    [49] Mora BN, Boasquevisque CH, Boglione M, etal. Transforming growth factor-betal gene transfer ameliorates acute lung allograft rejection[J]. J Thorac Cardiovasc Surg. 2000, 119(5): 913-920.
    [50] Suda T, DOvidio F, Daddi N, etal. Recipient intramuscular gene transfer of active transforming growth factor-betal attenuates acute lung rejection[ J]. Ann Thorac Surg. 2001, 71(5): 1651-1656.
    [51] 赵峰,吕丽红,邵军,等TGF-β1mRNA与大鼠小肠同种异体移植急性排斥反应的关系[J].中国现代普通外科进展.2004,7(2):98-100
    [52] Isaka Y, Fujiwara Y, Ueda N, etal. Glomerulosclerosis induced by in vivo transfection of transforming growth factor-beta or platelet-derived growth factor gene into the rat kidney [J]. J Clin Invest. 1993,92(6):2597
    
    [53] Yamamoto T, Noble NA , Miller DE, etal. Sustained expression of TGF-beta 1 underlies development of progressive kidney fibrosis [J] .Kidney Int. 1994,45 (3):916
    
    [54] Sharma VK, Bologa RM, Xu GP, etal. Intragraft TGF-beta1 mRNA :a correlate of interstitial fibrosis and chronic allograft nephropathy [J] .Kidney Int.1996,49 (5): 1297
    
    [55] Sankaran D, Asderakis A, Asharaf S, etal . Cytokine gene polymorphisms predict acute graft rejection following renal transplantation [J].Kidney Int . 1999,56 (1):281
    
    [56] El-Gamel A,Sim E,Hasleton P,etal.Transforming growth factor beta (TGF-beta) and obliterative bronchiolitis following pulmonary transplantation [J].J Heart Lung transplant. 1999,18 (9):828
    
    [57] Charpin JM,Valcke J,Kettaneh L,etal. Peaks of transforming growth factor-beta mRNA in alveoral cells of lung transplant recipients as an early marker of chronic rejection [J] .Transplantation. 1998,65 (5):752
    
    [58] Gamel A, Awad M,Sim E,etal.Transforming growth factor-beta1 and lung allograft fibrosis [J].Eur J Cardiothorac Surg.1998,13 (4):424
    
    [59] Awad MR, El-Gamel A,Hasleton P,et al.Genotypic variation in the transforming growth factor-betal gene :association with transforming growth factor-betal production, fibrotic lung disease, and graft fibrosis after lung transplantation [J]. Transplantation. 1998 ,66 (8): 101
    
    [60] Gamel A,Awad MR,Hasleton PS,etal.Transforming growth factor-beta (TGF-beta) genotype and lung allograft fibrosis [J].J Heart Lung Transplant, 1999,18 (6):517
    
    [61] De Groot-Kruseman HA, Baan CC, Mol WM, etal. Up regulated transforming growth factor-beta 1 mRNA expression in endomyocardial biopsies during the development of graft vascular disease after clinical heart transplantation [J] . Transplant Proc. 1999,31 (7):2724
    
    [62] Aziz T, Hasleton P, Hann AW, etal. Transforming growth factor beta in relation to cardiac allograft vasculopathy after heart transplantation[J].J Thorac Cardiovasc Surg.2000,119:700
    [63] Densem CG, Hutchinson IV, Cooper A, etal. Polymorphism of the transforming growth factor-beta1 gene correlates with the development of coronary vasculopathy following cardiac transplantation [J] J Heart Lung Transplant, 2000,19 (6):551
    
    [64] Marta Ruiz-Ortega,Juan Rodriguez-Vita, Elsa Sanchez-Lopez.TGF- β signaling in vascular fibrosis[J]. Cardiovascular Research.2007,74 :196-206
    [1] Ralph L, Nachman I, Eric A. Jaffe. Endothelial cell culture: beginnings of modem vascular biology[J]. The Journal of Clinical investigation. 2004, 114(8): 1037-1040.
    [2] Huag J, Choudhri TF, WIFNree C J, et al. Postischemic cerebrovascular E-selectin expression mediates injury in murine[J]. Stroke. 2000, 31(12): 3047-3053
    [3] Kozuka K, Kohriyama T, Nomura E, etal. Endothelial marker adhesion molecules in acute isehemic stroke-equential change and ferencesin stroke subtype[J]. At Aerosdeosu. 2002, 161(1): 161-168
    [4] Beckerle MC. Cell adhesion[M]. Oxford: Oxford Univers it Y Press. 2002, 1-36
    [5] Zhang X, Zhang J, Kuang, et al. Effect of lumbrokinaseon p-selectin and Eselectin in cerebral ischemia model of rat[J]. Tradi Chin Med. 2003, 23(2): 141-146
    [6] Mackie JB, Stins M, Jovanovic S, et al. Cereport (RMP-7) increases the permeability of human brain microvascular endothelial cell monolayers[J]. Pharm Res. 1999, 16(9): 1360-5
    [7] Lang I, Pabst MA, HidenU, etal. Heterogeneity of microvascular endothelial cells isolated from human term placeta and macrovascular umbilical vein endothelial cells[J]. EurJBiol. 2003, 82(4): 163-73
    [8] Beek huizen H, van Furth R. Growth characteristics of cultured human macrovascular venous and arterial and miarovascular endothelial cells[J]. J Vasc Res. 1994, 31 (4): 230-239
    [9] 娄晋宁.微血管内皮细胞的培养及其在医学研究中的应用[J].微循环学杂志.2004,14(3):5-8
    [10] Zhu DY, Deng Q, YaoHH, et al. Inducible nitric oxide synthne expression in the isehemie core and penumbra after transient fecal cerebral isehemia in mice[J]. life sci, 2002, 71(17): 1985-1996
    [11] Friden PM, Walus LR, Watsen P, et al. Blood-barrier Penetration and in vivo activity of an NGF conjunat[J]Science, 1993, 259: 373-377。
    [12] Rupnick MA, Carey A, Williams SK. Phenotypic diversity in cultured cerebral microvascular endothelial cells In Vitro Cell[J]. Dev Biol. 1988; 24(5): 435-44
    [13] Gerhart DZ, Broderius MA, Drewes LR. Cultured human and canine endothelial cells from brain microvessels[J]. Brain Res Bull. 1988; 21(5): 785-93.
    [14] DeBault LE, Cancilla PA gamma-Glutamyl transpeptidase in isolated brain endothelial cells: induction by glial cells in vitro[J]. Science. 1980, 207(4431): 653-655.
    [15] Betz AL, Firth JA, Goldstein GW. Polarity of the blood-brain barrier: distribution of enzymes between the luminal and antiluminal membranes of brain capillary endothelial cells[J]. Brain Res. 1980, 192(1): 17-28
    [16] Bauer. Gamma-glutamyl-transpeptidase (GGTP) and NA~+K~+-ATPase activities in different subpopulations of cloned cerebral endothelial cells: responses to glial stimulation. Biochem Biophys Res Commun[J]. 1990, 168(1): 358-363
    [17] Aguzzi A, Kleihues P, Heckl K, Wiestler OD. Cell type-specific tumor induction in neural transplants by retrovirus-mediated oncogene transfer[J]. Oncogene. 1991, 6(1): 113-118.
    [18] Lonomia Gustavo Henrique da Silva, Stephen Hyslop, Maria Alice da Cruz-Hofling. obliqua caterpillar venom increases permeability of the blood-brain barrier in rats[J]. Toxicon 2004, 44: 625-634
    [19] Petty Eng HL. Junctional complexes of the blood-barrier permeability changes in neuroIFNlammation[J]. Prog Neurobiol, 2002, 68(5): 311-323
    [20] Brown RC, Mark KS, Egleton RD, et al. Protection against hypoxia-induced increase in blood-brain barrier permeability: role of tight junction protein and NF kappa B[J]. J Cell Sci. 2003, 116(4): 693-700
    [21] Werener R, Hartwig W. Development of the blood-barrier[J]. Trends Neurosci. 1990, 13: 174-178
    [22] 王顺蓉,张英,李著华.血脑屏障的结构与功能研究进展[J].四川生理科学杂志.2005;27(2):88-89
    [23] Newby AC, Henderson AH, Stimulus-secretion coupling in vascular endothelial cells[J]. Annu Rev Physiol. 1990, 52: 661-674.
    [24] Brenner BM, Troy JL, Baltermann BJ. Endothelium dependent vascular responses: mediator and mechanisms[J]. J Clin Invest. 1989, 84: 1373-1377.
    [25] Koide M, Kamahara Y, Tsuda T, et al. Cytokine induced expression of an inducible type of nitric oxide synthase gene in cultured vascular smooth muscle cells[J]. FEBS Lett. 1993, 318: 213-217.
    [26] Beasley D, McGuiggan M, Interleukin-1 activates guanylate cyclase in human vascular smooth muscular cells through a novel nitric oxide-independent pathway[J]. J Exp Med. 179: 71-80.
    [27] Caltell V, Smith J, JansenA, et al. Localization of inducible nitric oxide synthase in acute renal allograft rejection in the rat, Transplantation[J]. 1994, 58: 1399-1402
    [28] Paul T. Clesca Endothelial cells and acute rejection in organ transplantation: a review with emphasis on adhesion molecules[J]. Intemational Congress Series. 2002, 1237: 181-191
    [29] Yancopoulos GD, Davis S, Gale NW, et al. Vascular specific growth factors and blood vessel formation[J]. Nature. 2000, 40: 242-248
    [30] Bjork ST, Harrit m, Goran B J, et al. Endothelial injury in vivo; Atechnical and statistical approach to the study of arotic integrity[J]. Am J Physiol. 1996, 39: 1841-1849
    [31] Pober JS, Cotran RS. The role of endothelial cells in inflammation[J]. Transplantation. 1990, 50(4): 537-544.
    [32] Nandi A, Estess P, Siegelman ME Hyaluronan anchoring and regulation on the surface of vascular endothelial cells is mediated through the functionally active form of CD4 [J]. J BiolChem.2000,275(20):14939-14948
    [33] Liaw CW, Cannon C, Power MD, et al. Identification and cloning of two species of cadherins in bovine endothelial cells[J]. EMBO J.1990,9(9):2701-2708.
    [34] Mantovani A,Dejana E.Cytokines as communication signals between leukocytes and endothelial cellsp[J]. Immunol Today.1989,10(11):370-375
    [35] Moller E. Cell interactions and cytokines in transplantation immunity[J]. TransplantProc.1995,27(10):24-27.
    [36] Zazulia AR, Diringer MN, Derdeyn CP, et al. Progression of mass efect after intracerebralhe morrhage.St roke.1999,30(6): 1167-1173
    [37] Matsushita K, Meng W,Wang X,et al. Evidence for apoptosis after intracerebral hemorrhagein rats triatum[J] .J Cereb Blood Flow M etab.2000,20(2):396-404
    [38] Yang GY,Betz AL,Chenevert TL,et al.Experimentalin tracerebral hemorrhage: relationship between brain edema,blood flow,and blood brain barrier permeabilityin rats[J].JN eurosurg.1994,81(1):93-102
    [39] Mendelow AD.Mechanisms of ischemic brain damage with intracerebral hemoirhage[J].St roke.1993,24(12suppl):1115-1117
    [40] MackieE J,Pagel CN,SmithR ,et al. Protease-activated receptors:a means of converting extracellular proteolysis into intracellular signals[J].IU BMB Life. 2002,53(6):277-281.
    [41] Bartha K, Donmotor E, Lanza F, et al. Identification of thrombin receptors in rat brain capillary endothedial cells[J].J Cereb Blood Flow Metab.2000, 20(1):175-182.
    [42] Lee KR,Drury L, Vitarbo E, et al.Seizure induced by intracerebral injection of thrombin:a model of intracerebral hemorrhage [J].J Neurosurg.1997, 87(1):73-78.
    [43] Gingrich MB, Junge CE, Lyuboslavsky P, et al. Potentiation of NMDA receptor function by the serineprotenase thrombin[J]. Neurosci. 2000,20(12):4582-4596
    [44] LeeK R,Kawei N,Kim S,et al.Mechanisms of edemaf ormation after intracerebral hemorrh age:effects of thrombin on cerebral blood flow,b lood-brain-barrier permeability,and cell survivalin a rat model [J].J Neurosurg.1997,86(2):272-278
    [45] Lee KR,Colon G P,Betz AL,et al .Edema from intracerebral hemorrhage:the role of thrombin[J].J Neurosurg. 1996,84(1):91-96
    [46] Del Bigio MR,Yan HJ,Buist R ,et al .Experimental hemorrhage in rats.Magnetic resonase imaging and histopathological correlates[J].Stroke.1996,27:2312-2320
    [47] Kubo Y, Suzuki M, Kudo A, et al. Thrombin inhibitor ameliorates secondary damage in rat brain injury:suppression of inflammatory cells and vimentin -positivea strocytese[J]. JNeurotrauma.2000,17(2):163-172.
    [48] Xue M, Del Bigio MR. Acute tissue damage after injections of thrombin and plasmin into rats triatum[J].Stroke.2001,32(9):2164-2169.
    [49] Nepomuceno RR,Termer AJ.C1gR, the C1q receptor that enhances phagocytosis, is detected specially in human cells of myeloid lineage,endothelial cells, and platelets[J].J Immunol 1998,160:1929-1935
    [50] Gasque P,Singhrao SK, Neal JW, et al. Expression of the recptor for complement C5a (CD88) is upregulated on reaction astrocytes, microglia, and endothelium cells in the IFNlamed human central nervous system[J]. Am J Pathol 1997,150(1):31-41
    [51] Lucchesi BR. Complement activation, neutrophils,oxygen radicals in reperfusion injury[J] .Stroke.1993,24:141-147
    [52] Lozada C, Levin RI, Huie M, et al. Identification of Clq as the heat-labilserum cofactor required for immune complexes to stimulated endothelial expression of the adhesion molecule E-selectin and intercellular and vasscular cell adhesion molecule 1[J]. Proc Natl Acad Sci 1995,92:8378-8382
    [53] Kilgore KS,Schmid E,Shanley TP,et al.Neutrophil adhesion to human endothelial cells in induced by the membrane atack complex: the rolex: the roles of P-selectin and platelet activating factor[J]. inflammation 1998,22(6):583-593
    [54] Vaporciyan AA. Up-regulation of lung vascular ICAM-1 in rats is complement dependent[J]. J Immuno.1995,155:1442-1449
    [55] Varani J ,Bendelow MJ,Sealey DE , et al.Tumor necrosis factor enhances susceptibility of vascular endothelial cells to neutrophil mediated killing[J].Lab. Invest. 1988,59:292-295.
    [56] Bevilaqua MP.Endothelial-leukocite adhesion molecules[J].Annu Rev Immunol. 1993,11:767-804.
    [57] ShimizuY,Shaw S,Graver N. Activation-independent binding of human memory T cells to adhesion molecule ELAM-1[J]. Nature 1996,349:796-799.
    [58] Geng JG, Bevilacqua MP,Moore KL,et al.Rapid neutrophil adhesion to activated endothelium mediated by GMP-140[J] .Nature 1990,343:757-760
    [59] Pober JS, GimbroneJ rMA, LapierreLA, et al. Overlapping patterns of activation of human endothelial cells by interleukin 1, tumor necrosis factor and immune interferon[J].JImmunol.1986,137:1893-1896.
    [60] Bevilaqua MP, Endothelial-leukocite adhesion molecules[J].Annu Rev Immunol. 1993,11:767-804..
    [61] ClarkRA, Quin JH,Winn HJ,et al. Fibronectin is produced by blood vessels in response to injury[J].J Exp Med .1982,156:646-651.
    [62] Dustin ML, Springer TA, The role of lymphocyte adhesion receptors in transient interactions and cell locomotion[J]. Annu Rev Immunol. 1991,9:26-27.
    [63] Berlin C,Bargatze RF,Campbell JJ. 4 Integrins mediate lymphocyte attachment and rolling under physiologic flow[J].Cell.1995,80:413-422.
    [64] Muller WA., Berman ME., Newman P.J.etal.A heterophilic adhesion mechanism for platelet/endothelial cell adhesion molecule 1 [J].J Exp Med. 1992,175: 1401-1404.
    [65] Romanic AM, Madri JA., The induction of 72 kD gelatinase in T cells upon adhesion to endothelial cells is VCAM-1 dependent[J]. J Cell Biol. 1996,125: 1165-1178
    [66] Kim JS,Yoon SS,Kim YH,et a.Serial measurement of interleukin-6, transformmg growth factor-beta,and S-100 protein in patients with acute stroke[J]. Stroke. 1996,27(9): 1553-1557
    [67] Terkowski E .Early intrathecal production interleukin-6 predicts the size of brain lesion in stroke[J].Stroke.1995,(26):1393-1396.
    [68] Ottl MC, Clain CJ, Gillesxpie M, et al.Cytokines and metabolic dysfunction after severe head injury[J] J N eurotrauma. 1994,11(5):447-472
    [69] Giralt M, Penkowa M, Lago N, et al.Metallothionein-1+2 protect the CNS after a focal brain injury[J].Exp Neurol.2002,173(1):l 14-128
    [70] Dawson TM, snyder SH. A novel neuronal messenger molecule in the brain, the free radical,nitric oxide [J]. Ann Neurol.1992,32:297-300
    [71] Wang XD,van Breemen C,Multiple mechanisms of activating Ca~(2+) entry in freshly isolated rabbit aortic endothelial cells[J]. J Vas Res. 1997,34:196-397
    [72] Lipton SA, stamler Js. Actions of redox.- related congeners of nitril oxide at the NMDA receptor [J].Neuro Pharmacol.1994,33(11):1229-1233
    [73] Zivl, Fleminger G, Djialdetir,etal Increased plasma endothelin-1 inacut ischemic stroke. [J].Stroke,1992,23(7):1014-1016
    [74] 刘江波.内皮素对脑血管的作用机制与临床关系的进展.国外医学神经病学神经外科学分册.1994,21
    [75] Martz D, Beer M, Betz Al. Dimethylthiourea reduces ischemie brain edama without efecting Cerebral blood flow[J]. J cerebral Blood Flow and Metablism. 1990, 10(3): 352
    [76] Ferrara N, Henzel WJ. Pituitary follicular cells secrete a novel heparin binding growth factor specific for vascular endothelial cells[J]. Biochem Biophys Res Commun. 1989, 161(2): 851-858
    [77] Zhang X, Li H, Hu S, et al. Brain edema after intracerebral hemorrhage in rats: the role ofinflammation[J]. Neurol India. 2006, 54(4): 402-407.
    [78] Manoonkitiwongsa PS, Schuhz RL, McCreery DB, et al. Neuroprotection of ischemic brain by vacular endothelial growth factor is critically dependent on proper dosage and may be compromised by angiogenesis[J]. Cereb Blood Flow Metab. 2004, 24(6): 693-702
    [79] Cantarella G, Lempereur L, Presta M, et al. Nerve growth factorendothelial cell interaction leads to angiogenesis in vitro and in vivo[J]. FASEB. 2002, 16(10): 1307-1309
    [80] Makarenko AN, Visil IG Neuroactivating mechanism of action of the new trophinotropic drug cerebral[J]. Eksp KLin Farmakol 2004, 67(4): 12-5

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700