海藻表面附着弧菌多样性分析及方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
对四种大型海藻:江篱(Gracilaria textorii)、孔石莼(Ulva pertusa)、海带苗(Laminaria japonica)和多管藻(Polysiphonia urceolata)表面附着弧菌的多样性进行了分析,同时对多样性分析中采用的不同方法进行了比较。
     利用TCBS培养基从四种海藻表面总共分离到12株细菌:G1、G2分离自江篱,U3分离自孔石莼,L4、L5、L6分离自海带苗,P7、P8、P9、P10、P11、P12分离自多管藻。菌株G1,G2属于盐单胞菌(Halomonas),其余10株细菌都属于弧菌(Vibrio)。
     对12株细菌的酶学活性、抗生素抗性进行了研究。发现除G1、G2外,其余菌株都可产生淀粉酶和明胶酶。菌株G1、G2和U3对氨苄青霉素、链霉素和四环素有很强抗性。
     采用多种分子生物学方法(16S rDNA、gyrB、RFLP、DGGE )分析了上述12株菌的系统发育关系,对不同方法获得的结果进行了比较。
     12株菌的16S rDNA系统发生树可分为4个明显分支。G1、G2与细菌H. meridiana构成一个分支。U3与V. lentus构成一个分支。L4、L5、L6、P9、P10、P11、P12与V. tasmaniesis形成一个分支。P7、P8与V. splendidus形成一个分支。
     以gyrB基因序列为基础构建的系统发生树将G1、G2以外的10株弧菌分成4个较大分支,L4、P9属于同一分支,L6、P8、P10、P11和P12属于一个大的分支, U3、L5各自构成一个分支。菌株G1、G2没有得到gyrB基因序列扩增带。表明试验设计的引物是弧菌特异性引物。相对16S rDNA,不同菌株间gyrB基因序列差异性更大。
     RFLP分析结果显示,12株细菌HinfI酶切后得到6种带型,SmaI酶切后得到4种带型。结合16S rDNA、gyrB基因的分析结果可知,RFLP可以在种的水平上有效进行细菌多样性分析。
     12株细菌的DGGE分析结果显示,G1、G2与其它菌株电泳图谱有明显不同。菌株U3独自构成一种带型,L5、L6构成一种带型。表明DGGE技术在属的水平上分析细菌多样性效果较好,在种的水平上分析细菌多样性有一定的局限性。
The diversity of Vibrio associated with surfaces of 4 seaweeds: Gracilaria textorii、Ulva pertusa、Laminaria japonica and Polysiphonia urceolata was studied using different analysis methods.
     Totally 12 strains were obtained from the surfaces of 4 seaweeds with TCBS media. Strains G1, G2 were from G. textorii, U3 were from U. pertusa, L4, L5, L6 were from L. japonica, P7, P8, P9, P10, P11, P12 were from P. urceolata. They belong to Halomonas (G1, G2) and Vibrio genus (other strains).
     Enzymatic bioactivity, antibiotic resistance of the 12 strains were studied. The result showed most bacteria isolated can produce starch enzyme and glutin enzyme. Strains G1, G2, U3 are resistant to ampicillin, streptomycin and tetracyclinec.
     Molecular biology methods were used to study the diversity of 12 strains. The 12 strains obviously formed 4 clusters in phylogeny tree established based on 16S rRNA gene. Each of the strains isolated from the surfaces of G. textorii、U. pertusa、L. japonica formed 1 cluster. Therefore, these strains are specific to seaweeds.
     Four clusters were formed in phylogeny tree established based on gyrB gene. Strains L4, P9 formed 1 cluster. L6, P8, P10, P11, P12 formed 1 cluster. U3 formed 1 cluster. L5 formed 1 cluster. Strains G1 and G2 can not amplify gyrB gene with gyrB primers, which means that G1 and G2 were far from other strains and the primers designed are specific to Vibrio. Sequences analysis based on gyrB gene gave better resolution than 16S rDNA.
     16S rDNA restriction fragment length polymorphisms of 12 strains were analyzed with 2 restriction endonucleases. Digestion of 16S rDNA fragment with HinfI enzyme gave rise to 6 restriction patterns for 12 isolates and 4 with SmaI enzyme. Comparing with 16S rDNA and gyrB analysis, RFLP is suitable for differentiation of strains on species level.
     Finally, diversity of strains was studied with DGGE. The DGGE band of G1, G2 formed 1 band type, U3 formed 1 band type, L5 and L6 formed 1 band type. The result showed that DGGE is suitable for differentiation of strains on genus level.
引文
1. Blake P A, Weaver R E, Hollis D G, Diseaseof humans(other than cholera) caused by vibrios. Annu. Rev. Microbiol., 1980, 34: 341-367
    2. Wiik R, Stackebrandt E, Valle O, Daae F L, Rodseth O M, Andersen K. Classification of fish-pathogenic vibrios based on comparative 16S rRNA analysis. Int. J. Syst. Bacteriol., 1995, 45: 421-428
    3. Ishimaru K, Akagawa-Matsuhita M, Muroga K. Vibrio penaeicida sp. nov., a pathogen of kuruma prawns(Penaeus japonicus). Int. J. Syst. Bacteriol., 1995, 45: 134-138
    4. Ishimaru K, Akagawa-Matsushita M, Muroga K. Vibrio ichthyoenteri sp. nov., a pathogen of Japanese flounder(Paralichthys olivaceus). Int. J. Syst. Bacteriol., 1996, 49: 155-159
    5. Austin B Y, Austin D A. Methods for the microbiological examination of fish and shellfish. Ellis Horwood Limited. John Wiley & Sons. New York., 1989, 317-318
    6. Chan K-U, Woo M L, Lam L Y, French G L. Vibrio parahaemolyticus and other halophilic vibrio associated with seafood in Hong Kong. Journal of Applied Microbiology, 1989, 66: 57-64
    7. Shinoda S, Chowdhury M A, Miyoshi S, Yamanaka H. Ecology and distribution of toxigenic Vibrio cholerae in aquatic environments of a temperate region. Microbios., 1992, 72: 203–213
    8. Kaysner C A, Tamplin M L, Twedt R M, Vibrio In Compendium of Methods for the Microbiological Examination of Foods ed. American Public Health Association., 1992, 451-473
    9. Blake P A, M H Merson, R E Weaver, D G Hollis, P C Heublein. Disease caused by a marine vibrio. N. Engl. J. Med., 1979, 300: 1-5
    10. Davis B R, G R Fanning, J M Madden, A G Steigerwalt, H B Bradford Jr, H L Smith Jr, D J Brenner. Characterization of biochemically atypical Vibrio cholerae strains and designation of a new pathogenic species, Vibrio mimicus. J. Clin. Microbiol., 1981, 14: 631-639
    11. Huq M I, Alam A K M J, Brenner D J, Morris G K. Isolation of Vibrio-like group, EF-6, from patients with diarrhea. J. Clin. Microbiol., 1980, 11: 621-624
    12. Magalhaes M, Takeda Y, Tateno S. Brazilian urease-positive strains of Vibrioparahaemolyticus carry genetic potential to produce the TDH-related hemolysin. Mem. Inst. 1992, Oswaldo Cruz 87, 167-168
    13. Hickman F W, FarmerIII J J, Hollis D G, Fanning G R, Steigerwalt A G, Weaver R E, Brenner D J. Identification of Vibrio hollesae sp. nov. from patients with diarrhea. J. Clin. Microbiol., 1982, 15: 395-401
    14. Brow C. A study of the shellfish pathogenic Vibrio strains isolated from a Long Island hatchery during a recent outbreak of disease. J. shellfish Res. 1981, 1: 83-87
    15. Lightner D V. Some potentially serious disease problem in the culture of penoeid shrimp in North America. In: Proceeding of the Third C. S. Japan Meeting on Aquaculture at Tokyo. 1974, 10: 75-97
    16. Colwell R R, D J Grimes. Vibrio diseases of marine fish populations. Pages in O. Kinne, H P Bulnheim. Diseases of marine organisms. International Helgoland Symposium, 1983, A comprehensive review of the Vibrio species that infect fish, species of fish affected, virulence mechanisms, and control procedures for prevention and treatment of vibriosis. 1984, 265287
    17. E Egidius, Vibriosis: pathogenicity and pathology. (review) Aquaculture. 1987, 67: 15-28
    18. Austin B Y, Austin D A. Bacterial fish pathogens–disease in farm and wild fish. 2nd Ed. Ellis Horwood. Ltd., New York, 1993
    19. Lightner D V. MB virus disease of penaeid shrimp. In: Disease Diagnosis and Control in North American Marine Aquaculture. Developments in Aquaculture and Fisheries Science
    17. Elsevier, Amsterdam, 1988, 22-25
    20. Lightner D V, R M Redman. Penaeid virus diseases of the shrimp culture industry of the Americas. In: A.W. Fast and L.J. Lester (eds.). Marine Shrimp Culture: Principles and Practices. Developments in Aquaculture and Fisheries Science 23. Elsevier, Amsterdam, 1992, 569-588
    21.何曙阳,王克行.中国对虾育苗池细菌种群数量变化研究.中国水产科学, 1999, 6: 125-127
    22. Sochard M R, Wilson D F, Austin B, Colwell R R. Bacteria associated with the surface and gut of marine copepods. Appl. Environ. Microbiol., 1979, 37: 750-759
    23. Brock T D, Medigen M T, Martinko L M, et al. Biology of Microorganism. 7th ed. Lonalon etal.: Prentice-Hall International, Inc. 1994, 695
    24. Zuckerkandl E, Pauling L. Evolutionary divergence and convergence in proteins. In: Bryson V, Vogel H J, editors. Evolving genes and proteins: a symposium. N Y and London: Academic Press, 1965, 97-166.
    25. Woese C R, Sogin M, Stahl D, Lewis B J. Bonen L. A comparison of the 16S ribosomal RNAs from mesophilic and thermophilic bacilli: some modifications in the Sanger method for RNA sequencing. J. Mol. Evol, 1976, 7(3): 197-213
    26. Stackebrandt E, Ludwig W, Fox G E. 16S ribosomal RNA oligonucleotide cataloguing. In: Gottschalk G(ed) Methods in microbiology, 1985, 18: 75-107
    27. Fox G E, Stackebrandt E, Hespell RB, Gibson J, Maniloff J, Dyer T A, Wolfe R S, Balch W E, Tanner R S, Magrum L J, Zablen L B, Blakemore R, Gupta R, Bonen L, Lewis B J, Stahl D A, Luehrsen K R, Chen K N, Woese C R. The phylogeny of prokaryotes. Science, 1980, 209(4455): 457-463
    28. Olsen G J, Woese C R. Ribosomal RNA: a key to phylogeny. FASEB J., 1993, 7(1): 113–123
    29. Cedergren R J, Sankoff D, LaRue B, Grosjean H. The evolving tRNA molecule. CRC Crit Rev Biochem, 1981, 11(1): 35–104
    30. David Sankoff, R J Cedergren, W McKay. A strategy for sequence phylogeny research Nucl. Acids Res., 1982, 10: 421-431
    31. E Huysmans, E Dams, A Vandenberghe, R D E Wachter. The nucleotide sequences of the 5S rRNAs of four mushrooms and their use in studying the phylogenetic position of basidiomycetes among the eukaryotes. Nucleic Acids Res., 1983, 11(9): 2871-2880
    32. Hans Kuntzel, Birgit Piechulla, Ulrich Hahan, Consensus structure and evolution of 5S rRNA. Nucleic Acids Res., 1983, 11(3): 893-900
    33. Gray M W. The bacterial ancestry of plasids and mitochondria. Bioscience, 1983, 33: 693-699
    34. Brosius J, Palmer M L, Kennedy P J, et al. Complete nucleotide sequence of a 16S ribosomal RNA gene from Escherichia coli. Proc Natl. Acad. Sci. U.S.A., 1978, 75: 4801-4805
    35.焦振泉,刘秀梅,孟昭赫. 16S rRNA序列同源性分析与细菌系统分类鉴定.国外医学卫生学分册, 1998, 25: 12-18
    36. Woese C R, Fox G E, Zablen L, et al. Conservation of primary structure in 16S ribosomalRNA. Nature, 1975, 254: 83-86
    37. Olsen G J, Woese C R. Ribosomal RNA: a key to phylogeny. FASEB J., 1993, 7: 113-123
    38. Hayashi H, Sakamoto M, Kitabara M, et al. Molecular analysis of fecal microbiota in elderly individuals using 16S rDNA library and T-RFLP. Microbiol Immunol 2003, 47: 557-570
    39. Sakai T, Matsuo E, Wakizaka A. Complete DNA sequence analysis for 16S ribosomal RNA gene of the leproma-derived, cultivable and nerve-invading mycobacterium HI-75. Int. J. Lepr. Other Mycobact. Dis., 1999, 67: 52-59
    40. M C Macian, W Ludwig, R Aznar, P A D Grimont, K H Schleifer, E Garay, M J Pujalte. Vibrio lentus sp. nov., isolated from Mediterranean oysters. International Journal of systematic and evolutionary microbiology, 2001, 5: 1449-1456
    41. Tomoo Sawabe, Karin Hayashi, Jun Moriwaki, Youhei Fukui, Fabiano L. Thompson, Jean Swings, Richard Christen. Vibrio neonatus sp. nov. and Vibrio ezurae sp. nov. Isolated from the Gut of Japanese Abalones System. Appl. Microbiol., 2004, 27: 527-534
    42. Bennasar A, Rossello-Mora R, Lalucat J, Moore E R. 16S rRNA gene sequence analysis relative to genomovars of Pseudomonas stutzeri and proposal of Pseudomonas balearica sp. nov. Int. J. Syst Bacteriol., 1996, 46(1): 200-205
    43.底秀娟,马桂芳,刘彩莲.一种伤寒沙门氏菌分型的新方法.中国公共卫生, 2001, 17: 632-633
    44. J Brosius, M L Palmer, P J Kennedy, H F Noller. Complete nucleotide sequence of a 16S ribosomal RNA gene from Escherichia coli. Proc. Natl. Acad. Sci. U.S.A., 1978, 75(10): 4801-4805
    45. P Carbon, C Ehresmann, B Ehresmann, J P Ebel. The complete nucleotide sequence of the ribosomal 16S RNA from Excherichia coli. Experimental details and cistron heterogeneities. Eur. J. Biochem., 1979, 100: 399-410
    46. P Carbon, J P Ebel, C Ehresmann. The sequence of the ribosomal 16S RNA from Proteus vulgaris. Sequence comparison with E. coli 16S RNA and its use in secondary model building. Nucleic Acids Res., 1981, 9(10): 2325-2333
    47. Tomioka N, Sugiura M. The complete nucleotide sequence of a 16S ribosomal RNA gene from a blue-green alga, Anacystis nidulans. Mol. Gen. Genet, 1983, 191(1): 46–50
    48. Maidak B L, Larsen N, McCaugher M J, et al. The ribosomal database project. NucleicAcids Res., 1994, 22(17): 3485-3287
    49. Neefs J M, van-de-Peer Y, De-Rijk P, et al. Compilation of small ribosomal subunit RNA structures. Nucleic Acids Res., 1993, 21(13): 3025-3049
    50. Amann R I, Ludwig W, Schleifer K H, et al. Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol. Rev., 1995. 59(1): 143-169
    51. Gutell R R. Collection of small subunit(16S- and 16S–like)ribosomal RNA structure. Nucleic Acids Res., 1993, 21(13): 3051-3054
    52. Fraser C M, Cocayne J D, White O, et al. The minimal gene complement of Mycoplasma genitalium. Science, 1995, 270(5235): 397-403
    53. Lauer E, Kandler O. DNA-DNA homology, murein types and enzyme patterns in the type strains of the genus Bifidobacterium. Syst. Appl. Microbiol., 1983, 4: 42-64
    54. Yamamoto S, Harayama S. Phylogenetic analysis of Acinetobacter strains based on the nucleotide sequences of gyrB genes and on the amino acid sequences of their products. Int. J. Syst. Bacteriol., 1996, 46(2): 506-511
    55. Yamamoto S, Harayama S. PCR amplification and direct sequencing of gyrB genes with universal primers and their application to the detection and taxonomic analysis of Pseudomonas putida strains. Appl. Environ. Microbiol., 1995, 61(3):1104-1109
    56. Kasai H, Ezaki T, Harayama S. Differentiation of phylogenetically related slowly growing mycobacteria by their gyrB sequences. J. Chin Microbiol, 2000, 38(1): 301-308
    57. Frédérique Le Roux Mélanie Gay, Christonphe Lambert, Jean Louis Nicolas, Manolo Gouy, Franck Berthe. Phylogenetic study and identification of Vibrio splendidus-related strains based on gyrB gene sequences Diseases of Aquatic organisms (Dis Aquat Org), 2004, 58:143-150
    58. Kasai H, Tamura T, Harayama S, et al. Intrageneric relationships among Micromonospora species deduced from gyrB-based on phylogeny and DNA relatedness. Int. J. Syst. Evol. Microbiol., 2000, 50(Pt1): 127-134
    59. Venkateswaran K, Dohmoto N, Harayama S. Cloning and nucleotide sequence of the gyrB gene of Vibrio parahaemolyticus and its application in detection of this pathogen in shrimp. Appl. Environ. Microbiol., 1998, 64: 681-687
    60. Watarabe K, Yantamoto S, Hino S, et al. Population dynamics of phenoldegrading bacteria inactivated sludge determined by gyrB-targeted quantitative PCR. Appl. Environ. Microbiol., 1998, 64(4): 1203-1209
    61. Vuddhakul V, Nakai T, Matsumoto C, Oh T, Nishino T, Chen C H, Nishibuchi M, Okuda J. Analysis of gyrB and toxR gene sequences of Vibrio hollisae and development of gyrB- and toxR targeted PCR methods for isolation of V. hollisae from the environment and its identification. Appl. Environ. Microbiol., 2000, 66(8): 3506-3514
    62. Watanabe K, Teramoto M, Harayama S. An outbreak of nonflocculating catabolic populations caused the breakdown of a phenol-digesting activated-sludge process. Appl. Environ. Microbiol., 1999, 65(7): 2813-2819
    63. Yamamoto S, Harayama S. Phylogenetic relationships of pseudomonas putida strains deduced form the nucleotide sequences of gyrB, rpoD and 16S rRNA genges. Int. Syst. Bacteriol., 1998, 48(Pt 3): 813-819
    64. Muyzer G, De Waal E C, Uitterlinden A G. Profiling of complex microbial population by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes encoding for 16S rRNA. Appl. Environ. Microbiol., 1993, 59(3): 695-700
    65. Muyzer G. DGGE/TGGE, a method for identifying genes from natural ecosystems. Curr. Microbiol., 1999, 2: 317-322
    66. Vybiral D, Witte A, Velimirov B. Investigation of 0.2μm filterable bacteria from the Western Mediteranean Sea using a molecular approach: dominance of potential starvation forms. FEMS Microbiol. Ecol., 2000, 31(2): 153-161
    67. Weber S. Stubner S, Conrad R. Bacterial population colonizing and degrading rice straw in anoxic paddy soil. Appl. Environ. Microbiol., 2001, 67(3): 1318-1327
    68. Forney L. Daae F L, et al. Distribution of bacterioplankton in meromictic lake Saelenvannet, as determined by denaturing gradient gel electrophoresis of PCR-amplified gene fragments coding for 16S rRNA. Appl. Environ. Microbiol., 1997, 63(9): 3367-3373
    69. Pioar G, Saiz-Jimenez C, Schabereiter-Gurtner C, et al. Archaeal communities in two disparate deteriorated ancient wall paintings: detection, identification and temporal monitoring by denaturing gradient gel electrophoresis. FEMS Microbiol. Ecol., 2001, 37(1): 45-54
    70. Bano N, Hollibaugh J T. Diversity and distribution of DNA sequences with affinity toammonia-oxidizing bacteria of theβ-subdivision of the class Proteobacteria in the Arctic Ocean. Appl. Environ. Microbiol., 2000, 66(5): 1960-1969
    71. Kowalchuk G A, Stienstra A W, Hans G, et al. Molecular analysis fo ammonia-oxidizing bacteria in soil of successional grasslands of the Drentsche A(The Netherlands). FEMS Microbiol. Ecol., 2000, 31(3): 207-215
    72. Simek K, Pernthaler J, Weinbauer M G, et al. Changes in bacterial community composition and dynamics and viral mortality rates associated with enhanced flagellate grazing in a mesoeutrophic reservoir. Appl. Environ. Microbiol., 2001, 67(6): 2723-2733
    73. Bano N, Hollibaugh J T. Phylogenetic composition of bacterioplankton assemblages from the Arctic Ocean. Appl. Environ. Microbiol., 2002, 68(2): 505-518
    74. Cheung P Y, Kinkle B K. Mycobacterium diversity and pyrene mineralization in petroleum contaminated soils. Appl. Environ. Microbiol., 2001, 67(5): 2222-2229
    75. Cocolin L, Manzano M, Cantoni C. et al. Development of a rapid method for the identification of Lactobacillus spp. Isolated from naturally fermented italian sausages using a polymerase chain reaction-temperature gradient gel electrophoresis. Lett. Appl. Microbiol., 2000, 30(2): 126-129
    76. Woese C R. Bacterial evolution. Microbiol. Rev., 1987, 51: 221-271
    77. Kita-Tsukamoto K, Oyaizu H, Nanba K, Simidu U. Phylogenetic relationships of marine bacteria, mainly members of the family Vibrionaceae, determined on the basis of 16S rRNA sequences. Int. J. Syst. Bacteriol., 1993, 43: 8-19
    78. Laguerre G, Allard M R, Revoy F, Amarger N. Rapid identification of rhizobia by restriction fragment length polymorphism analysis of PCR-amplified 16S rRNA genes. Appl. Environ. Microbiol., 1994, 60: 56-63
    79. Hiraishi A, Kamagata Y, Nakamura K. Polymerase chain reaction amplification and restriction fragment length polymorphism analysis of 16S rRNA gene from Methanogens. J. Ferment. Bioeng., 1995, 79:523-529
    80. Hidetoshi Urakawa, Kumiko Kita-Tsukamoto, Kouichi Ohwada. 16S rDNA genotyping using PCR/RFLP(restriction fragment length polymorphism) analysis among the family Vibrionaceae. FEMS Microbiology Letters, 1997, 152: 125-132
    81. Hidetoshi Urakawa, Kumiko Kita-Tsukamoto, Kouichi Ohwada. 16S rDNA restrictionfragment length polymorphism analysis of psychrotrophic vibrios from Japanese coastal water Can. J. Microbiol., 1999, 45: 1001-1007
    82. Warner J M, J D Oliver. Randomly amplified polymorphic DNA analysis of clinical and environmental isolates of Vibrio vulnificus and other Vibrio species. Appl. Environ. Microbiol., 1999, 65: 1141-1144
    83. Young-Jun Yoon, Kyung-Hwan Im, Young-Hwan Koh, Seong-Kon Kim, Jung-Wan Kim. Genotyping of six pathogenci Vibrio species based on RFLP of 16S rDNAs for Rapid identification. The Journal of Microbiology, 2003, 12: 312-319
    84.谢文阳,邱秀慧.海洋弧菌多样性.世界科技研究与发展, 2005, 27(2): 34-41
    85. Viale A M, Arakaki A K, Soncini F C, Ferreyra R G. Evolutionary relationships among eubacterial groups as inferred from GroEL(chaperonin) sequence comparisons. Int. J. Syst. Bacteriol., 1994, 44: 527-533
    86. Gupta R S. Evolutionary of the chaperonin families (Hsp60, Hsp10 and Tcp-1) of proteins and the origin of eukaryotic cells. Mol. Microbiol., 1995, 15: 1-11
    87. Segal G, Ron E Z. Regulation and organization of the groE and dnaK operons in Eubacteria. FEMS Microbiol. Lett. 1996, 138: 1-10
    88. Kwok A Y C, Su S C, Reynolds R P, Bay S J, Av-Gay Y, Dovichi N J, Chow A W. Species identification and phylogenetic relationships based on partial HSP60 gene sequences within the genus Staphylococcus. Int. J. Syst. Bacteriol. 1999, 49: 1181-1192
    89. Kowk A Y, Chow A W. Phylogenetic study of Staphylococcus and Macrococcus species based on partial Hsp60 gene sequence. Int. J. Syst. Evol. Microbiol., 2003, 53(1): 87-92
    90. Jian W, Zhu L, Dong X. New approach to phylogenetic analysis of the genus Bifidobacterium based on partial Hsp60 gene sequences. Int. J. Syst. Evol. Microbiol., 2001, 51(5): 1633-1638
    91. Kowk A Y, Wilson J T, Coulthart M, et al. Phylogenetic study and identification of human pathogenic Vibrio species based on partial Hsp60 gene sequence. Can. J. Microbiol., 2002, 48(10): 903-910
    92.李宁求,白俊杰,吴淑勤,劳海华,石存斌,潘厚军,叶星,简清.斜带石斑鱼3种致病性弧菌的分子生物学鉴定.水产学报, 2005, 29: 3-6
    93. Baumann P, Schubert R H W. Family II Vibrionaceae Veron 1965, 5245AL. In: Krieg N R,Holt J G (Eds), Bergey’s Manual of Systematic Bacteriology. Vol. Baltimore: Williams & Wilkins, 1984, 516-517
    94. Baumann P, Furniss A L, Lee J V. Genus I. Vibrio Pacini 1854, 411AL. In: Krieg N R, Holt J G (Eds), Bergey’s Manual of Systematic Bacteriology, vol. 1. Baltimore: Williams & Wilkins. 1984, 518-538
    95. Baumann P, Baumann L. Genus II. Photobacterium Beijerinck 1889, 40I AL. In: Krieg N R, Holt J G (Eds), Bergey’s Manual of Systematic Bacteriology, vol., I. Baltimore: Williams & Wilkins, 1984, 539-545
    96. Thompson F L, Lida T, Swings J. Biodiversity of vibrios. Microbiology and Molecular Biology Reviews, 2004, 68: 403-431
    97. Shieh W Y, Chen A L, Chiu H H. Vibrio aerogenes sp. nov., a facultatively anaerobic, marine bacterium that ferments glucose with gas production. International Journal of Systematic and Evolutionary Microbiology, 2000, 50: 321-329
    98. Shieh W Y, Chen Y W, Chaw H H. Vibrio ruber sp. nov., a red facultatively anaerobic, marine bacterum isolated from seawater. International Journal of Systematic and Evolutionary Microbiology, 2003, 53: 479-484
    99. Sawabe T, Sugimura I, Ohtsuka M, Nakano K, Tajima K, Ezura Y, Christen R. Vibrio halioticoli sp. nov., a non-motile alginolytic marine bacterium isolated from the gut of abalone Haliotis dicus hannai. Int. J. Syst. Bacteriol., 1998, 48: 573-580
    100. Thompson C C, Thompson F L, Vandemeulebroecke K, et al. Use of recA as an alternative phylogenetic marker in the family Vibrionaceae. International Journal of Systematic and Evolutionary Microbiology, 2004, 54: 919-924
    101. Gomez-Gil B, Thompson F L, Thompson C C, Swings J. Vibrio rotiferianus sp. nov., isolated from cultures of the rotifer Brachionus plicatilis. International Journal of Systematic and Evolutionary Microbiology, 2003, 53: 239-243
    102.杨宇峰,宋金明,林小涛,聂湘平.大型海藻栽培及其在近海环境的生态作用.海洋环境科学, 2005, 24(3): 77-80
    103. Schuenhoff A, Shpigel M, Lupatsch L, Ashkenazi A, Msuya F E. A semi-recirculating, integrated system for the culture of fish and seaweed. Aquaculture, 2003, 221: 167-181
    104. Shiba T. Heterotrophic bacteria attached to seaweeds. J. Exp. Mar. Biol. Ecol., 1980, 47(3):251-258
    105. Armstrong E, Rogerson A, Leftley J W. The abundance of heterotrophic protists associated with intertidal seaweeds. Estuar. Coast. Shelf Sci., 2000, 50: 415-424
    106. Freile-Pelegrin Y, Morales J L. Antibacterial activity in marine algae from the coast of Yucatan, Mexico. Bot. Mar., 2004, 47: 140-146
    107.麦克法丁J E.医学细菌生化试验鉴定手册(英). 1985,北京:人民卫生出版社
    108. Steinberg P D, de Nys R. Chemical mediation of colonization of seaweed surface (Minireview). J. Phycol., 2002, 38: 621-629
    109. Imamura N, Nishijima M. Takadera T, Adachi K. New anticancer antibiotics pelagiomicins, produced by a new marine bacterium Pelagiobacter variabilis. J. Antibiot., 1997, 50(1): 8-12
    110. F奥斯伯, R布伦特, R E金斯顿, D D穆尔, J G塞德曼, J A史密斯, K斯特拉尔.精编分子生物学实验指南(第二版).科学出版社, 2001, 39
    111. Ryuji Kawaguchi, J Grant Burgess, Toshifumi Sakaguchi, Haruko Takeyama, Richard Thornhill, Tadashi Matsunaga. Phylogenetic analysis of a novel sulfate-reducing magnetic bacterium, RS-1,demonstrates its membership of theδ-Proteobacteria FEMS Microbiology Letters, 1995, 126: 277-282
    112. Dodd H N, Pemberton J M. Construction of a physical and preliminary genetic map of Aeromonas hydrophila. Microbiology, 1998, 144: 3087-3096

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700