海南岛热带云雾林群落结构及组配机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
热带森林是地球上物种最丰富且结构最复杂的陆地生态系统,其物种共存机制是近年来群落生态学研究的一个重要内容。相对于较低海拔的热带林,物种共存机制的研究在高海拔的热带云雾林群落中还几乎没有开展。热带云雾林的环境条件和物种组成与较低海拔的热带森林明显不同,如云雾出现频率较高、风多且强烈、气温偏低、空气湿度较大;树木高度和径级明显减小,树干常弯曲但多缺乏板根,叶片革质且面积较小,附生植物丰富等。因此,热带云雾林的群落结构与组配机制可能有其独特性。热带云雾林相对矮小的树木使得精确测定其功能性状成为可能。海南岛的热带云雾林主要分布在霸王岭、尖峰岭、五指山和鹦哥岭等林区海拔1200 m以上范围,包括热带山地常绿林和热带山顶矮林两种群落类型。本文以海南岛霸王岭热带山地常绿林和热带山顶矮林为对象,通过典型样方调查、环境因子观测和主要功能性状测定,系统比较了两种森林类型的环境因子、群落结构和物种多样性特征,分析了物种共有度、空间格局和竞争作用规律及其在群落组配中的作用;以比叶面积和树种高度这两个功能性状为基础,采用数量比较和模型检验方法,分析了功能性状在物种内、物种间和样地间的变化格局、尺度效应及环境筛驱动机制,讨论了随机与生态位过程在群落组配中的作用。主要研究结果如下:
     (一)、热带云雾林群落的环境和结构特征研究
     1.热带山地常绿林和热带山顶矮林一天中光合有效辐射呈单峰型曲线变化,热带山地常绿林各时段的光合有效辐射比热带山顶矮林显著低;湿季(5~10月)两群落类型日平均气温分别为(21.76±2.44)℃和(19.33±1.03)℃,且随时间呈单峰型曲线变化,热带山地常绿林日平均气温比热带山顶矮林显著高;湿季两群落类型日平均空气相对湿度分别为(88.44±2.90)%和(97.71±0.80)%,且随时间呈“倒S型”曲线变化,热带山地常绿林各月日平均空气相对湿度比热带山顶矮林显著小;与热带山顶矮林相比,热带山地常绿林的土壤全氮、全磷、速效氮、有机质、pH和土壤厚度显著大而全钾和有效磷含量显著低;热带山地常绿林的坡度、地表岩石裸露比例和海拔高度都比热带山顶矮林显著小;主成分和相关性分析表明:空气温度、土壤有效磷、全钾、全氮及地形因子是热带云雾林的主导环境因子。
     2.热带山地常绿林的优势种为线枝蒲桃(Syzygium araiocladum)、蚊母树(Distylium racemosum)、碟斗青冈(Cyclobalanopsis disciformis)、九节(Psychotria rubra)和碎叶蒲桃(S. buxifolium)等,热带山顶矮林的优势种为蚊母树、碎叶蒲桃、黄杞(Engelhardtia roxburghiana)、九节和光叶山矾(S. lancifolia)等;两森林类型的优势科都为樟科(Lauraceae)、山矾科(Symplocaceae)、茜草科(Rubiaceae)、壳斗科(Fagaceae)和木犀科(Oleaceae),优势属都为山矾属(Symplocos)、青冈属(Cyclobalanopsis)、柯属(Lithocarpus)和琼楠属(Beilschmiedia)。两森林类型间的S?rensen相似性指数为0.71。热带山地常绿林幼树(1 cm≤dbh < 5 cm)和小树(5 cm≤dbh < 10 cm)的平均密度比热带山顶矮林显著小,而成年树(dbh≥10 cm)平均密度无显著差异;前者的小树和成年树的平均胸径比后者显著大,而幼树平均胸径比后者显著小;前者的幼树、小树和成年树的平均高度比后者显著大。
     (二)、基于物种物种多样性的热带云雾林群落组配机制研究
     3.热带山地常绿林群落的物种丰富度观测值、一阶刀切法指数、二阶刀切法指数和抽样法物种丰富度指数都比热带山顶矮林显著高,但群落多度比热带山顶矮林显著低。应用幂律模型、指数模型和逻辑斯蒂模型对热带山地常绿林和热带山顶矮林的物种―面积关系进行拟合,发现逻辑斯蒂模型是两森林类型中物种―面积关系的最优模型。应用分割线段模型、生态为优先模型、Zipf模型、Zipf-Mandelbrot模型和中性理论模型对热带山地常绿林和热带山顶矮林种―多度分布进行拟合,发现Zipf-Mandelbrot模型是热带山地常绿林种―多度分布的最优模型,而生态位优先模型和Zipf-Mandelbrot模型是热带山顶矮林种―多度分布的最优模型。广义线性模型分析表明光合有效辐射、空气温度、土壤氮和磷、坡度等环境筛对群落的物种丰富度及多度有显著影响。
     4.应用4种共有度指数(the number of checkerboard species pairs、C score、种间联结数和V ratio)研究热带云雾林物种在5 m×5 m、10 m×10 m、20 m×20 m和30 m×30 m样方尺度上的共有度(co-occurrence)格局。与随机期望值相比,热带山地常绿林群落的所有物种、不同多度及径级物种在5 m和10 m样方尺度上呈现较少的共有度格局,且该格局在5 m样方尺度上最明显。显示物种间显著地非随机分离,说明物种间竞争作用于群落组配,且该作用在较小尺度上最强。热带山顶矮林群落的所有物种、不同多度及径级物种在20 m和30 m样方尺度上均呈现较多的共有度格局,且该格局在20 m尺度上最明显。显示物种间显著地非随机聚集,说明正相互作用(如促进作用facilitation)作用于群落组配,且该作用在较大尺度上最强。
     5.应用Donnelly最近邻体指数分析物种分布类型,发现热带山地常绿林和热带山顶矮林不同分布类型物种百分数的大小顺序为规则分布>随机分布>聚集分布;随径级增大,聚集分布和随机分布的物种百分数呈减小趋势,而规则分布的物种百分数呈增大趋势。两森林类型中共同出现的优势物种蚊母树和碎叶蒲桃的幼树呈聚集分布,小树呈聚集分布或随机分布,而大树基本上呈随机分布。应用单变量和双变量O-ring函数分析热带山地常绿林和热带山顶矮林中碎叶蒲桃和蚊母树的不同径级种群的空间格局及其相互关联,发现蚊母树的幼苗和小树主要在小于10 m样方尺度上聚集分布,而碎叶蒲桃的幼树和小树在大于23 m样方尺度上聚集分布,不同物种幼树的空间分布与种子扩散方式有关。蚊母树的小树与幼树、大树与幼树及大树与小树的空间格局主要在小于5 m样方尺度上正关联;碎叶蒲桃的小树与幼树、大树与小树的空间格局负关联。
     6.与零假设模型比较,热带山地常绿林和热带山顶矮林分别有(41±4)%和(37±2)%的物种与不同物种的个体间、(43±4)%和(38±7)%的物种与相同物种的个体间、(28±2)%和(44±5)%的物种与所有物种的个体间呈现显著的胸径―最近邻体距离相关关系,说明非随机过程在群落组配中有重要作用;两森林类型分别有(23±3)%和(26±5)%的不同物种的个体间、(27±5)%和(19±9)%的相同物种的个体间、(17±8)%和(27±7)%的所有物种的个体间呈现显著的胸径―最近邻体距离正相关关系,说明了竞争作用驱动群落组配;物种间大小―距离的显著负相关关系反映了促进作用驱动群落组配;热带山地常绿林中物种竞争作用的重要性和强度比热带山顶矮林小,竞争作用的重要性和强度随土壤肥力减小而增大。
     (三)、基于植物功能性状的热带云雾林群落组配机制研究
     7、热带山地常绿林群落中多度加权比叶面积平均值和多度加权树木高度平均值比热带山顶矮林显著大,而比叶面积和高度可塑性比热带山顶矮林显著小;多元逐步回归表明比叶面积大小及其可塑性与土壤全磷及空气温度显著相关,高度大小仅与空气温度显著相关,高度可塑性与上述两个环境因子都显著相关。说明了空气温度和土壤磷等环境筛作用于热带云雾林物种功能性状变化,从而影响群落物种组成和结构。8.以热带山顶矮林为例分析物种功能性状变化与群落组配的关系。热带山顶矮林中三个地点(松林顶、雅加松顶和斧头岭)的种内比叶面积和种间比叶面积随光照强度增大而减小。种内比叶面积和种间比叶面积在三个地点间有显著差异,广义混合模型分析表明样地间比叶面积差异仅与空气温度显著相关。alpha比叶面积值随群落内光照强度增大而减小,beta比叶面积值在不同样地间有显著差异。说明热带山顶矮林通过群落内光照和群落间空气温度两种环境筛作用,使物种按照功能性状变化在群落内和群落间进行组配。
     9.以热带山顶矮林为例,以功能性状为基础在4个样方尺度(5 m×5 m、10 m×10 m、20 m×20 m和30 m×30 m)上对群落组配进行零假设检验。与零假设模型比较,热带山顶矮林中比叶面积小的物种在20 m和30 m样方尺度上有生存优势(over-representation),而高度大的物种在4个样方尺度上都有生存优势。线性回归表明比叶面积平均值的观测值与期望值的效应大小(effect size)仅与日平均气温及日平均最高气温显著正相关,最大物种高度平均值的观测值与期望值的效应大小仅与光合有效辐射正相关。说明热带山顶矮林物种根据比叶面积和高度大小变化进行非随机组配,此组配过程主要由空气温度和物种对光照的竞争作用驱动。
     10.综合本文的研究结果可以看出:低温和低磷等环境因子对不同功能性状的物种具有筛选作用,影响其在群落中的分布与多度;在同一群落内促进作用和物种对光照等环境因子的竞争作用又影响着物种的空间配置与个体比例。因此,热带云雾林的群落结构主要由非随机的生态位过程组配形成。
Tropical forests are terrestrial ecosystems harboring the most abundant species and complicated structures, and play important roles in the regional and global biodiversity conservation and ecological function maintenance. Studies on the mechanisms of species coexistence in these ecosystems have been a vitally important topic in community ecology in recent years. Although some studies have been carried out in the low altitudinal tropical forests, species assembly and community structuring in the high altitudinal tropical cloud forests are poorly understood. Compared with the lower altitude tropical forests, environmental conditions in tropical cloud forests are quite different, characterized by frequent fog, low temperature, high humidity and strong winds. Moreover, trees in these forests are typically more deformed and elfin with small sturdy leaves, few buttress,and thick cover of epiphytes. These special environmental and physiognomical features may confine a unique rule of community assembly. The small stature of trees in the tropical cloud forests make it possible to precisely measure some important functional traits (such as specific leaf area and maximum species height). Tropical cloud forests in Hainan Island are distributed at more than 1200 m altitude in Bawangling Mt., Jianfengling Mt., Wuzhishan Mt., Yinggeling Mt., etc, including tropical montane evergreen forest (TMEF) and tropical (montane) dwarf forest (TDF or TMDF). To explore the structuring and assembly rules of tropical cloud forest communities, we investigated the species diversity and environmental conditions, and measured the specific leaf area (SLA), dbh and height for 5765 individuals trees and shrubs (dbh≥1 cm) in TMEF and TMDF in Bawangling National Natural Reserve, Hainan island, South China. Then, we compared the environmetal conditions, community stucture and assembly rules for the two cloud forest types. The main results are as follows.
     (Ⅰ) Environmental conditions and community features of the tropical cloud forests
     1. Daily photosynthetically active radiation (PAR) showed a unimodal curve both in TMEF and TMDF, but PAR was significantly lower in TMEF than TMDF. From May to October, mean daily air temperature differed significantly between TMEF and TMDF and showed a unimodal curve in the two forests, with average values of (21.76±2.44)°C and (19.33±1.03)°C, respectively. Additionally, mean daily relative humidity differed significantly between TMEF and TMDF and showed an“inverse S”curve; average values were (88.44±2.90) % and (97.71±0.80) %, respectively. TMEF had higher total nitrogen, total phosphorous, available nitrogen, organic matter, pH and soil thickness, but lower total potassium and available phosphorous than TMDF. Slope, cover of exposed rock and altitude were lower in TMEF than TMDF. Principal component analysis and Pearson’s correlation analysis indicated that air temperature, soil phosphorous, potassium, nitrogen and the three topographic factors were the most important predictors of distribution of these tropical cloud forests.
     2. The dominant species in TMEF were Syzygium araiocladum, Distylium racemosum, Cyclobalanopsis disciformis, Psychotria rubra and S. buxifolium, and the dominant species in TMDF were D. racemosum, S. buxifolium, Engelhardtia roxburghiana, P. rubra and S. lancifolia. The common dominant families for the two forest types were Lauraceae, Symplocaceae, Rubiaceae, Fagaceae and Oleaceae. The common dominant genera for the two forest types were Symplocos, Cyclobalanopsis, Lithocarpus and Beilschmiedia. The S?rensen species similarity index for the two forest types was 0.71. The mean stem density for saplings (1 cm≤dbh﹤5 cm) and small trees (5 cm≤dbh﹤10 cm) was significantly lower in TMEF than TMDF, while there were no differences in mean stem density for adult trees (10 cm≤dbh) between these two forest types. Mean dbh for small trees and adult trees were significantly higher in TMEF than TMDF, while mean dbh for saplings were significantly lower in TMEF than TMDF. Mean plant height for saplings, small trees and adult trees were significantly higher in TMEF than TMDF.
     (Ⅱ) Community assembly based on species diversity
     3. The observed species richness values, as well as the species richness values predicted by 1st order Jackknife estimator, 2nd order Jackknife estimator and bootstrap estimator, were significantly higher in TMEF than TMDF; while the individual abundance was significantly lower in TMEF than TMDF. Compared with power curve and exponential curve, logistic curve was the optimal model simulating the species-area relation for the two forest types. After Brokenstick model, Niche preemption model, Zipf model, Zipf-Mandelbrot model and Neutral theory model were used to simulate the species-abundance distribution for TMEF community and TMDF community, it was found that Zipf-Mandelbrot model was the optimal model predicting the species-abundance distribution in TMEF, while Niche preemption model and Zipf-Mandelbrot model were the optimal models predicting the species-abundance distribution in TMDF. A general linear anaysis model revealed that PAR, air temperature, soil nitrogen and phosphorus were the major environmental filters predicting the species richness and individual abundance between the two forest communities..
     4. Patterns of species co-occurrence in TMEF and TMDF were assessed at 5 m×5 m, 10 m×10 m, 20 m×20 m and 30 m×30 m plot sizes using four species co-occurrence indices, including the number of checkerboard species pairs, the checkerboard score of matrix, the number of species combinations and the variance ratio. All combined species, species with different abundance classes and species with different dbh classes in TMEF all showed less co-occurrence patterns than null model tests at 5 m and 10 m plot sizes, indicating that species were non-randomly segregated, and competition probably impacted on the community assembly in this forest. The species co-occurrence indices were the highest at 5 m plot size. In contrast, all combined species, species with different abundance classes and species with different dbh classes in TMDF all showed more co-occurrence patterns than null model tests at 20 m and 30 m plot sizes, indicating that species were non-randomly aggregated, and facilitation probably impacted on the community assembly in this forest. The species co-occurrence indcies were the highest at 20 m plot size.
     5. Patterns of species distribution in tropical cloud forests were assessed using Donnelly nearest neighbor distance index. Percentage of species in regular distribution was higher than that of random distribution and clumped distribution, while percentage of species in clumped distribution was the lowest; percentage of species in random distribution and clumped distribution decreased, while percengate of species in regular distribution increased with increasing dbh. Patterns of distribution of saplings for the common dominant species, S. buxifolium and D. racemosum in both TMEF and TMDF, showed a clumped distribution, their small tress showed a clumped or random distribution, and their adult trees showed a random distribution. A univariate O-ring function analysis revealed that saplings and small trees for D. racemosum were aggregated at less than 10 m plot size, while saplings and small trees for S. buxifolium were aggregated at more than 23 m plot size. A bivariate O-ring function analysis showed that the spatial patterns between small trees and saplings, adult trees and saplings, and adult trees and small trees for D. racemosum were positively associated at less than 5 m plot size. On the contrary, the spatial patterns between small trees and saplings, and adult trees and small trees for S. buxifolium were negatively associated.
     6. Based on null model tests, (41±4) % and (37±2) % heterospecific trees, (43±4) % and (38±7) % conspecific trees, and (28±2) % and (44±5) % all combined tree species in TMEF and TMDF, showed significant correlations between dbh and nearest neighbor distance, indicating that non-random processes affected on community assembly in tropical cloud forests. (23±3) % and (26±5) % heterospecific trees, (27±5) % and (19±9) % conspecific trees, (17±8) % and (27±7) % all combined tree species in TMEF and TMDF, showed significantly positive correlations between dbh and nearest neighbor distance, indicating that competition impacted on community assembly in the tropical cloud forests. However, negative correlations between dbh and nearest neighbor distance based on null model tests showed that facilitation affected community assembly in the tropical cloud forests. Both importance and intensity of competition statistically increased with decreasing forest productivity from TMEF to TMDF for all the shared species spanning these two forests. (Ⅲ) Community assembly based on functional traits
     7. Both abundance-weighted mean SLA and plant height were significantly higher in TMEF than TMDF, while phenotypic plasticity in SLA and height was significantly lower in TMEF than TMDF. Multiple linear regression analyses indicated that among the measured environmental factors, both air temperature and soil total phosphorus were significantly correlated with mean SLA and its plasticity, and only air temperature was correlated with mean height. But both air temperature and soil total phosphorus was significantly correlated with the plasticity index of plant height. These results indicate that air temperature and soil phosphorus acted as environmental filters on decreasing SLA and plant height, while increasing the plasticity of the functional traits from TMEF to TMDF, and thus impact on species composition and community structure in tropical cloud forests.
     8. SLA decreased significantly with increasing solar irradiance within the three study sites in TMDF, and differed significantly among the three sites both for within and among species comparisons. Mean plot SLA, accounting for both within and among species across the three sites, increased significantly in relation to air temperature but not local PAR and soil total phosphorus. Alpha SLA decreased significantly with increasing solar irradiance within the three sites and beta SLA differed significantly among the three sites. The strong relationship between both intra- and interspecific variation in SLA and environmental conditions strongly confirms the role of trait variation in the assembly of plant species into tropical cloud forest communities via environment filtering related to light availability and air temperature.
     9. Community assembly were examined based on null model tests at 5×5 m, 10×10 m, 20×20 m and 30×30 m plot sizes using a trait-based approach in TMDF. Lower SLA growing forest plants were over-represented within forest communities at 20 m and 30 m plot sizes, and taller growing forest plants were over-represented within forest communities at the four plot sizes. The correlation between effect size of the test statistic (i.e. mean trait value) of null model tests for specific leaf area and air temperature was positive, and that for maximum species height and percentage reduction of PAR was positive, revealing that there is a stress-tolerator advantage for lower specific leaf area species to be adapted to low temperature, and a size-advantage for taller species competing for light. Thus species are non-randomly assembled with respect to both specific leaf area and maximum species height in the tropical montane dwarf forest community, and that these processes are driven by both the temperature stress and biotic competition.
     10. In conclusion, the low air temperature and low soil phosphorus act as environmental filters on species with different functional traits, affecting their distribution and abundance in tropical cloud forests; meanwhile, both competition and facilitation processes affect the spatial patterning and proportions of individual abundance within a community. The tropical cloud forest communities are mainly assembled by niche-based non-random processes.
引文
白永飞,李凌浩,王其兵,等.锡林河流域草原群落植物多样性和初级生产力沿水热梯度变化的样带研究.植物生态学报, 2000, 24(6): 667-673
    陈焕鏞.海南植物志(第1卷).北京:科学出版社, 1964
    陈树培.海南岛乐东县的植被和植被区划.植物生态学与地植物学丛刊, 1982, 6(1): 37-50
    邓福英.海南岛热带山地雨林植物功能群划分及生态关键种的确定.中国林业科学研究院博士学位论文, 2007
    方精云,李意德,朱彪,等.海南岛尖峰岭山地雨林的群落结构、物种多样性以及在世界雨林中的地位生物多样性, 2004, 12(1): 29-43
    广东省植物研究所.广东植被.北京:科学出版社, 1976
    贺金生,陈伟烈.陆地植物群落物种多样性的梯度变化特征.生态学报, 1997, 17(1): 91-99
    胡玉佳,丁小球.海南岛霸王岭热带天然林植物物种多样性研究.生物多样性, 2000, 8(4): 370-377
    胡玉佳,李玉杏.海南岛热带雨林.广州:广东高等教育出版社, 1992
    黄复生.海南岛森林昆虫.北京:科学出版社, 2002
    黄全,李意德,郑德璋,等.海南岛尖峰岭地区热带植被生态系列的研究.植物生态学与地植物学学报, 1986, 10(2): 90-105
    黄世能,张宏达,王伯荪.海南岛尖峰岭地区种子植物区系组成及地理成分研究.广西植物, 2000, 20(2): 97-106
    蒋有绪,卢俊培.中国海南岛尖峰岭热带林生态系统.北京:科学出版社, 1991
    蒋有绪,王伯荪,臧润国,等.海南岛热带林生物多样性及其形成机制研究.北京:科学出版社, 2002
    刘广福,臧润国,丁易,等.海南霸王岭不同森林类型附生兰科植物的多样性和分布.植物生态学报, 2010, 34(4): 396-408
    龙文兴,丁易,臧润国,等.海南岛霸王岭热带云雾林雨季环境特征.植物生态学报, 2011, 35(2): 137-146
    龙文兴,欧芷阳,杨小波,等.五指山黑桫椤(Alsophila podophylla)种群特征与森林立木密度和土壤的关系.生态学报, 2008, 28(4): 1390-1398
    陆阳,李鸣光,黄雅文,等.海南岛霸王岭长臂猿自然保护区植被.植物生态学与地植物学学报, 1986,10(2): 106-114
    马克平,刘灿然,刘玉明.生物群落多样性的测度方法Ⅱβ多样性的测度方法.生物多样性, 1995, 3(1): 38-43
    牛克昌,刘怿宁,沈泽昊,等.群落构建的中性理论和生态位理论.生物多样性, 2009, 17(6): 579-593
    施济普.云南山顶苔藓矮林群落生态学与生物地理学研究.中国科学院西双版纳植物园博士学位论文, 2007
    宋创业,郭柯,刘高焕.浑善达克沙地植物群落物种多样性与土壤因子的关系.生态学杂志, 2008, 27(1): 8-13
    唐志尧,方精云,张玲.秦岭太白山木本植物物种多样性的梯度格局及环境解释.生物多样性, 2004, 12(1): 115-122
    王峥峰,安树青,朱学雷,等.热带森林乔木种群分布格局及其研究方法的比较.应用生态学报, 1998, 9(6): 575-580
    吴德邻.海南及广东沿海岛屿植物名录.北京:科学出版社, 1994
    吴征镒.中国植被.北京:科学出版社, 1995
    杨小波,林英,梁淑群.海南岛五指山的森林植被Ⅰ.五指山的森林植被类型.海南大学学报(自然科学版), 1994a, 12(3): 220-236
    杨小波,林英,梁淑群.海南岛五指山的森林植被Ⅱ.五指山森林植被的植物种群分析与森林结构分析.海南大学学报(自然科学版), 1994b, 12(4): 311-323
    杨小波,张桃林,吴庆书.海南琼北地区不同植被类型物种多样性与土壤肥力的关系.生态学报, 2002, 22(2): 190-196
    余世孝,臧润国,蒋有绪.海南岛霸王岭垂直带热带植被物种多样性的空间分析.生态学报, 2001, 21(9): 1438-1443
    余世孝,张宏达,王伯荪.海南岛霸王岭热带山地植被研究Ⅰ.永久样地设置与群落类型.生态科学, 1993(2): 13-17
    云南植被编写组.云南植被(第1版).北京:科学出版社, 1987
    臧润国,蒋有绪,余世孝.海南霸王岭热带山地雨林森林循环与树种多样性动态.生态学报, 2002, 22(1): 24-32
    臧润国,杨彦承,蒋有绪.海南岛霸王岭热带山地雨林群落结构及树种多样性特征的研究.植物生态学报, 2001, 25(3): 270-275
    张金屯.植物种群空间分布的点格局分析.植物生态学学报, 1998, 22(4): 344-349
    张志东,臧润国.海南岛霸王岭热带天然林景观中木本植物功能型分布的影响因素.植物生态学报, 2007, 31(6): 1092-1102
    中国土壤学会农业化学专业委员会.土壤农业化学常规分析方法.北京:科学出版社, 1983
    中国植被编辑委员会.中国植被.北京:科学出版社, 1985
    周淑荣,张大勇.群落生态学的中性理论.植物生态学报, 2006, 30(5): 868-877
    朱学雷,安树青, Campell D G.,等.海南五指山热带山地雨林乔木种群分布格局研究.内蒙古大学学报(自然科学版), 1997, 28(4): 526-533
    Ackerly D D. Community assembly, niche conservation, and adaptive evolution in chaning environments. International Journal of Plant Science, 2003, 164(3): S165-S185
    Ackerly D D, Cornwell W K. A trait-based approach to community assembly: partitioning of species trait values into within- and among-community components. Ecology Letters, 2007, 10(2): 135-145
    Ackerly D D, Knight C A, Weiss S B, et al. Leaf size, specific leaf area and microhabitat distribution of chaparral woody plants: constrasting patterns in species level and community level analyses. Oecologia, 2002, 130(3): 449-457
    Adams D.C. Organization of Plethodon salamander communities: guild-based community assembly. Ecology, 2007, 88(5): 1292-1299
    Akaike H. A new look at the statistical model identification. IEEE Transactions on Automatic Control, 1974, 19(6): 716-723
    Albert C H, Thuiller W, Yoccoz N G, et al. A multi-trait approach reveals the structure and the relative importance of intra- vs. Interspecific variability in plant traits. Functional Ecology, 2010a, 24(6): 1192-1201
    Albert C H, Thuiller W, Yoccoz N G, et al. Intraspecific functional variability: extent, structure and source of variation. Journal of Ecology, 2010b, 98(3): 604-613
    Alcántara O, Luna I, Velázquez A. Altitudinal distribution patterns of Mexican cloud forests based upon preferential characteristic genera. Plant Ecology, 2002, 161(2): 167-174
    Aldrich M, Billington C, Edwards M, et al. Tropical montane cloud forests: an urgent prioroty for conservation. UK: WCMC Biodiversity Bulletin, Cambridge, 1997
    Allee W C, Emerson A E, Park O. et al. Principles of animal ecology (1st Edition), Philadelphia: Saunders (W.B.) Co Ltd, 1949
    Alvarez-Clare S, Kitajima K. Physical defense traits enhance seedling survival of neotropical tree species. Functional Ecology, 2007, 21(6): 1044-1054
    Balslev H. Distribution patterns of Ecuadorean plant species. Taxon, 1988, 37(3): 567-577
    Bersier L F, Sugihara G. Species abundance patterns: the problem of testing stochastic models. Journal of Animal Ecology, 1997, 66(5): 769-774
    Bertness M D. Intraspecific competition and facilitation in a Northern acorn barnacle population. Ecology, 1989, 70(1): 257-268
    Bertness M D, Callaway R. Positive interactions in communities. Trends in Ecology & Evolution, 1994, 9(5): 191-193
    Bertness M D, Grosholz T. Population dynamics of the ribbed mussel, Geukensia demissa: The costs and benefits of an aggregated distribution. Oecologia, 1985, 67(2): 192-204
    Billings W D. Vegetational pattern near alpine timberline as affected by fire-snowdrift interactions. Plant Ecology, 1969, 19(1-6): 192-207
    Bohn H, McNeal B, O’Connor G. Soil Chemistry 3rd edn. New York: John Wiley & Sons, 2001
    Bonser S P, Reader R J. Plant competition and herbivory in relation to vegetation biomass. Ecology, 1995, 76(7): 2176-2183
    Bowker M A, Soliveres S, Maestre F T. Competition increases with abiotic stress and regulates the diversity of biological soil crusts. Journal of Ecology, 2010, 98(3): 551-560
    Box E O. Macroclimate and Plant Forms: an Introduction to Predictive Modeling in Phytogeography. The Netherlands: Junk, The Hague, 1981
    Boyden S, Binkley D, Shepperd W. Spatial and temporal patterns in structure, regeneration, and mortality of an old-growth ponderosa pine forest in the Colorado Front Range. Forest Ecology and Management, 2005, 219(1): 43-55
    Brooker R W, Maestre F T, Callaway R M , et al. Facilitation in plant communities: the past, the present and the future. Journal of Ecology, 2008, 96(1): 18-34
    Brooker R, Kikvidze Z. Importance: an overlooked concept in plant interaction research. Journal of Ecology, 2008, 96(4): 703-708
    Brooker R, Kikvidze Z, Pugnaire F I, et al. The importance of importance. Oikos 2005, 109(1): 63-70
    Bruijnzeel L A, Hamilton L S. Climatic conditions and tropical montane forest productivity: the fog has not lifted yet. 1998, Ecology, 79(1): 3-9
    Bruno J F. Causes of landscape-scale rarity in cobble back plant communities. Ecology, 2002, 83(8): 2304-2314
    Bruno J F, Stachowicz J J, Bertness M D. Inclusion of facilitation into ecological theory. Trends in Ecology and Evolution, 2003, 18(3): 119-125 Bubb P, May I, Miles L, et al. Cloud Forest Agenda. UK: UNEP-WCMC, Cambridge, 2004
    Burns K C. Patterns in specific leaf area and the structure of a temperature heath community. Diversity and Distribution, 2004, 10(2): 105-112
    Byars S G, Papst W, Hoffmann A A. Local adaptation and congradient selection in the alpine plant, Poa hiemata, along a narrow altitudinal gradient. Evolution, 2007, 61(12): 2925-2941
    Bycroft C M, Nicolaou N, Smith B, et al. Community structure (niche limitation and guild proportionality) in relation to the effect of spatial scale, in a Nothofagus forest sampled with a circular transect. New Zealand Journal of Ecology, 1993, 17(2): 95-101
    Cahill J F Jr. Fertilization effects on interactions between above- and belowground competition in an old field. Ecology, 1999, 80(2): 466-480
    Callaway R M. Positive interactions among plants. The Botanical Review, 1995, 61(4): 306-349
    Callaway R M. Positive interactions and interdependence in plant communities. Dordrecht: Springer, 2007
    Callaway R M, Brooker R W, Choler P, et al. Positive interactions among alpine plants increase with stress. Nature, 2002, 417(6891): 844-848
    Chapin F S, Walker L R, Fastie C L, et al. Mechanisms of primary succession following deglaciation at Glacier Bay, Alaska. Ecological Monographs, 1994, 64(2): 149-175
    Chase J M, Leibold M A. Ecological Niches: Linking Classical and Contemporary Approaches. Illinois: University of Chicago Press, Chicago, 2003
    Chazdon R L, Fetcher N. Photosynthetic light environments in a lowland tropical rainforest in Costa-Rica. Journal of Ecology, 1984, 72(2): 553-564
    Chen J Q, Bradshaw G A. Forest structure in space: a case study of an old growth spruce-fir forest in Changbaishan Natural Reserve, PR China. Forest Ecology and Management, 1999, 120(1-3): 219-233
    Chesson P. Mechanisms of maintenance of species diversity. Annual Review of Ecology and Systematics, 2000(31): 343-366
    Chesson P L, Case T J. Overview: nonequilibrium community theories: chance, variability, history, and coexistence, in Colnlnunity Ecology, Diamond J, Case T J (Eds.). New York: Harper & Row, 1986, 229-39
    Choler P, Michalet R, Callaway R M. Facilitation and competition on gradients in alpine plant communities. Ecology, 2001, 82(12): 3295-3308
    Chu C J, Maestre F T, Xiao S, et al. Balance between facilitation and resource competition determines biomass-density relationships in plant populations. Ecology Letters, 2008, 11(11): 1189-1197
    Clark P J, Evans F C. Distance to nearest neighbor as a measure of spatial relationships in populations. Ecology, 1954, 35(4): 445-453
    Clark D B,Palmer M,Clark D A. Edaphic factors and the landscape-scale distribution of tropical rain forest trees. Ecology, 1999, 80(8): 2662-2675
    Clements F E, Weaver J, Hanson H. Plant competition: an analysis of the development of vegetation. New York: Carnegie Institute, 1926
    Colwell R K, Winkler D W. A null model for null models in biogeography, in Ecological Communities: Conceptual Issues and the Evidence, Strong D R, Simberloff D, Abele D, Thistle A B (eds.). New Jersey: Princeton University Press, Princeton, 1984, 344-359
    Condit R. Research in large, long-term tropical forest plots. Trends in Ecology and Evolution, 1995, 10(1): 18-22
    Condit R, Ashton P S, Baker P, et al. Spatial patterns in the distribution of tropical tree species. Science, 2000, 288(5470): 1414-1418
    Condit R, Hubbell S P, Foster R B. Density Dependence in Two Understory Tree Species in a Neotropical Forest. 1995, Ecology 75(3): 671-680
    Condit R, Hubbell S P, Foster R B. 1992. Recruitment near conspecific adults and the maintenance of tree and shrub diversity in a neotropical forest. American Naturalist, 140(2): 261-286
    Condit R, Pitman N, Leigh E G, et al. Beta-diversity in tropical forest trees. Science, 2002, 295(5555): 666-669
    Connell J H. On the role of natural enemies in preventing competitive exclusion in some marine animals and in rain forest trees, in Dynamics of numbers in populations, der Boer P J, Gradwell G R (eds). The Netherlands: Center for Agricultural Publishing and Documentation, Wageningen, 1971, 298-312
    Cornelissen J H C, Lavorel S, Garnier E, et al. A handbook of protocols for standardized and easy measurement of plant functional traits worldwide. Australian Journal of Botany, 2003, 51(4): 335-380
    Cornwell W K, Ackerly D D. Community assembly and shifts in plant trait distributions across an environmental gradient in coastal California. Ecological Monographs, 2009, 79(1): 109-126
    Cornwell W K, Schwilk D W, Ackerly D D. A trait-based test for habitat filtering: convex hull volume. Ecology, 2006, 87(6): 1465-1471
    Cowling R M. Gibbs Russell G.E., Hoffman M.T., Hilton-Taylor C. Patterns of plant species diversity in Southern Africa, in Biotic diversity in Southern Africa, Huntley B J (eds.). South Africa: Oxford Press, 1989, 19-50
    Craine J M. Reconciling plant strategy theories of Grime and Tilman. Journal of Ecology, 2005, 93(6): 1041-1052
    Dale M R T. Spatial patterns analysis in plant ecology. Cambridge: Cambridge University Press, 1999
    Dhondt A A. Effects of competition on great and blue tit reproduction: intensity and importance in relation to habitat quality. Journal of Ecology, 2010, 79(1): 257-265
    Diamond J M. Assembly of species communities. in Ecology and evolution of communities, Code M L, Diamond J M (eds). USA: Harvard University Press, Cambridge, Massachusetts, 1975, 343-444
    Diamond J M, Gilpin M E. Examination of the“null”model of Connor and Simberloff for species co-occurrence on islands. Oecologia, 1982, 52(1): 64-74
    Díaz S, Cabido M, Casanoves F. Functional implications of trait-environment linages in plant communities, in Ecological Assembly Rules: perspectives, advances, retreats, Weiher E, Keddy P (eds.). USA: Cambridge University Press, 1999, 338-362
    Diggle P J. Statistical analysis of spatial point patterns. New York: Academic Press, 1983
    Dijkstra P, Lambers H. Analysis of specific leaf area and photosynthesis of two inbred lines of Plantago major in relative growth rate. New Phytologist, 1989, 113(3): 283-290
    Donnelly K. Simulations to determine the variance and edge-effect of total nearest neighbour distance, in Simulation methods in archaeology, Hodder I R (ed.). Cambridge: Cambridge University Press, 1978, 91-95
    Elton C. Animal Ecology, London: Sedgwick and Jackson, 1927
    Emborg J. Understory light conditions and regeneration with respect to the structural dynamics of a near-natural temperate deciduous forest in Denmark. Forest Ecology and Management, 1998, 106(2-3): 83-95
    Engelbrecht B M J, Comita L S, Condit R, et al. Drought sensitivity shapes species distribution patterns in tropical forests. Nature, 2007, 447(7140): 80-82
    Enquist B J, Tiffney B H, Niklas K J. Metabolic scaling and the evolutionary dynamics of plant size form and diversity: toward a synthesis of ecology evolution and palaeontology. Intternational Journal of Plant Science, 2007, 168(5): 729-749
    Fargione J E, Tilman D. Diversity decreases invasion via both sampling and complementarity effects. Ecology Letters, 2005, 8(6): 604-611
    Flenley J. The equatorial rain forest:a geological history. London: Butterworths, Boston, 1979, 1-14.
    Folt C L, Burns C W. Biological drivers of plankton patchiness Trends in Ecology and Evolution, 1999, 14(8): 300-305
    Fonseca, C R, Overton J M, Collins B, et al. Shift in trait-combinations along rainfall and phosphorus gradients. Journal of Ecology, 2000, 88(6): 964-977
    Foster B L. Constraints on colonization and species richness along a grassland productivity gradient: the role of propagule availability. Ecology Letters, 2001, 4(6): 530-535
    Francisco-Ortega J,Wang Z S,Wang F G,et al. Seed plant endemism on Hainan Island: a framework conservation actions. 2010, 76(3): 346-376
    Fraser L H, Keddy P A. Can competitive ability predict structure in experimental plant communities? Journal of Vegetation Science, 2005, 16(5): 571-578
    Freckleton R P, Watkinson A R, Rees M. Measuring the importance of competition in plant communities. Journal of Ecology, 2009, 97: 379-384
    Galiano E F. Pattern detection in plant populations through the analysis of plant-to-all-plants distances. Plant Ecology, 1982, 49(1): 39-43
    Gaucherand S, Liancourt P, Lavorel S. Importance and intensity of competition along a fertility gradient and across species. Journal of Vegetation Science, 2006, 17(4): 455-464
    Gaudet C L, Keddy P A. Competitive performance and species distribution in shoreline plant communities: a comparative approach. Ecology, 1995, 76(1): 280-291
    Gause G F. The Struggle for Existence. The Netherlands: Williams and Wilkins, 1934
    Gentry A H. Changes in plant community diversity and floristic composition on environmental and geographical gradients. Annals of the Missouri Botanical Garden, 1988, 75(1): 1-34
    Getzin S, Dean C, He F L, et al. Spatial patterns and competition of tree species in a Douglas-fir chronosequence on Vancouver Island. Ecography, 2006, 29(5): 671-682
    Goldberg D E, Rajaniemi T, Gurevitch J, et al. Empirical approaches to quantifying interactions intensity: competition and facilitation along productivity gradients. Ecology, 1999, 80(4): 118-1131
    Gotelli N J. Null model analysis of species co-occurrence patterns. Ecology, 2000, 81(9): 2606-2621
    Gotelli N J, Entsminger G L. Ecosim: null models software for ecology. Version 7. Jericho: Acquired Intelligence INC. & Kesey-Bear., 2010
    Gotelli N J, Graves G R. Null models in ecology. Washington and London: Smithsonian Institution Press, 1996
    Gotelli N J, McCabe D J. Species co-occurrence: a meta-analysis of J.M. Diamond’s assembly rules model. Ecology, 2002, 83(8): 2091-2096
    Greig-Smith P. Quantitative plant ecology. Berkeley: University of California Press, 1983
    Grime J P. Competitive exclusion in herbaceous plant communities. Nature, 1973, 242(5396): 344-347
    Grime J P. Evidence for the existence of three primary strategies in plants and its relevance to ecological and evolutionary theory. The American Naturalist, 1977, 111(982): 1169-1194
    Grime J P. Plant Strategies and Vegetation Processes. New York: John Wiley & Sons, 1979
    Grime J P. Trait convergence and trait divergence in herbaceous plant communities: mechanisms and consequences. Journal of Vegetation Science, 2006, 17(2): 255-260
    Grinnell J. The niche-relationships of the California Thrasher. Auk, 1917, 34(4): 427-433
    Grubb P J. Interpretation of the‘massenerhebung’effect on tropical on tropical montains. Nature, 1971, 229(5279): 44-45
    Grubb P J. The maintenance of species-richness in plant communities: the importance of the regeneration niche. Biological Reviews, 1977, 52(1): 107-145 Gurevitch J, Morrison J A, Hedges L V. The interaction between competition and predation: a meta-analysis
    of field experiments. The American Naturalist, 2000, 155(4): 435-453
    Hall J S, McKenna J J, Ashton P M S, et al. Habitat characterizations underestimate the role of edaphic factors controlling the distribution of Entandrophragma. Ecology, 2004, 85(8): 2171-2183
    Hamilton L, Juvik J O, Scatena F. The Puerto Rico Tropical Cloud Forest Symposium: Introduction and Workshop Synthesis. in Tropical Montane Cloud Forests - Proceedings of an International Symposium at San Juan, Puerto Rico, 31 May-5 June 1994, East-West Center, Honolulu, Hawai'i, USA, 1993, 1-16
    Hao Z Q, Zhang J, Song B, et al. Vertical structure and spatial associations of dominant tree species in an old-growth temperate forest. Forest Ecology and Management, 2007, 252(1-3): 1-11
    Harms K E, Wright S J, Calderón O, et al. Pervasive density-dependent recruitment enhances seedling diversity in a tropical forest. Nature, 2000, 404(6777): 493-495
    Hawkins B A, Field R, Cornell H V. Energy, water, and broad-scale geographic patterns of species richness. Ecology, 2003, 84(12): 3105-3117 He F. Deriving a neutral model of species abundance from fundamental mechanisms of population dynamics.
    Functional Ecology, 2005, 19(1): 187-193
    He F L, Duncan R P. Density-dependent effects on tree survival in an old-growth Douglas-fir forest. Journal of Ecology, 2000, 88(4): 676-688
    He F L, Legendre P. On species-area relations. The American Naturalist, 1996, 148(4): 719-737
    He F L, Legendre P, LaFrankie J V. Distribution patterns of tree species in a Malaysian tropical rain forest. Journal of Vegetation Science, 1997, 8(1): 105-114
    Helm A, Hanski I, P?rtel M. Slow response of plant species richness to habitat loss and fragmentation. Ecology Letters, 2006, 9(1): 72-77
    Hietz P, Briones O. Correlation between water relations and within-canopy distribution of epiphytic ferns in a Mexican cloud forest. Oecologia, 2004, 114(3): 305-316
    Hillebrand H, Matthiessen B. Biodiversity in a complex world: consolidation and progress in functional biodiversity research. Ecology Letters, 2009, 12(12): 1405-1419
    Holder C D. Rainfall interception and fog precipitation in a tropical montane cloud forest of Guatemala. Forest Ecology and Management, 2004, 190(2-3): 373-384
    Holmgren M, Scheffer M. Strong facilitation in mild environments: the stress gradient hypothesis revisited. Journal of Ecology, 2010, 98(6): 1269-1275
    Holzapfel C, Tielb?rger K, Parag H A, et al. Annual plant–shrub interactions along an aridity gradient. Basic and Applied Ecology, 2006, 7(3): 268-279
    Huante P, Rincón E, Acosta I. Nutrient availability and growth rate of 34 woody species from a tropical deciduous forest in Mexico. Functional Ecology, 1995, 9(6): 849-858
    Hubbell S P. Tree dispersion, abundance, and diversity in a tropical dry forest. Science, 1979, 203(4387): 1299-1309
    Hubbell S P. The Unified Neutral Theory of Biodiversity and Biogeography. New Jersey: Princeton University Press, Princeton, 2001
    Hubbell S P. The neutral theory and evolution of ecological equivalence. Ecology, 2006, 87(6): 1387-1398 Hunter A F, Aarssen L W. Plants helping plants. Bioscience, 1988, 38(1): 34-40
    Huston M. Soil nutrients and tree species richness in Costa Rican forests. Journal of Biogeography, 1980, 7(2): 147-157
    Hutchinson G E. Concluding remarks. Cold Spring Harbor Symposia on Quantitative Biology, 1957(22): 415-427
    Hutchison D J. Metabolic and nutritional variations in drug-resistant Streptococcus faecalis, in The leukemias: etiology, pathophysiology, and treatment. Rebuck J W, Bethell F H, Monto R W (eds.). New York: Academic Press, Inc., 1957, 605-616
    Hutchings M J, de Kroon H. Foraging in plants: the role of morphological plasticity in resource acquisition. Advance in Ecological Research, 1994(45): 159-238
    Janzen D H. Herbivores and the number of tree species in tropical forests. The American Naturalist, 1970, 104(940): 501-528
    John R, Dalling J W, Harms K E, et al. Soil nutrients in?uence spatial distributions of tropical tree species. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(3): 864-869
    Jones C G, Lawton J H, Shachak M. Positive and negative effects of organisms as physical ecosystem engineers. Ecology, 1997, 78(7): 1946-1957
    Jung V, Violle C, Mondy C, et al. Intraspecific variability and trait-based community assembly. Journal of Ecology, 2010, 98(5): 1134-1140 Keddy P A. Competition. UK: Chapman and Hall, London, 1989
    Keddy P A. A pragmatic approach to functional ecology. Functional Ecology, 1992, 6(6): 621-626
    Keddy P A, Twolan-Strutt L, Shipley B. Experimental evidence that interspecific competitive asymmetry increases with soil productivity. Oikos, 1997, 80(2): 253-256
    Keddy P A. Plants and vegetation origins, processes, consequences. Cambridge: Cambridge University Press, 2007
    Kenkel N C. Patten of self-thinning in jack pine: testing the random mortality hypothesis. Ecology, 1988, 69(4): 1017-1024
    Kingston T, Jones G, Zubaid A, et al. Resource partitioning in rhinolophoid bats revisted. Oecologia, 2000, 124(3): 332-342
    Kitajima K, Mulkey S S, Wright S J. Variation in crown light utilization characteristics among tropical canopy trees. Annals of Botany, 2005, 95(3): 535-547
    Kobe R K. Light gradient partitioning among tropical tree species through differential seedling mortality and growth. Ecology, 1999, 80(1): 187-201
    Koch G W, Sillett S C, Jennings G M, et al. The limits to tree height. Nature, 2004, 428(6985): 851-854
    Kooyman R, Cornwell W, Westoby M. Plant functional traits in Australian substropical train forest: partitioning within-community from cross-landscape variation. Journal of Ecology, 2010, 98(3): 517-525
    K?rner C. The nutritional status of plants from high altitudes. A wordwide comparison. Oecologia, 1989, 81(3): 379-391 K?rner C. Alpine plant life. Berlin: Springer-Verlag, 1999
    K?rner C. Mountain biodiversity, its causes and functions: an overview, in Mountain Biodiversity: a Global Assessment. Parthenon, Boca Raton, Florida, K?rner C, Spehn E (eds). 2002, 3-20
    Kraft N J B, Corwell W K, Webb C O, et al. Trait evolution, community assembly, and phylogenetic structure of ecological communities. The American Naturalist, 2007, 170(2): 271-283
    Kraft N J B, Valencia R, Ackerly D D. Functional traits and niche-based tree community assembly in an Amazonia forest. Science, 2008, 322(5901): 580-582
    Lebrija-Trejos E, Pérez-García E A, Meave J A, et al. Functional traits and environmental filtering driving community assembly in a species-rich tropical system. Ecology, 2010, 91(2): 386-398
    Leigh Jr E G. Neutral theory: a historical perspective. Journal of Evolutionary Biology, 2007, 20(6): 2075-2091
    Lenoir J, Gégout J C, Marquet P A, et al. A significant upward shift in plant species optimum elevation during the 20th century. Science, 2008, 320(5884): 1768-1771
    Levine J M, Rees M. Coexistence and relative abundance in annual plant communities: the roles of competition and colonization. The American Naturalist, 2002, 160(4): 452-467
    Levin S A. The problem of pattern and scale in ecology. Ecology, 1992, 73(6): 1943-1967
    Li L, Huang Z L, Ye W H, et al. Spatial distribution of tree species in a subtropical forest of China. Oikos, 2009, 118(4): 495-502
    Li Y C, Chang L W, Yang K C, et al. Point patterns of tree distribution determined by habitat heterogeneity and dispersal limitation. Oecologia, 2010, 165(1): 175-184
    Lieberman M, Lieberman D. Patterns of density and dispersion of forest trees. in La Selva: Ecology and Natural History of a Neotropical Rain Forest, McDade L, Bawa K S, Hartshorn G S, Hespenheide H (eds). USA: University of Chicago Press, 1994, 106-119
    Linder H P. Environmental correlates of patterns of species richness in the South-Western Cape Province of South Africa. Journal of Biogeography, 1991, 18(5): 509-518
    Lockwood J L, Moulton M P, Anderson S K. Morphological assortment and the assembly of communities of introduced passeriforms on oceanic island: Tahiti versus Oahu. The American Naturalist, 1993, 141(3): 398-408
    Long W X, Zang R G, Ding Y. Air temperature and soil phosphorus availability correlated with trait differences between twp types of tropical cloud forests. Flora, 2011, 206(10): online
    Longstreth D J, Nobel P S. Nutrient influences on leaf photosynthesis: Effects on nitrogen, phosphorus, and potassium for Gossypiu hirsutum L. Plant Physiology, 1980, 65(3): 541-543
    Loreau M, Naeem S, Inchausti P, et al. Biodiversity and ecosystem functioning: Current knowledge and future challenges. Science, 2001, 294(5543): 804-808
    Lortie C J, Aarssen L W. The specialization hypothesis for phenotypic plasticity in plants. International Journal of Plant Science, 1996, 157(4): 484-487
    Mabry C M. The number and size of seeds in common versus restricted woodland herbaceous species in central Iowa, USA. Oikos, 2004, 107(3): 497-504
    MacAuthur R, Levins R. The limiting similarity, convergence, and divergence of coexisting species. The American Naturalist, 1967, 101(921): 377-385
    Maestre F T, Martínez I, Escolar C, et al. On the relationship between abiotic stress and co-occurrence patterns: An assessment at the community level using soil lichen communities and multiple stress gradients. Oikos, 2009, 118(7): 1015-1022
    Mamolos A P, Elisseou G K, Veresoglou D S. Depth of root activity of coexisting grassland species in relation to N-addition and P-addition, measured using nonradioactive tracers. Journal of Ecology, 1995, 83(4): 643-652
    Markesteijn L, Poorter L, Bongers F. Light-dependent leaf trait variation in 43 tropical dry forest tree species. American Journal of Botany, 2007, 94(4): 515-525
    McGill B J, Enquist B J, Weiher E, et al. Rebuilding community ecology from functional traits. Trends in Ecology and Evolution, 2006, 21(4): 178-185
    McKane R B, Johnson L C, Shaver G R, et al. Resource-based niches provide a basis for plant species diversity and dominance in arctic tundra. Nature, 2002, 415(6867): 68-71
    McLaughlin J F, Hellmann J J, Boggs C L, et al. Climate change hastens population extinctions. Ecology, 2002, 99(9): 6070-6074
    Messier J, McGill B J, Lechowicz M J. How do traits vary across ecological scales? A case for trait-based ecology. Ecology Letters, 2010, 13(7): 838-848
    Michalet R. Is facilitation in arid environments the result of direct or complex interactions? New Phytologist, 2006, 169(1): 3-6
    Michalet R, Brooker R W, Cavieres L A, et al. Do biotic interactions shape both sides of the humped-back model of species richness in plant communities? Ecology Letters, 2006, 9(7): 767-773
    Minnich R A. Snow drifting and timberline dynamics on Mt. San Gorgonio, California, USA. Arctic and Alpine Research, 1984, 16(4): 395-412
    Moles A T, Warton D I, Warman L, et al. Global patterns in plant height. Journal of Ecology, 2009, 97(5): 923-932
    Monsi M, Saeki T. On the factor light in plant communities and its importance for matter production. Annals of Botany, 2005, 95(3): 549-567
    Myers N, Mittermeier R A, Mittermeier C G, et al. Biodiversity hotspots for conservation priorities. Nature, 2000, 403(6772): 853-858
    Nadkarni N M, Solano R. Potential effects of climate change on canopy communities in a tropical cloud forest: an experimental approach. Oecologia, 2002, 131(4): 580-586
    Niklas K. Plant Allometry: the Scaling of Form and Process. Illinois: University of Chicago Press, Chicago, 1994
    Nobel P S. Root distribution and seasonal production in the northwestern Sonoran Desert for a C-3 subshrub, a C-4 bunchgrass, and a CAM leaf succulent. American Journal of Botany, 1997, 84(7): 949-955
    Nomura N, Kikuzawa K. Productive phenology of tropical montane forest: fertilization experiment along a moisture gradient. Ecological Research, 2003, 18(5): 573-586
    North M. Chen J Q, Oakley B, et al. Forest stand structure and pattern of old-growth western hemlock/Douglas-fir and mixed-conifer forests. Forest Science, 2004, 50(3): 299-311
    Ordo?ez J C, van Bodegom P M, Witte J P M, et al. A global study of relationships between leaf traits, climate and soil measures of nutrient fertility. Global Ecology and Biogeography, 2009, 18(2): 137-149
    Ostertag R, Giardina C P, Cordell S. Understory colonization of Eucalyptus plantations in Hawaii in relation to light and nutrient levels. Restoration Ecology, 2008, 16(3): 475-485
    Pacala S W, Tilman D. Limiting similarity is mechanistic and spatial models of plant competition in heterogeneous environments. The American Naturalist, 1994, 143(2): 222-257
    Palmer M W. The estimation of species richness by extrapolation. Ecology, 1990, 71(3): 1195-1198
    Palmiotto P A, Davies S J, Vogt K A, et al. Soil-related habitat specialization in dipterocarp rainforest tree species in Borneo. Journal of Ecology, 2004, 92(4): 609-623
    Paoli G D, Curran L M, Zak DR. Phosphorus efficiency of Bornean Rain Forest preoductivity: evidence against the unimodel efficiency hypothesis. Ecology, 2005, 86(6): 1548-1561
    Paula S, Pausas J G. Root traits explain different foraging strategies between resprouting life histories. Oecologia, 2011, 165(2): 321-331
    Pélissier R, Goreaud F. Avoiding misinterpretation of biotic interaction with the intertype K12-function: population independence vs random labeling hypotheses. Journal of Vegetation Science, 2003, 14(5): 681-692
    Perry J N, Liebhold A M, Rosenberg M S. et al. Illustrations and guidelines for selecting statistical methods for quantifying spatial paterrns in ecological data. Ecography, 2002, 25(5): 578-600
    Pielou E C. The use of plant-to-neighbour distances for the detection of competition. Journal of Ecology, 1962, 50(2): 357-367
    Pielous D P, Pielous E C. Association among species of infrequent occurrence: the insect and spider fauna of Polyporus betulinus (Bulliard) Fries. Journal of Theoretical Biology, 1968, 21(2): 202-216
    Pierce S, Vianelli A, Cerabolini B. From ancient genes to modern communities: the cellular stress response and the evolution of plant strategies. Functional Ecology, 2005, 19(5): 763-776
    Plotkin J B, Potts M D, Leslie N, et al. Species area curves, spatial aggregation, and habitat specialization in tropical forests. Journal of Theoretical Biology, 2000, 207(1): 81-99
    Popma J, Bongers F, Werger M J A. Gap-dependence and leaf characteristics of trees in a tropical lowland rain forest in Mexico. Oikos, 1992, 63(2): 207-214
    Poorter H, Evans J R. Photosynthetic nitrogen-use efficiency of species that differ inherently in specific leaf area. Oecologia, 1998, 116(1-2): 26-37
    Poorter L. Leaf traits show different relationships with shade tolerance in moist versus dry tropical forest. New Phytologist, 2009, 181(4): 890-900
    Poorter L, Markesteijn L. Seedling traits determine drought tolerance of tropical tree species. Biotropica, 2008, 40(3): 321-331
    Potts M D. Drought in a Bornean everwet rain forest. Journal of Ecology, 2003, 91(3): 467-474
    Pugnaire F I, Haase P, Puigdefabregas J, et al. Facilitation and succession under the canopy of leguminous shrub, Retama sphaerocarpa, in a semi-arid environment in southeast Spain. Oikos, 1996, 76(3): 455-464
    R Development Core Team. R: A language and Environment for Statistical Computing. Austria: R Foundation for Statistical Computing, Vienna, 2009
    Reich P B, Walters M B, Ellsworth D S. Leaf life-span in relation to leaf, plant, and stand characteristics among diverse ecosystems. Ecological Monograph, 1992, 62(3): 365-392
    Reiss J, Bridle J R, Montoya J M, et al. Emerging horizons in biodiversity and ecosystem functioning research. Trends in Ecology and Evolution, 2009, 24(9): 505-514
    Richardson J E,Weitz F M,Fay M F, et al. Rapid and recent origin of species richness in the Cape flora of South Africa. Nature, 2001, 412(6843):181-183
    Ricklefs R E. Evolutionary diversification and the origin of the diversity-environmental relationship. Ecology, 2006, 87(sp7): 3-13
    Riginos C, Milton S J, Wiegand T. Context-dependent interactions between adult shrubs and seedlings in a semi-arid shrubland. Journal of Vegetation Science, 2005, 16(3): 331-340 Ripley B D. Spatial statistics. USA: Wiley & Sons, 1981
    Roche P, Díaz-Burlinson N, Gachet S. Congruency analysis of species ranking based on leaf traits: which traits are the more reliable? Plant Ecology, 2004, 174(1): 37-48
    Roiloa S R, Retuerto R. Small-scale heterogeneity in soil quality influences photosynthetic efficiency and habitatselection in a clonal plant. Annals of Botany, 2006, 98(5): 1043-1052
    Roughgarden J. The structure and assembly of communities, in Perspectives in Ecological Theory, Roughgarden J, May R M, Levin S A (eds.), New Jersey: Princeton University Press, Princeton, 1989, 203-226
    Rzedowski J. Analisis preliminar de la flora vascular de los bosques mesofilos de montana de Mexico. Acta Botanica Mexicana, 1996(35): 25-44
    Schamp B S, Aarssen L W. The assembly of forest communities according to maximum species height along resource and disturbance gradients. Oikos, 2009, 118(4): 564-572
    Schamp B S, Chau J, Aarssen L W. Dispersion of traits related to competitive ability in an old-field plant community. Journal of Ecology, 2008, 96(1): 204-212
    Schlichting C D. The evolution of phenotypic plasticity in plants. Annual Review of Ecology Systematics, 1986, 17(1): 667-693
    Schluter D. A variance test for detecting species associations, with some example applications. Ecology, 1984, 65(3): 998-1005
    Seidler T G, Plotkion J B. Seed dispersal and spatial pattern in tropical trees. Plos Biology, 2006, 4(11): 2132-2138
    Shackleton C. Nearest-neighbour analysis and the prevalence of woody plant competition in South African savannas. Plant Ecology, 2002, 158(1): 65-76 Shi J P, Zhu H. Tree species composition and diversity of tropical mountain cloud forest in the Yunnan, southwestern China. Ecological Research, 2009, 24(1): 83-92
    Shipley B, Lechowicz M J, Wright I, et al. Fundermental tradeoffs generating the worldwide leaf economics spectrum. Ecology, 2006, 87(3): 535-541
    Sih A, Englund G, Wooster D. Emergent impacts of multiple predators on prey. Trends in Ecology and Evolution, 1998, 13(9): 350-355
    Silvertown J. Plant coexistence and the niche. Trends in Ecology and Evolution, 2004, 19(11): 605-611
    Stadtmüller T. Cloud Forest in the Humid Tropics. A Bibliographic Review. Turrialba: Costa Rica: United Nations University, Tokyo and CATIE, 1987
    Sterner R W, Ribic C A, Schatz G E, et al. Testing for life historical changes in spatial patterns of four tropical tree species. Journal of Ecology, 1986, 74(3): 621-633
    Stone L, Roberts A. The checkerboard score and species distribution. Oecologia, 1990, 85(1): 74-79
    Stubbs W J, Wilson J B. Evidence for limiting similarity in a sand dune community. Journal of Ecology, 2004, 92(4): 557-567
    Swenson N G., Enquist B J, Pither J, et al. The problem and promise of the scale dependency in community phylogenetics. Ecology, 2006, 87(10): 2418-2424
    Swenson N G, Weiser M D. Plant geography upon the basis of functional traits: an example from eastern North American trees. Ecology, 2010, 91(8): 2234-2241
    Takhtajan A. Floristic regions of the world. Berkeley: University of California Press, 1986
    Tanner E V J. Four montane rain forests of Jamaica: a quantitative charaterization of the floristics, the soils and the foloar mineral levels and a discussion of the interrelation. Journal of Ecology, 1977, 65(3): 883-918
    Tan C S, Black T A, Nnyamah J U. A simple diffusion model of transpiration applied to a thinned Douglas-fir stand. Ecology, 1978, 59(6): 1221-1229
    Terborgh J. Bird species diversity on an Andean elevational gradient. Ecology, 1977, 58(5): 1007-1019
    Tilman D. Resource competition and community structure. Princeton: Princeton University Press, 1982 Tilman D. On the meaning of competition and the mechanisms of competitive superiority. Functional Ecology, 1987, 1(4): 304-315
    Tilman D (1988) Plant strategies and the dynamics and structure of plant communities. Princeton University Press, Princeton
    Tilman D. Community invasibility, recruitment limitation, and grassland biodiversity. Ecology, 1997, 78(1): 81-92
    Tilman D. Niche tradeoff, neutrality and community structure: A stochastic theory of resource competition, invasion, and community assembly. Proceedings of the National Academy of Sciences, USA. 2004, 101(30): 10854-10861
    Tokeshi M. Resource utilization, overlap and temporal community dynamics: a null model analysis of an epiphytic chironomid community. Journal of Animal Ecology, 1986, 55(2): 491-506
    Tranquillini W. Winter desiccation as the cause for alpine timberline. in Mountain environments and subalpine tree growth, Benecke U, Davis M R (eds). New Zealand: Forest Research Institute, New Zealand Forest Service, Wellington, 1980, 263-267
    Tsialtas J T, Maslaris N. Leaf allometry and prediction of specific leaf area (SLA) in a sugar beet (Beta vulgaris L.) cultivar. Photosythetica, 2008, 46(3): 351-355
    Turner I M. The Ecology of Trees in the Tropical Rain Forest. Cambridge: Cambridge University Press, 2001
    Ulrich W. Species co-occurrence and neutral models: reassessing J.M. Diamond’s assembly rules. Oikos, 2004, 107(3): 603-609
    Valladares F, Balaguer L, Martinez-Ferri E, et al. Plasticity, instability and canalization: is the phenotypic variation in seedlings of sclerophyll oaks consistent with the environmental unpredictability of Mediterranean ecosystems? New Phytologist, 2002, 156(3): 457-467
    Valladares F, Sanchez-Gomez D, Zavala M A. Quantitative estimation of phenotypic plasticity: bridging the gap between the evolutionary concept and its ecological applications. Journal of Ecology, 2006, 94(6): 1103-1116
    Vázquez J, Givnish T. Altitudinal gradients in tropical forest composition, structure, and diversity in the Sierra de Manantlan. Journal of Ecology, 1998, 86(6): 999-1020
    Vitousek P M, Porder S, Houlton B Z, et al. Terrestrial phosphorus limitation: mechanisms, implications, and nitrogen-phosphorus interactions. Ecological Application, 2010, 20(1): 5-15
    Volkov I, Banavar J R, Hubbell S P, et al. Neutral theory and relative species abundance in ecology. Nature, 2003, 424(6952): 1035-1037
    Walker T W, Syers J K. The fate of phosphorus during pedogenesis. Geoderma, 1976, 15(1): 1-19
    Walther G, Post E, Convey P, et al. Ecological responses to recent climate change. Nature, 2002, 416(6879): 389-395
    Wang X G, Wiegand T, Hao ZQ, et al. Species associations in an old-growth temperate forest in north-eastern China. Journal of Ecology, 2010, 98(3): 674-686
    Ward D. Beggs J. Coexistence, habitat patterns and the assembly of ant communities in the Yasawa island Fiji. Acta Oecologica, 2007, 32(2): 215-223
    Wardle D A, Barker G M, Bonner K I, et al. Can comparative approaches based on plant ecophysiological traits predict the nature of biotic interactions and individual plant species effects in ecosystems? Journal of Ecology, 1998, 86(3): 405-420
    Warren J, Wilson F, Díaz A. Competitive relationships in a fertile grassland community - does size matter? Oecologia, 2002, 132(1): 125-130
    Webb C T, Hoeting K A, Ames G M, et al. A structured and dynamic framework to advance trait-based theory and prediction in ecology. Ecology Letters, 2010, 13(3): 267-283
    Weiher E, Clarke G D P, Keddy P A. Community assembly rules, morphological dispersion, and the coexistence of plant species. Oikos, 1998, 81(2): 309-322
    Weiher E, Keddy P A. Assembly rules, null models, and trait dispersion: new question from old patterns. Oikos, 1995, 74(1): 159-164
    Weiher E, Keddy P A. Ecological Assembly Rules: Perspective, Advance, Retreats. UK: Cambridge University Press, Cambridge, 1999
    Weiher E, van der Werf A, Thompson K, et al. Challenging Theophrastus: A common core list of plant traits for functional ecology. Journal of Vegetation Science, 1999, 10(5): 609-620
    Welden C W, Slauson W L. The intensity of competition versus its importance: an overlooked distinction and some implications. The Quarterly Review of Biology, 1986, 61(1): 23-44
    Went F W. The dependence of certain annual plants on shrubs in southern California deserts. Bulletin of the Torrey Botanical Club, 1942, 69(2): 100-114
    Westoby M, Falster D S, Moles A T, et al. Plant ecological strategies: some leading dimensions of variation between species. Annual Review of Ecology and Systematics, 2002, 33(1): 125-159
    Whittaker R H. Evolution and measurement of species diversity. Taxon, 1972, 21(2-3): 213-251
    Whittaker R J, Bush M B, Richards K. Plant recolonization and vegetation succession on the Krakatau Island, Indonesia. Ecological Monograph, 1989, 59(2): 59-123
    Whitmore T C. An Introduction to Tropical Rain Forest. Oxford University Press, Oxford, 1990
    Wiegand K, Jeltsch F, Ward D. Do spatial effects play a role in the spatial distribution of desert-dwelling Acacia raddiana? Journal of Vegetation Science, 2000, 11(4): 473-484
    Wiegand T, Moloney K A. Rings, circles, and null-models for point pattern analysis in ecology. Oikos, 2004, 104(2): 209-229
    Williams-Linera G. Tree species richness complementarily, disturbance and fragmentation in a Mexican tropical montane cloud forest. Biodiversity and Conservation, 2002, 11(10): 1825-1843
    Wills C, Harms K E, Condit R, et al. Nonrandom processes maintain diversity in tropical forests. Science, 2006, 311(5760): 527-531
    Wills C, Condit R. Similar non-random processes maintain diversity in two tropical rainforests. Proceedings of the Royal Society of London B, 1999, 266(1427): 1445-1452
    Wilson J B, Agnew A D Q. Positive feedback switches in plant communities. Advances in Ecological Research, 1992(23): 263-336
    Wright S. The method of path coefficients. Annals of Mathematical Statististics, 1934, 5(3): 161-215
    Wright S J. Plant diversity in tropical forests: a review of mechanisms of species coexistence. Oecologia, 2002, 130(1): 1-14
    Wright I J, Reich P B, Cornelissen J H C, et al. Assessing the generality of global leaf trait relationships. New Phytologist, 2005, 166(2): 485-496
    Wright I J, Reich P B, Westoby M. Strategy shifts in leaf physiology, structure and nutrient content between species of high- and low- rainfall and high- and low-nutrient habitats. Functional Ecology, 2001, 15(4): 423-434
    Wright I J, Reich P B, Westoby M, et al. The worldwide leaf economics spectrum. Nature, 2004, 428(6985): 821-827
    Wright I J, Westoby M, Reich P B. Convergence towards higher leaf mass per unit area in dry and nutrient poor habitats has different consequences for leaf life span. Journal of Ecology, 2002, 90(3): 534-543
    Yeaton R I, Cody M L. Competition and spacing in plant communities: the Northern Mohave Desert. Journal of Ecology, 1976, 64(2): 689-696
    Zang R G, Tao J P, Li C Y. Within community patch dynamics in a tropical montane rain forest of Hainan Island, South China. Acta Oecologica, 2005, 28(1): 39-48
    Zhang J, Hao Z Q, Song B., et al. Fine-scale species co-occurrence patterns in an old-growth temperate forest. Forest Ecology and Management, 2009, 257(10): 2115-2120
    Zhou S R, Zhang D Y. A nearly neutral model of biodiversity. Ecology, 2008, 89(1): 248-258

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700