用户名: 密码: 验证码:
烧结烟气脱硫过程塔顶温度智能控制策略及工业应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
钢铁行业二氧化硫排放量约占全国工业二氧化硫排放总量的8%,仅次于火电行业,位居第二位。钢铁行业排放的二氧化硫主要是烧结(球团)工序产生的,因此烧结烟气脱硫在钢铁行业节能减排中占重要地位。在烧结循环流化床烟气脱硫工艺中,塔顶温度稳定控制对提高脱硫效率具有重要意义。然而,喷水减温是一个复杂的工业过程,具有非线性、时滞、大扰动等控制难点。如何实现塔顶温度的稳定控制,是实现提高脱硫效率的关键性问题。
     本文在分析循环流化床烟气脱硫工艺的基础上,总结出塔顶温度的控制难点。通过应用智能控制理论,提出了一种基于动态矩阵预测结合前馈补偿控制的塔顶温度智能控制策略,实现了塔顶温度的稳定控制。
     首先,针对喷水减温过程的惯性、时滞特性,应用自回归模型(ARX)描述喷水减温过程,并采用最小二乘法辨识模型。然后利用该模型的阶跃响应系数建立塔顶温度动态矩阵预测控制器的预测模型,并设计控制器参数。为了解决预测控制中模型失配的问题,采用模糊在线校正的方法,实现在线闭环校正的功能。同时,为了抑制扰动波动对系统的影响,采用前馈补偿的方法,将前馈和反馈的控制方式相结合,当扰动因素发生变化时,通过前馈模型进行补偿调节。实验仿真过程中,以建立的ARX模型为对象,仿真实验验证了本文所提出的控制策略的有效性。
     为了验证控制算法实际应用价值,针对国内某大型钢铁企业的循环流化床烟气脱硫系统,开发塔顶温度控制系统。运行结果表明:该系统实现了塔顶温度的稳定控制,有效抑制了扰动对系统造成的影响,提高了脱硫效率。
Steel industry accounts for about 8% of the world's SO2 emissions, which is second to coal fire industry. Sintering is a process producing the largest amounts of SO2 in the steel industry, therefore sintering flue gas desulfurization plays an important part in energy conservation and emission reduction of steel industry. In the mechanism of circulating fluidized bed, stabilizing tower top temperature is significant to improving efficiency of desulfurization. However, spray desuperheating is a complex process with time-delay, time-varying and disturbance. How to control tower top temperature is the key to improve efficiency of desulfurization.
     On the basis of analyzing the mechanism of CFB flue gas desulfurization, this paper summarized the main problems in tower top temperature control. By using intelligent control theory, an intelligent control strategy, which combines dynamic matrix control with feedforward compensation control, is proposed to achieve the stability of tower top temperature.
     First, according to the inertia and time-delay of spray desuperheating, an auto regressive with external model is used to describe this process, and identified by using least square method. A predictive model of dynamic matrix controller is established based on the step responsive coefficient. Then, to achieve the function of correction on-line, fuzzy correct control is adopted to solve the problem of model mismatch. Meantime, in order to suppress the influence of the disturbances, a compensating feedforward model is added to the system. According to the model's calculations, compensation value is computed while the disturbance changes. Simulations, based on the ARX model, verify.the effectiveness of the strategy proposed in this paper.
     To verify its value of practical application, in 360m2 sintering factory of an iron and steel enterprise, tower top temperature intelligent control is developed based on the original control system of CFB in an iron and steel enterprise. The running results shows that the system can stabilize the tower top temperature, suppress the influence of the disturbances and improve the efficiency of desulfurization.
引文
[1]刘文权.钢铁行业烧结烟气脱硫技术的发展.中国环保产业,2009,(5):24-27.
    [2]中华人民共和国工业和信息化部.关于印发钢铁行业烧结烟气脱硫实施方案的通知.工信部节[2009]340号.
    [3]陈健.烧结烟气脱硫方式的分析探讨.世界钢铁,2010,(3):1-6.
    [4]吴复忠,李军旗,金会心.烧结烟气脱硫技术现状分析.工业加热,2008,37(5):1-3.
    [5]惠远峰.石灰石-石膏法烟气脱硫系统设计.工业安全与环保,2009,35(9):12-14.
    [6]刘征建,张建良,杨天钧.烧结烟气脱硫技术的研究与发展.中国冶金,2009,19(2):1-5.
    [7]党玉华,齐渊洪,王海风.烧结烟气脱硫技术.钢铁研究学报,2010,22(5):1-6.
    [8]J. Zhang, C. F. You, H. Y. Qi, C. G. Chen, X. C. Xu. Effect of operating parameters and reactor structure on moderate temperature dry desulfurization. Environmental Science and Technology,2006,40 (13):4300-4305.
    [9]国家统计局编.中国统计年鉴.北京:中国统计出版社,2000-2010.
    [10]胡国生.攀钢烧结烟气脱硫技术研究.工业安全与环保,2002,28(8):7-11.
    [11]高继慧,马春元,吴少华等.半干式脱硫系统的热量物质衡算模型.热能动力工程,2001,16(5):530-532.
    [12]Q. H. Wang, Z. Y. Luo, X. T. Li, M. Q. Fang, M. Q. L. Ni, K. Cen. A mathematical model for a circulating fluidized bed (CFB) boiler. Energy,1999, 24 (7):633-653.
    [13]A. Gungor, N. Eskin. Two-dimensional coal combustion modeling of CFB. International Journal of Thermal Sciences,2008,47 (2):157-174.
    [14]N. Matsushima, Y. Li, M. Nishioka, M. Sadakata, H. Y. Qi and X. C. Xu. Novel dry-desulfurization process using Ca(OH)2 /fly ash sorbent in a circulating fluidized bed. Environmental Science and Technology,2004,38 (24):6867-6874.
    [15]F. F. Hill, J. Zank. Flue gas desulphurization by spray dry absorption. Chemical Engineering Processing,2000,39 (1):45-52.
    [16]F. Scala, M. D'Ascenzo, A. Lancia. Modeling flue gas desulfurization by spray-dry absorption. Separation and Purification Technology,2004,34 (1-3): 143-153.
    [17]陶树成,高自强,陆万鹏等.某热电厂循环流化床锅炉降低排烟温度的技术措施探讨.电力技术,2010,(2):62-66.
    [18]赵果然.循环流化床锅炉国内外现状概述.锅炉制造,2009,(4):19-21.
    [19]程乐鸣.大型循环流化床锅炉的发展.动力工程,2008,28(6):817-826.
    [20]余志杰.福建三钢180m2烧结机烟气循环流化床干法脱硫装置.能源与环境,2008,(4):66-68.
    [21]李希昌,周玉春.烧结烟气脱硫技术比较浅析.能源与环境,2010,(4):102-103.
    [22]A. K. Das, J. D. Wilde, G. J. Heynderickx, G. B. Marin. Simultaneous adsorption of SO2-NOX from flue gases in a riser configuration. American Institute of Chemical Engineers Journal,2001,47 (12):2831-2844.
    [23]A. Gomez, N. Fueyo, A. Tomas. Detailed modeling of flue-gas desulfurization plant. Computers & Chemical Engineering,2007,31 (11):1419-1431.
    [24]S. Sarkar, B. C. Meikap, S. G. Chatterjee. Modeling of removal of sulfur dioxide from flue gases in a horizontal cocurrent gas-liquid scrubber. Computers & Chemical Engineering,2007,131 (1):263-271.
    [25]E. Grieco, L. Marmo. A model for the pressure balance of a low density circulating fluidized bed. Chemical Engineering Journal,2008,140 (1): 414-423.
    [26]F. Ruhland, R. Kind, S. Weiss. The kinetics of absorption of sulfur dioxide in calcium hydroxide suspensions. Chemical Engineering Science,1991,46 (4): 939-947.
    [27]W. W. Meng, R. W. Wan, S. M. Arun. Comparative study of drop let drying models for CFD modeling. Chemical Engineering Research and Design,2008, 86 (9):1038-1048.
    [28]M. Kadja, G. Bergeles. Modeling of slurry drop let drying. Applied Thermal Engineering,2003,23 (7):829-844.
    [29]J. K. Neathery. Model for flue-gas desulfurization in a circulating dry scrubber. American Institute of Chemical Engineers Journal,1996,42 (1):259-268.
    [30]H. L. Tong, X. F. Wang, Q. B. Liu, Y. Li, C. M. Cheng, D. K. Li, C. H. Chen and X. C. Xu. Experimental study on the CFB-FGD of semi-dry process in a demo plant. Proceedings of the 2003 5th International Symposium on Coal Combustion. Nanjing, China:Southeast University,2003,295-298.
    [31]许佩瑶,赵毅,张艳等.快速流态化下烟气循环流化床脱硫数学模型.中国电机工程学报,2006,26(9):54-61.
    [32]马双忱,赵毅,华伟.烟气循环流化床脱硫数学模型及应用.中国电机工程学报,2004,24(10):228-232.
    [33]马双忱,赵毅.循环流化床烟气脱硫数学模型参数的确定.动力工程,2006,26(5):716-720.
    [34]蒋晓肖,樊建,陈广博.基于模型的RBF循环流化床锅炉床温控制.控制工程,2009,16(S1):114-116.
    [35]潘笑,汪璐,邓培敏等.神经网络PID在直流炉汽温控制中的应用.微计算机信息,2007,23(6):34-36.
    [36]陶敏,金保升,仲兆平等.循环流化床烟气脱硫多层喷水数学模型.东南大学学报(自然科学版),2010,40(1):144-148.
    [37]陈乔,葛铭,郑松等.发酵罐温度对象的抗干扰预测控制.化工学报,2010,61(8):2117-2120
    [38]L. E. Kallinikos, E. I. Farsari, D. N. Spartinos, N. G. Papayannakos. Simulation of the operation of an industrial wet flue gas desulfurization system. Fuel Processing Technology,2010,91 (12):1794-1802.
    [39]张广瑞.基于遗传算法的遗传神经网络在卷曲温度控制系统中的应用.黑龙江科技信息.2010,(18):600-603.
    [40]L. Cui, L. Q. Zhang, B. Li, Y. Dong, X. L. Yuan and C. Y. Ma. Effect investigation of composite humidification way on wall deposition of water droplets and desulfurization process in semi-dry CFB-FGD tower. In:Proceedings of the 2010 Asia-Pacific Power and Energy Engineering Conference (APPEEC 2010). Chengdu, China:IEEE,2010.
    [41]李云娟,方彦军.一种神经网络预测控制在超临界主汽温度中的应用研究.昆明学院学报,2010,32(03):97-99
    [42]吕增芳.加热炉温度预测模糊控制方法研究.工业计量,2010,20(03):13-16.
    [43]万汉伟,龙伟,庞彪等.神经网络预测控制在分段台车式电阻炉温度控制中的应用.金属热处理,2010,35(8):75-78.
    [44]刘伟,王思明,张国武.基于RBF神经网络陶瓷窑炉温度动态矩阵控制.中国陶瓷,2010,46(9):28-30.
    [45]张恩平,付庆华.模型预测控制在温度调节中的应用.微计算机信息,2004,20(7):20-21.
    [46]方志星.燃煤电厂烟气脱硫存在的问题和建议.能源环境保护,2008,28(S1):38-40.
    [47]房凡,李振山,蔡宁生.钙基CO2吸收剂的种类和粒径对循环煅烧/碳酸化的影响.工程热物理学报,2008,29(4):698-702.
    [48]张嘉英,王文兰.再热汽温控制系统的DMC-PID仿真研究.自动化仪表,2010,31(6):58-60.
    [49]舒迪前.预测控制系统及其应用.北京:机械工业出版社,1998.
    [50]席裕庚.预测控制.北京:国防科技图书出版社,1991.
    [51]罗芳琼,吴春梅.时间序列分析的理论与应用综述.柳州师专学报.2009,24(3):113-117.
    [52]N. Forssell, L. Ljung. Closed-loop identification revisited. Automatica,1999, 35(7):1215~1241.
    [53]王树云,宋云胜.线性模型下基于AIC准则的Bayes变量选择.山东大学学报,2010,45(6):43-46.
    [54]史忠科.线性系统理论.北京:科学出版社,2008.
    [55]姚少杰.改进的动态矩阵控制算法研究.南京信息工程大学硕士学位论文, 2008.
    [56]张嘉英,王文兰.基于动态矩阵控制的再热汽温控制系统.2010,30(8):71-75.
    [57]黄永红,朱明祥,陈照章等.基于模糊PID控制的高精度恒温槽设计.控制工程,2009,(S1):80-82.
    [58]范金城,梅长林.数据分析.北京:科学出版社,2002.
    [59]王坚强.一种新的灰色关联度计算方法及其应用.系统工程理论与实践,1997,11(11):119-123.
    [60]刘芳,刘民,吴澄.基于灰色关联分析的分层模糊神经网络.系统仿真学报,2006,4(18):886-888.
    [61]马良玉,阎秦,王兵树.过热汽温内模自适应控制方案设计及仿真.微计算机信息,2007,23(4):32-34.
    [62]陈以,杨启伟.模糊Smith智能温度控制器的设计与仿真.控制工程,2007,14(4):422-429.
    [63]徐燕凌,项思远,王颖异.基于回归分析的嵌入式块编码预测截断算法.计算机工程与应用,2010,46(3):142-147.
    [64]谌晓文.涟钢280m2烧结机生产过程智能控制系统设计与实现.中南大学硕士学位论文,2006.
    [65]Tamhane, A.C., and R.S.H.Mah. Data Reconciliation and Gross Error Detection in Chemical Process Networks. Techometrics,1985,27:409-413.
    [66]Crowe, C. M. Reconciliation of Process Flow Rates by Matrix Projection. Alche Journal,1986,2(4):616-623

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700