水牛乳腺基因表达谱与生长激素转基因水牛的初步研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水牛是中国南方极具开发潜力的主要家畜,具有耐粗饲、乳品品质好等优点。但由于我国本地水牛产奶性能低下,致使奶水牛产业的发展缓慢。因此,如何应用现代生物技术培育出高产奶量的水牛新品种是目前要解决的主要问题。本研究首先分析了水牛泌乳期和非泌乳期乳腺组织基因表达谱,寻找差异表达基因,研究水牛的泌乳机制,并为培育高产奶量的转基因水牛提供丰富的候选基因素材;然后,探索转座子系统在水牛转基因中的应用,以期提高水牛转基因的效率;构建了乳腺特异性生长激素基因(GH)转基因表达载体,在乳腺细胞和乳腺组织中进行检测,分析外源GH基因的表达对乳蛋白等基因表达的影响;最后,采用随机整合、转座子主动整合等转基因技术将重组GH基因导入水牛基因组,生产GH转基因的水牛胚胎,以期培育出高产奶量转基因水牛新品种。本研究取得的主要结果总结如下:
     1.水牛泌乳期与非泌乳期基因表达谱及差异表达分析。构建水牛泌乳期和非泌乳期乳腺组织基因表达谱,分析差异表达和泌乳期高丰度表达的基因,探讨水牛泌乳的分子机制,也为转基因水牛提供外源基因乳腺泌乳期特异性表达启动子。基因表达谱序列拼接后获得114,014个单一的Unigenes,与牛的基因组信息比对注释了30290个基因,可以定位到270条相应的通路上(pathway),其中与乳脂肪、乳蛋白和乳糖合成代谢通路相关基因表达丰度较高。在泌乳期乳腺组织中特异性表达的基因有3053个,占到所有基因序列的2.68%。比较水牛乳腺两个时期基因表达量,泌乳期表达量上调的基因有1390个,下调的基因有5851个。在270条KEGG通路中有228个通路涉及到差异表达基因,如介导生长激素作用的JAK-STAT和MAPK信号通路。实时定量PCR (QRT-PCR)检测到水牛的非泌乳期乳腺组织中有少量的乳蛋白基因表达。K酪蛋白(CN3)基因表达量在非泌乳期与泌乳期乳腺中都是显著高于其它基因。与非泌乳期相比,泌乳期乳腺CN1S1基因表达量增加了6958倍,CN1S2增加了4800倍,kCN和αLA增加了1000倍左右,而β酪蛋白增加了244倍,与测序结果基本一致。泌乳期和非泌乳期的乳腺组织中检测至(?)GHR, PRLR(?)(?)GF1R的表达,说明GH、PRL(?)(?)IGF1可能参与了泌乳的分子调控过程。
     2.水牛乳腺上皮细胞(BME)基因表达分析。通过PB转座子携带的LT抗原永生化诱导水牛乳腺上皮细胞(BME),建立检测乳腺转基因表达载体的细胞模型。PB转座子为骨架的永生化载体pXL-BACII-bCN2/LT转染后的BME细胞的腺泡消失速度和成纤维样转变降低。在添加催乳素诱导培养后,第30代的永生化处理的BME细胞能检测到乳蛋白基因的表达。其中CN1S1基因表达量为非泌乳期乳腺的88.32倍,CN3为32.09倍,CN1S2和αLA基因表达量分别为2.8倍和3.3倍。结果表明,初步建立了细胞水平检测乳腺特异性表达载体的体外模型。
     3.水牛转座子转基因技术方法的建立。本研究通过构建piggyBac (PB), passport (PP)和sleeping beauty (SB)转座子转基因载体,转染水牛胎儿成纤维细胞(BFF),同时对转座子转基因系统进行优化,以期建立水牛转座子转基因技术体系。转座子转基因载体转染水牛的胎儿成纤维细胞(BFF)后,均能观察到标记基因EGFP的表达。应用p18T载体、PB、PP和SB转座子表达NEO基因,转染细胞后筛选获得的G418抗性细胞克隆形成数(CFN)差异不显著。与随机整合相比,加入相应的转座酶后,PB转座子系统抗性细胞克隆数量提高了22倍,PP转座子系统提高了8倍,SB转座子提高了14倍,PB转座子系统获得了最高的转基因效率。PB转座子在转座子和转座酶比例(Tn:Ts)为1:l的时候转基因效率最高,而PP和SB转座子为1:0.5。当添加的转座酶质粒过量时,PB转座子的转基因效率下降幅度没有PP和SB转座子大。通过QRT-PCR检测了不同转座子外源基因的整合拷贝数,结果显示:随机整合组每个单倍体基因组整合拷贝数从5个拷贝至51.9个拷贝不等。PB转座子为16.62拷贝,PP转座子为2.5拷贝。SB转座子整合到基因组中的转基因拷贝数最多,单倍体基因组中为98个拷贝。以上结果显示:三种转座子均能应用于水牛的转基因研究,转基因效率优于随机整合转基因。
     4.生长激素转基因载体构建与细胞水平检测。克隆分析了人、奶牛和水牛的生长激素基因(GH),PB转座子携带的GH转基因载体转染乳腺细胞和乳腺组织块,研究GH转基因的表达对其乳蛋白等基因表达的影响。结果显示牛、水牛和牦牛之间GH基因的同源性最高,与其它偶蹄目也有较高的同源性,生长激素氨基酸序列也较为保守。将分别携带有人和奶牛GH的piggyBac转座子转基因载体(pXL-BacⅡ-bCN2.8/hGH2.1-EGFP-Neo, PXL-BacⅡ-bCN2.8/hGH2.2-EGFP-Neo)转染人的乳腺癌细胞系(Bcap37),能观察至(?)EGFP的表达,RT-PCR和western blot均能检测到人和奶牛GH基因的特异性表达。分别用P18T-bGH和PB-bGH转基因载体转染永生化BME细胞后,检测到bGH转基因的表达。p酪蛋白、CN1S1酪蛋白和α乳清白蛋白基因表达量均有显著提高,GHR和IGF1R基因的表达量也有上调。pB-bGH载体转染的水牛乳腺组织块,CN1S1, CN1S2,p酪蛋白和K酪蛋白基因的表达量提高了50倍以上,初步证明GH转基因载体的转染可以显著提高乳蛋白基因的表达水平。
     5.转GH基因水牛克隆胚胎的生产与早产转基因克隆水牛的检测。使用受精卵胞质注射、卵胞质内单精子注射(ICSI)和转基因体细胞核移植的方法生产转GH基因的水牛胚胎,并对经胚胎移植后的获得的早产转基因克隆水牛进行了鉴定。水牛受精卵胞质注射和水牛卵母细胞内单精子注射(ICSI) PB转座子GH转基因载体和转座酶载体后,均获得EGFP表达的转基因阳性胚胎。以转GH基因BFF为核供体,制备了EGFP表达的转基因克隆水牛囊胚。经胚胎移植后获得了转GH基因克隆水牛的妊娠,于9月龄早产。特定蓝光照射下在早产水牛头侧部能观察到绿色荧光表达,解剖结果显示心、肺、肝、胃和脾发育正常,但大肠,肾脏,生殖系统等发育不良,而且有严重的组织粘连。激光共聚焦显微镜下观察到心、肝、脾、肺、膈肌和肌肉等组织冰冻切片均有较强的EGFP表达。通过PCR检测和染色体步移法检测到早产克隆水牛的各组织中均有外源基因的整合。这些工作为获得乳腺特异性表达GH基因转基因水牛奠定了较好的工作基础。
The swamp buffalo, roughage resistance and good quality milk, is a great potential livestock for development in south of China. However, due to the poor milk yield performance of local buffalo, China's buffalo industry is in a slow development. Therefore, how to use modern bio-technology to breed higher milk yield buffalo is the primary and major goal. In this study, gene expression profile construction of the buffalo lactation and non-lactating mammary gland was used to analyze differential expression genes, which could be useful in buffalo lactation molecular mechanisms and looking for the special promoters. These promoters could regulate exogenous gene expression in the mammary gland with the goal of higher milk yield buffalo. Then, transposon system was explored in buffalo's transgenic reseach with a high transgenic efficency. The vectors expressing extraneous growth hormone gene (GH) were transfected buffalo mammary epithelial cells and mammary tissue to dectection milk protein gene expression. At the last, random integration and transposable active integration transgenic methods were used to carry recombinant growth hormone gene (GH) regulated by lactation mammary-specific expression promoter. Higher milk yield buffalo is the final target. The main results of this study are summarized as follows:
     1. Differential gene expression between buffalo lactation and non-lactation mammary gland. Gene expression profile construction of the buffalo lactation and non-lactating mammary gland was used to analyze differential expression genes, which could be useful in buffalo lactation molecular mechanisms and looking for the special promoters. These promoters could regulate exogenous gene expression in the mammary gland with the goal of higher milk yield buffalo. The high-quality reads obtained by RNA-seq were assembled and mapped to114,014single Unigenes, which were mapped to270pathways from KEGG database respectively. The genes associated with milk lipid, milk protein and milk lactose synthesis and metabolism pathways expressed in a high amount. Genes expressed only in the lactation mammary gland were3,053accounting for2.68%of all genes, which were37,162genes accounting for32.61%in non-lactation mammary gland. The expression up-regulated genes in lactation mammary gland had1390and down-regulated expression genes were5851. There were228of270pathways which have differential expressing genes, such as JAK/STAT and MAPK singnal pathway. Quantitative real-time PCR (QRT-PCR) was used to confirm the results of RNA-seq. Kappa casein (CN3) was the most expression at these two periods. The expression of CN1S1gene increased6958times in lactation period compared to non-lactating period. The gene expression of kCN and aLA increased about1000times,4800times for CN1S2and244times for beta casein respectively. There were expression of GHR, PRLR and IGF1R detected in two period's mammary gland, which may indicate that GH、PRL and IGF1play roles in molecular regulation of milk secretion.
     2. Gene expression of buffalo immortalized mammary epithelial cells (BME). BME cells immortalized by pXL-BACII-bCN2/LT vector, which large T antigen gene regulated by buffalo's beta casein gene promoter in apiggyBac transposon vector, reduced the loss of acinar-like cells and fibroblast-change process. With prolactin induced, milk protein gene expression could be detected in the30th generation immortalized BME cells. Comparison to gene expression of non-lactation mammary tissue, the increase gene expression times of CN1S1gene were88.32, which were32.09times for CN3gene and24.99times for a LA gene. These results indicate that the cell detection model of transgenic mammary gland expression vector was established preliminarily.
     3. Establishment of transposon transgene system in buffalo. Transposon transgene vector from piggyBac (PB), passport (PP) and sleeping beauty (SB) were constructed and transposon system was explored in buffalo's fetal fibroblast for transgenic reseach with a high transgenic efficency. The maker gene expression of EGFP in buffalo fetal fibroblast (BFF) could be observed after transfected by transposon vector. The G418-resistent cell colony formation numbers (CFN) were not different among p18T vector、PB、PP and SB transposon, which carried the Neo maker gene. Comparison with CFN of random integration transgenic methods, CFN obtained of PB transposon system was22times, PP transposon system was8times and SB transposon system was14times. PB transposon system had the most transgenic efficiency. The transgene integration copy number was detected by QRT-PCR. The copy number of random integration group varied from5to51.9copies per haploid genome, which were16.62copies for PB transposon and2.5copies for PP transposon. SB transposon with98copies was the most number of transgene integration copies. These results indicate that three transposon transgene systems could applied in buffalo's transgenic research, which transgenic efficency is better than random integration transgene.
     4. Construction and detection of growth hormone transposon vector. Full-length genomic DNA fragments of human GH (2180bp), cattle GH (2207bp) and buffalo GH (2192bp, Gi:JF894306) were amplified from blood genome DNA. GH gene and amino acid were conservative in mammary animal. Human breast cancer cells (Bcap37) were transfected pXL-BacII-bCN2.8/bGH2.1-EGFP-Neo or PXL-BacII-bCN2.8/hGH2.2-EGFP-Neo vector, which carried human GH gene or cattle GH gene, with transposase vector pCMV/PBase-bPGK/DsRed. Transgenic GH gene expressed in G418-resistent Bcap37cells confirmed by RT-PCR and western blot. Immortalized BME cells, which transfected p18T-bGH or PB-bGH transgenic vector, could be detected the bovine GH gene expression and the significant expression increase of beta casein gene, CN1S1casein gene and alpha-lactalbumin gene. The gene expression of GHR gene and IGF1R gene were up-regulation. Moreover, gene expression of CN1S1, CN1S2, beta casein and kappa casein increased more than50times in mammary tissue transfected with pB-bCN2.8/bGH2.1-EGFP-neo vector. These results showed that transfected transgenic vector could increase milk protein gene expression preliminary.
     5. Production of GH transgenic clone buffalo embryo and detection of premature birth transgenic buffalo. Transgenic embryos, produced by oocyte cytoplasm injection and inner cytoplasm sperm injection (ICSI) with pXL-BacII-bCN2.8/bGH2.1-EGFP-Neo and transposase vector, could be observed EGFP expression. BFF cells transfected vector and selected as positive cell colony by G418, which were the nucleus donor for somatic nuclear transfer. The nuclear transfer, p18T-bCN2.8/bGH2.2-hEF1a/EGFP-IRES-neo transgenic BFF cells as nuclus donor, reconstructed blastocyst could be observed EGFP expression. A premature buffalo offspring after embryo transplant was born at pregnant9months. The premature offspring could be observed green fluorescence at head side under the specific blue light. This offspring's heart, lung, liver, stomach and spleen tissues were normal development. But large intestine, kidney and reproductive system were dysplasia, which were adhesions. Green fluorescence was observed in frozen sections of the heart, liver, spleen, lung, diaphragm and muscle tissue under laser scanning confocal microscope. Transgene were integrated in the premature offspring's genome detected by PCR and chromosome walking. These results laid a good basis for breeding mammary-specific expression GH transgenic buffalo.
引文
[1]Faostat.fao.org:FAOSTAT, Agriculture Data,2011.
    [2]Akers R M. Major advances associated with hormone and growth factor regulation of mammary growth and lactation in dairy cows[J]. J Dairy Sci,2006.89(4):1222-34.
    [3]Hauser S D, McGrath M F, Collier R J, et al. Cloning and in vivo expression of bovine growth hormone receptor mRNA[J]. Mol Cell Endocrinol,1990.72(3):187-200.
    [4]Plath-Gabler A, Gabler C, Sinowatz F, et al. The expression of the IGF family and GH receptor in the bovine mammary gland[J]. J Endocrinol,2001.168(1):39-48.
    [5]Hadsell D L, Bonnette S G, Lee A V. Genetic manipulation of the IGF-I axis to regulate mammary gland development and function[J]. J Dairy Sci,2002.85(2):365-77.
    [6]Akers R M, McFadden T B, Beal W E, et al. Radioimmunoassay for measurement of bovine alpha-lactalbumin in serum, milk and tissue culture media[J]. J Dairy Res,1986.53(3):419-29.
    [7]McFadden T B, Akers R M, Kazmer G W. Alpha-lactalbumin in bovine serum:relationships with udder development and function[J]. J Dairy Sci,1987.70(2):259-64.
    [8]Mao F C, Bremel R D, Dentine M R. Serum concentrations of the milk proteins alpha-lactalbumin and beta-lactoglobulin in pregnancy and lactation:correlations with milk and fat yields in dairy cattle[J]. J Dairy Sci,1991.74(9):2952-8.
    [9]Mao F C,Bremel R D. Prediction of milk yields from serum beta-lactoglobulin concentrations in pregnant heifers[J]. J Dairy Sci,1995.78(2):291-5.
    [10]Sabbioni A, Baratta M, Lavarini M, et al. Relationship between serum β-lactoglobulin content during gestation and reproductive efficiency in primiparous sows[J]. Italian Journal of Animal Science,2004.3(3):219-224
    [11]McFadden T B, Akers R M, Capuco A V. Relationship of milk proteins in blood with somatic cell counts in milk of dairy cows[J]. J Dairy Sci,1988.71(3):826-34.
    [12]LeRoith D,Yakar S. Mechanisms of disease:metabolic effects of growth hormone and insulin-like growth factor 1 [J]. Nat Clin Pract Endocrinol Metab,2007.3(3):302-10.
    [13]Soderholm C G, Otterby D E, Linn J G, et al. Effects of recombinant bovine somatotropin on milk production, body composition, and physiological parameters[J]. J Dairy Sci,1988.71(2):355-65.
    [14]Verma S, Ghorpade A, Tiwari G, et al. cDNA cloning and sequence analysis of bubaline growth hormone[J]. DNA Seq,1999.10(2):101-3.
    [15]Mukhopadhyay U K,Sahni G. Cloning, characterization, and expression studies in Escherichia coli of growth hormone cDNAs from Indian zebu cattle, reverine buffalo, and beetal goat[J]. Anim Biotechnol,2002.13(2):179-93.
    [16]Seeburg P H, Sias S, Adelman J, et al. Efficient bacterial expression of bovine and porcine growth hormones[J]. DNA,1983.2(1):37-45.
    [17]Etherton T D,Bauman D E. Biology of somatotropin in growth and lactation of domestic animals[J]. Physiol Rev,1998.78(3):745-61.
    [18]Eppard P J, White T C, Birmingham B K, et al. Pharmacokinetic and galactopoietic response to recombinant variants of bovine growth hormone[J]. J Endocrinol,1993.139(3):441-50.
    [19]Schenck E J,Brooks C L. Effects of an S84E mutation of bovine growth hormone in transgenic mice[J]. Exp Biol Med (Maywood),2006.231(3):296-302.
    [20]Sartin J L, Kemppainen R J, Cummins K. A, et al. Plasma concentrations of metabolic hormones in high and low producing dairy cows[J]. J Dairy Sci,1988.71(3):650-7.
    [21]Vasilatos R,Wangsness P J. Diurnal variations in plasma insulin and growth hormone associated with two stages of lactation in high producing dairy cows[J]. Endocrinology,1981.108(1):300-4.
    [22]武枫林,刘为民,张盛友,等.水牛生长激素分泌特点的研究[J].华北农学报(Acta Agriculturae Boreali-Sinica),2002 17(3):135-139.
    [23]Mishra A, Goswami T K, Shukla D C. An enzyme-linked immunosorbent assay (ELISA) to measure growth hormone level in serum and milk of buffaloes (Bubalus bubalis)[J]. Indian J Exp Biol,2007.45(7):594-8.
    [24]Blom A K, Halse K, Hove K. Growth hormone, insulin and sugar in the blood plasma of bulls. Interrelated diurnal variations[J]. Acta Endocrinol (Copenh),1976.82(4):758-66.
    [25]Dawson J M, Craigon J, Buttery P J, et al. Influence of diet and beta-agonist administration on plasma concentrations of growth hormone and insulin-like growth factor-1 in young steers[J]. Br J Nutr,1993.70(1):93-102.
    [26]Cadman H F,Wallis M. An investigation of sites that bind human somatotropin (growth hormone) in the liver of the pregnant rabbit[J]. Biochem J,1981.198(3):605-14.
    [27]Lesniak M A,Roth J. Regulation of receptor concentration by homologous hormone. Effect of human growth hormone on its receptor in IM-9 lymphocytes[J]. J Biol Chem,1976.251(12): 3720-9.
    [28]Torkelson A. Radioimmunoassay of somatotropin in milk from cows administered recombinant bovine somatotropin[J]. Proceedings of the American Dairy Science Association,1987.70(Suppl. 1):146.
    [29]McGrath M F, Bogosian G, Fabellar A C, et al. Measurement of bovine somatotropin (bST) and insulin-like growth factor-1 (IGF-1) in bovine milk using an electrochemiluminescent assay[J]. J Agric Food Chem,2008.56(16):7044-8.
    [30]Robinson P H, de Boer G, Kennelly J J. Effect of bovine somatotropin and protein on rumen fermentation and forestomach and whole tract digestion in dairy cows[J]. J Dairy Sci,1991.74(10): 3505-17.
    [31]Peel C J, Fronk T J, Bauman D E, et al. Lactational response to exogenous growth hormone and abomasal infusion of a glucose-sodium caseinate mixture in high-yielding dairy cows[J]. J Nutr, 1982.112(9):1770-8.
    [32]Elvinger F, Head H H, Wilcox C J, et al. Effects of administration of bovine somatotropin on milk yield and composition[J]. J Dairy Sci,1988.71(6):1515-25.
    [33]Eppard P J, Bauman D E, McCutcheon S N. Effect of dose of bovine growth hormone on lactation of dairy cows[J]. J Dairy Sci,1985.68(5):1109-15.
    [34]Eppard P J, Bauman D E, Bitman J, et al. Effect of dose of bovine growth hormone on milk composition:alpha-lactalbumin, fatty acids, and mineral elements[J]. J Dairy Sci,1985.68(11): 3047-54.
    [35]Nytes A J, Combs D K, Shook G E, et al. Response to recombinant bovine somatotropin in dairy cows with different genetic merit for milk production[J]. J Dairy Sci,1990.73(3):784-91.
    [36]Ludri R S, Upadhyay R C, Singh M, et al. Milk production in lactating buffalo receiving recombinantly produced bovine somatotropin [J]. J Dairy Sci,1989.72(9):2283-7.
    [37]Whitaker D A, Smith E J, Kelly J M. Milk production, weight changes and blood biochemical measurements in dairy cattle receiving recombinant bovine somatotropin[J]. Vet Rec,1989.124(4): 83-6.
    [38]Austin C L, Schingoethe D J, Casper D P, et al. Influence of bovine somatotropin and nutrition on production and composition of milk from dairy cows[J]. J Dairy Sci,1991.74(11):3920-32.
    [39]Bauman D E. Bovine somatotropin and lactation:from basic science to commercial application[J]. Domest Anim Endocrinol,1999.17(2-3):101-16.
    [40]Stelwagen K, Grieve D G, Walton J S, et al. Effect of prepartum bovine somatotropin in primigravid ewes on mammogenesis, milk production, and hormone concentrations[J]. J Dairy Sci, 1993.76(4):992-1001.
    [41]Knight C H, Fowler P A, Wilde C J. Galactopoietic and mammogenic effects of long-term treatment with bovine growth hormone and thrice daily milking in goats[J]. J Endocrinol,1990. 127(1):129-38.
    [42]Sejrsen K,Knight C H. Unilateral intramammary infusion of GH does not support a local galactopoietic action of growth hormone in goats[J]. Proc. Nutrition Society,1993.52:278A.
    [43]Hodate K, Ozawa A, Johke T. Effect of a prolonged release formulation of recombinant bovine somatotropin on plasma concentrations of hormones and metabolites, and milk production in dairy cows[J]. Endocrinol Jpn,1991.38(5):527-32.
    [44]Vicini J L, Hartnell G F, Veenhuizen J J, et al. Effect of supplemental dietary fat or protein on the short-term milk production response to bovine somatotropin[J]. J Dairy Sci,1995.78(4):863-71.
    [45]Buskirk D D, Faulkner D B, Hurley W L, et al. Growth, reproductive performance, mammary development, and milk production of beef heifers as influenced by prepubertal dietary energy and administration of bovine somatotropin[J]. J Anim Sci,1996.74(11):2649-62.
    [46]Gulay M S, Hayen M J, Liboni M, et al. Low doses of bovine somatotropin during the transition period and early lactation improves milk yield, efficiency of production, and other physiological responses of Holstein cows[J]. J Dairy Sci,2004.87(4):948-60.
    [47]Beck R L,Gong H. Effect of socioeconomic factors on bovine somatotropin adoption choices[J]. J Dairy Sci,1994.77(1):333-7.
    [48]Kaiser G G, Kolle S, Boie G, et al. In vivo effect of growth hormone on the expression of connexin-43 in bovine ovarian follicles[J]. Mol Reprod Dev,2006.73(5):600-6.
    [49]Songsasen N, Yiengvisavakul V, Buntaracha B, et al. Effect of treatment with recombinant bovine somatotropin on responses to superovulatory treatment in swamp buffalo (Bubalus bubalis)[J]. Theriogenology,1999.52(3):377-84.
    [50]Hoeben D, Burvenich C, Eppard P J, et al. Effect of recombinant bovine somatotropin on milk production and composition of cows with Streptococcus uberis mastitis[J]. J Dairy Sci,1999.82(8): 1671-83.
    [51]张英来.牛生长激素(BST)促乳作用机制[J].草食家畜,2003(01):53-54.
    [52]Gibson C A, Vega J R, Baumrucker C R, et al. Establishment and characterization of bovine mammary epithelial cell lines[J]. In Vitro Cell Dev Biol,1991.27A(7):585-94.
    [53]Harris L. Genes get a piggyBac ride[J]. Scientist,2005.19(21):32-32.
    [54]Zhou Y, Akers R M, Jiang H. Growth hormone can induce expression of four major milk protein genes in transfected MAC-T cells[J]. J Dairy Sci,2008.91(1):100-8.
    [55]Yonekura S, Sakamoto K, Komatsu T, et al. Growth hormone and lactogenic hormones can reduce the leptin mRNA expression in bovine mammary epithelial cells[J]. Domest Anim Endocrinol, 2006.31(1):88-96.
    [56]Sakamoto K, Komatsu T, Kobayashi T, et al. Growth hormone acts on the synthesis and secretion of alpha-casein in bovine mammary epithelial cells[J]. J Dairy Res,2005.72(3):264-70.
    [57]Johnson T L, Fujimoto B A, Jimenez-Flores R, et al. Growth hormone alters lipid composition and increases the abundance of casein and lactalbumin mRNA in the MAC-T cell line[J]. J Dairy Res, 2010.77(2):199-204.
    [58]Yang J, Zhao B, Baracos V E, et al. Effects of bovine somatotropin on beta-casein mRNA levels in mammary tissue of lactating cows[J]. J Dairy Sci,2005.88(8):2806-12.
    [59]Molento C F, Block E, Cue R I, et al. Effects of insulin, recombinant bovine somatotropin, and their interaction on insulin-like growth factor-I secretion and milk protein production in dairy cows[J]. J Dairy Sci,2002.85(4):738-47.
    [60]Glimm D R, Baracos V E, Kennelly J J. Effect of bovine somatotropin on the distribution of immunoreactive insulin-like growth factor-I in lactating bovine mammary tissue[J]. J Dairy Sci, 1988.71(11):2923-35.
    [61]Lincoln D T, Water M J, Breipohl W, et al. Growth hormone receptors expression in the proliferating rat mammary gland[J]. Acta Histochem Suppl,1990.40:47-9.
    [62]Jammes H, Gaye P, Belair L, et al. Identification and characterization of growth hormone receptor mRNA in the mammary gland[J]. Mol Cell Endocrinol,1991.75(1):27-35.
    [63]Glimm D R, Baracos V E, Kennelly J J. Molecular evidence for the presence of growth hormone receptors in the bovine mammary gland[J]. J Endocrinol,1990.126(3):R5-8.
    [64]Sinowatz F, Schams D, Kolle S, et al. Cellular localisation of GH receptor in the bovine mammary gland during mammogenesis, lactation and involution[J]. J Endocrinol,2000.166(3):503-10.
    [65]Ilkbahar Y N, Thordarson G, Camarillo I G, et al. Differential expression of the growth hormone receptor and growth hormone-binding protein in epithelia and stroma of the mouse mammary gland at various physiological stages[J]. J Endocrinol,1999.161(1):77-87.
    [66]Gordon J W, Scangos G A, Plotkin D J, et al. Genetic transformation of mouse embryos by microinjection of purified DNA[J]. Proc Natl Acad Sci U S A,1980.77(12):7380-4.
    [67]Palmiter R D, Brinster R L, Hammer R E, et al. Dramatic growth of mice that develop from eggs microinjected with metallothionein-growth hormone fusion genes[J]. Nature,1982.300(5893): 611-5.
    [68]McEvoy T G,Sreenan J M. The efficiency of production, centrifugation, microinjection and transfer of one-and two-cell bovine ova in a gene transfer program[J]. Theriogenology,1990.33(4): 819-28.
    [69]Petitclerc D, Attal J, Theron M C, et al. The effect of various introns and transcription terminators on the efficiency of expression vectors in various cultured cell lines and in the mammary gland of transgenic mice[J]. J Biotechnol,1995.40(3):169-78.
    [70]Hirabayashi M, Takahashi R, Ito K, et al. A comparative study on the integration of exogenous DNA into mouse, rat, rabbit, and pig genomes[J]. Exp Anim,2001.50(2):125-31.
    [71]McGrane M M, Yun J S, Moorman A F, et al. Metabolic effects of developmental, tissue-, and cell-specific expression of a chimeric phosphoenolpyruvate carboxykinase (GTP)/bovine growth hormone gene in transgenic mice[J]. J Biol Chem,1990.265(36):22371-9.
    [72]Bchini O, Andres A C, Schubaur B, et al. Precocious mammary gland development and milk protein synthesis in transgenic mice ubiquitously expressing human growth hormone[J]. Endocrinology,1991.128(1):539-46.
    [73]Gunzburg W H, Salmons B, Zimmermann B, et al. A mammary-specific promoter directs expression of growth hormone not only to the mammary gland, but also to Bergman glia cells in transgenic mice[J]. Mol Endocrinol,1991.5(1):123-33.
    [74]Archer J S, Kennan W S, Gould M N, et al. Human growth hormone (hGH) secretion in milk of goats after direct transfer of the hGH gene into the mammary gland by using replication-defective retrovirus vectors[J]. Proc Natl Acad Sci U S A,1994.91(15):6840-4.
    [75]Devinoy E, Thepot D, Stinnakre M G, et al. High level production of human growth hormone in the milk of transgenic mice:the upstream region of the rabbit whey acidic protein (WAP) gene targets transgene expression to the mammary gland[J]. Transgenic Res,1994.3(2):79-89.
    [76]Ninomiya T, Hirabayashi M, Sagara J, et al. Functions of milk protein gene 5' flanking regions on human growth hormone gene[J]. Mol Reprod Dev,1994.37(3):276-83.
    [77]Thepot D, Devinoy E, Fontaine M L, et al. Rabbit whey acidic protein gene upstream region controls high-level expression of bovine growth hormone in the mammary gland of transgenic mice[J]. Mol Reprod Dev,1995.42(3):261-7.
    [78]Hirabayashi M, Kodaira K, Takahashi R, et al. Transgene expression in mammary glands of newborn rats[J]. Mol Reprod Dev,1996.43(2):145-9.
    [79]Kerr D E, Furth P A, Powell A M, et al. Expression of gene-gun injected plasmid DNA in the ovine mammary gland and in lymph nodes draining the injection site [J]. Animal Biotechnology,1996. 7(1):33-45.
    [80]Lee C S, Kim K, Yu D Y, et al. An efficient expression of human growth hormone (hGH) in the milk of transgenic mice using rat beta-casein/hGH fusion genes[J]. Appl Biochem Biotechnol, 1996.56(3):211-22.
    [81]Cerdan M G, Young J I, Zino E, et al. Accurate spatial and temporal transgene expression driven by a 3.8-kilobase promoter of the bovine beta-casein gene in the lactating mouse mammary gland[J]. Mol Reprod Dev,1998.49(3):236-45.
    [82]Oh K B, Choi Y H, Kang Y K, et al. A hybrid bovine beta-casein/bGH gene directs transgene expression to the lung and mammary gland of transgenic mice[J]. Transgenic Res,1999.8(4): 307-11.
    [83]Takahashi R,Ueda M. The milk protein promoter is a useful tool for developing a rat with tolerance to a human protein[J]. Transgenic Res,2001.10(6):571-5.
    [84]Lipinski D, Jura J, Kalak R, et al. Transgenic rabbit producing human growth hormone in milk[J]. J Appl Genet,2003.44(2):165-74.
    [85]Salamone D, Baranao L, Santos C, et al. High level expression of bioactive recombinant human growth hormone in the milk of a cloned transgenic cow[J]. J Biotechnol,2006.124(2):469-72.
    [86]Hens J R, Amstutz M D, Schanbacher F L, et al. Introduction of the human growth hormone gene into the guinea pig mammary gland by in vivo transfection promotes sustained expression of human growth hormone in the milk throughout lactation[J]. Biochim Biophys Acta,2000. 1523(2-3):161-71.
    [87]Sanchez O, Toledo J R, Rodriguez M P, et al. Adenoviral vector mediates high expression levels of human growth hormone in the milk of mice and goats[J]. J Biotechnol,2004.114(1-2):89-97.
    [88]Devinoy E, Stinnakre M G, Lavialle F, et al. Intracellular routing and release of caseins and growth hormone produced into milk from transgenic mice[J]. Exp Cell Res,1995.221(2):272-80.
    [89]McGrane M M, de Vente J, Yun J, et al. Tissue-specific expression and dietary regulation of a chimeric phosphoenolpyruvate carboxykinase/bovine growth hormone gene in transgenic mice[J]. J Biol Chem,1988.263(23):11443-51.
    [90]Yun J S, Li Y S, Wight D C, et al. The human growth hormone transgene:expression in hemizygous and homozygous mice[J]. Proc. Soc. Exp. Biol. Med.,1990.194(4):308-313.
    [91]Stefaneanu L, Kovacs K, Bartke A, et al. Pituitary morphology of transgenic mice expressing bovine growth hormone[J]. Lab Invest,1993.68(5):584-91.
    [92]Stefaneanu L, Kovacs K, Bartke A. In situ hybridization study of growth hormone, prolactin, and proopiomelanocortin mRNAs in adenohypophyses of mice transgenic for human growth hormone[J]. Endocrine Pathology,1993.4(2):73-78.
    [93]Miller K F, Bolt D J, Pursel V G, et al. Expression of human or bovine growth hormone gene with a mouse metallothionein-1 promoter in transgenic swine alters the secretion of porcine growth hormone and insulin-like growth factor-I[J]. J Endocrinol,1989.120(3):481-8.
    [94]Sotelo A I, Bartke A, Turyn D. Effects of bovine growth hormone (GH) expression in transgenic mice on serum and pituitary immunoreactive mouse GH levels and pituitary GH-releasing factor binding sites[J]. Acta Endocrinol (Copenh),1993.129(5):446-52.
    [95]Sotelo A I, Dominici F P, Engbers C, et al. Growth hormone-binding protein in normal mice and in transgenic mice expressing bovine growth hormone gene[J]. Am J Physiol,1995.268(4 Pt 1): E745-51.
    [96]Cifone D, Dominici F P, Pursel V G, et al. Inability of heterologous growth hormone (GH) to regulate GH binding protein in GH-transgenic swine[J]. J Anim Sci,2002.80(7):1962-9.
    [97]Orian J M, Snibson K, Stevenson J L, et al. Elevation of growth hormone (GH) and prolactin receptors in transgenic mice expressing ovine GH[J]. Endocrinology,1991.128(3):1238-46.
    [98]Murray J D, Oberbauer A M, Sharp K R, et al. Expression of an ovine growth hormone transgene in mice increases arachidonic acid in cellular membranes [J]. Transgenic Res,1994.3(4):241-8.
    [99]Aguilar R, Fernandez H, Dellacha J, et al. Somatotropic and lactotropic receptors in transgenic mice expressing human or bovine growth hormone genes[J]. Transgenic Research,1992.1(5): 221-227.
    [100]Hadsell D L, Torres D T, Lawrence N A, et al. Overexpression of des(1-3) insulin-like growth factor 1 in the mammary glands of transgenic mice delays the loss of milk production with prolonged lactation[J]. Biol Reprod,2005.73(6):1116-25.
    [101]Su H Y,Cheng W T. Increased milk yield in transgenic mice expressing insulin-like growth factor 1 [J]. Anim Biotechnol,2004.15(1):9-19.
    [102]Hadsell D L, Parlow A F, Torres D, et al. Enhancement of maternal lactation performance during prolonged lactation in the mouse by mouse GH and long-R3-IGF-I is linked to changes in mammary signaling and gene expression[J]. J Endocrinol,2008.198(1):61-70.
    [103]Monaco M H, Gronlund D E, Bleck G T, et al. Mammary specific transgenic over-expression of insulin-like growth factor-Ⅰ (IGF-I) increases pig milk IGF-Ⅰ and IGF binding proteins, with no effect on milk composition or yield[J]. Transgenic Res,2005.14(5):761-73.
    [104]Vize P D, Michalska A E, Ashman R, et al. Introduction of a porcine growth hormone fusion gene into transgenic pigs promotes growth[J]. J Cell Sci,1988.90 (Pt 2):295-300.
    [105]Gazarian K G, Andreeva L E, Serova I A, et al. [Production of transgenic rabbits and mice carrying the gene for bovine growth hormone][J]. Mol Gen Mikrobiol Virusol,1988(10):23-6.
    [106]Hurley D L, Bartke A, Wagner T E, et al. Increased hypothalamic somatostatin expression in mice transgenic for bovine or human GH[J]. J Neuroendocrinol,1994.6(5):539-48.
    [107]Naar E M, Bartke A, Majumdar S S, et al. Fertility of transgenic female mice expressing bovine growth hormone or human growth hormone variant genes[J]. Biol Reprod,1991.45(1):178-87.
    [108]Wieghart M, Hoover J L, McGrane M M, et al. Production of transgenic pigs harbouring a rat phosphoenolpyruvate carboxykinase-bovine growth hormone fusion gene[J]. J Reprod Fertil Suppl, 1990.41:89-96.
    [109]Solomon M B, Pursel V G, Paroczay E W, et al. Lipid composition of carcass tissue from transgenic pigs expressing a bovine growth hormone gene[J]. J Anim Sci,1994.72(5):1242-6.
    [110]Adams N R,Briegel J R. Multiple effects of an additional growth hormone gene in adult sheep[J]. J Anim Sci,2005.83(8):1868-74.
    [111]Oberbauer A M, Pomp D, Murray J D. Dependence of increased linear bone growth on age at oMTla-oGH transgene expression in mice[J]. Growth Dev Aging,1994.58(2):83-93.
    [112]Sandstedt J, Ohlsson C, Norjavaara E, et al. Disproportional bone growth and reduced weight gain in gonadectomized male bovine growth hormone transgenic and normal mice[J]. Endocrinology, 1994.135(6):2574-80.
    [113]Wanke R, Hermanns W, Folger S, et al. Accelerated growth and visceral lesions in transgenic mice expressing foreign genes of the growth hormone family:an overview[J]. Pediatric Nephrology, 1991.5(4):513-521.
    [114]Pendergrass W R, Li Y, Jiang D, et al. Decrease in cellular replicative potential in "giant" mice transfected with the bovine growth hormone gene correlates to shortened life span[J]. J Cell Physiol,1993.156(1):96-103.
    [115]Conti F G, Powell R, Pozzi L, et al. A novel line of transgenic mice (RSV/LTR-bGH) expressing growth hormone in cardiac and striated muscle[J]. Growth Regul,1995.5(2):101-8.
    [116]Bollano E, Omerovic E, Bohlooly-y M, et al. Impairment of cardiac function and bioenergetics in adult transgenic mice overexpressing the bovine growth hormone gene[J]. Endocrinology,2000. 141(6):2229-35.
    [117]Miller D B, Bartke A, O'Callaghan J P. Increased glial fibrillary acidic protein (GFAP) levels in the brains of transgenic mice expressing the bovine growth hormone (bGH) gene[J]. Exp Gerontol, 1995.30(3-4):383-400.
    [118]Bogazzi F, Raggi F, Ultimieri F, et al. Cardiac expression of adenine nucleotide translocase-1 in transgenic mice overexpressing bovine GH[J]. J Endocrinol,2007.194(3):521-7.
    [119]Soderpalm B, Ericson M, Bohlooly M, et al. Bovine growth hormone transgenic mice display alterations in locomotor activity and brain monoamine neurochemistry[J]. Endocrinology,1999. 140(12):5619-25.
    [120]von Waldthausen D C, Schneider M R, Renner-Muller Ⅰ, et al. Systemic overexpression of growth hormone (GH) in transgenic FVB/N inbred mice:an optimized model for holistic studies of molecular mechanisms underlying GH-induced kidney pathology[J]. Transgenic Res,2008.17(4): 479-88.
    [121]Reddy V B, Vitale J A, Wei C, et al. Expression of human growth hormone in the milk of transgenic mice[J]. Animal Biotechnology,1991.2(1):15-29.
    [122]Bartke A, Naar E M, Johnson L, et al. Effects of expression of human or bovine growth hormone genes on sperm production and male reproductive performance in four lines of transgenic mice[J]. J Reprod Fertil,1992.95(1):109-18.
    [123]Prins G S, Cecim M, Birch L, et al. Growth response and androgen receptor expression in seminal vesicles from aging transgenic mice expressing human or bovine growth hormone genes[J]. Endocrinology,1992.131(4):2016-23.
    [124]Danilovich N A, Bartke A, Winters T A. Ovarian follicle apoptosis in bovine growth hormone transgenic mice[J]. Biol Reprod,2000.62(1):103-7.
    [125]De Kock S S, Rodgers J P, Swanepoel B C, et al. Administration of bovine, porcine and equine growth hormone to the horse:effect on insulin-like growth factor-I and selected IGF binding proteins[J]. J Endocrinol,2001.171(1):163-71.
    [126]Cecim M, Kerr J, Bartke A. Effects of bovine growth hormone (bGH) transgene expression or bGH treatment on reproductive functions in female mice[J]. Biol Reprod,1995.52(5):1144-8.
    [127]Valera A, Rodriguez-Gil J E, Yun J S, et al. Glucose metabolism in transgenic mice containing a chimeric P-enolpyruvate carboxykinase/bovine growth hormone gene[J]. Faseb J,1993.7(9): 791-800.
    [128]Liang Y, Jetton T L, Zimmerman E C, et al. Effects of glucose on insulin secretion, glucokinase activity, and transgene expression in transgenic mouse islets containing an upstream glucokinase promoter-human growth hormone fusion gene[J]. Diabetes,1994.43(9):1138-1145.
    [129]Olsson B, Bohlooly Y M, Fitzgerald S M, et al. Bovine growth hormone transgenic mice are resistant to diet-induced obesity but develop hyperphagia, dyslipidemia, and diabetes on a high-fat diet[J]. Endocrinology,2005.146(2):920-30.
    [130]Raccurt M, Lobie P E, Moudilou E, et al. High stromal and epithelial human gh gene expression is associated with proliferative disorders of the mammary gland[J]. J Endocrinol,2002.175(2): 307-18.
    [131]Radice A D, Bugaj B, Fitch D H, et al. Widespread occurrence of the Tcl transposon family: Tcl-like transposons from teleost fish[J]. Mol Gen Genet,1994.244(6):606-12.
    [132]Oosumi T, Belknap W R, Garlick B. Mariner transposons in humans[J]. Nature,1995.378(6558): 672.
    [133]Ivics Z, Izsvak Z, Minter A, et al. Identification of functional domains and evolution of Tcl-like transposable elements[J]. Proc Natl Acad Sci U S A,1996.93(10):5008-13.
    [134]Koga A, Suzuki M, Inagaki H, et al. Transposable element in fish[J]. Nature,1996.383(6595):30.
    [135]Lam W L, Seo P, Robison K, et al. Discovery of amphibian Tcl-like transposon families[J]. J Mol Biol,1996.257(2):359-66.
    [136]Emelyanov A, Gao Y, Naqvi N I, et al. Trans-kingdom transposition of the maize dissociation element[J]. Genetics,2006.174(3):1095-104.
    [137]Yang G, Weil C F, Wessler S R. A rice Tcl/mariner-like element transposes in yeast[J]. Plant Cell, 2006.18(10):2469-78.
    [138]Shinohara E T, Kaminski J M, Segal D J, et al. Active integration:new strategies for transgenesis[J]. Transgenic Res,2007.
    [139]Plasterk R H. The Tcl/mariner transposon family[J]. Curr Top Microbiol Immunol,1996.204: 125-43.
    [140]Lohe A R, Moriyama E N, Lidholm D A, et al. Horizontal transmission, vertical inactivation, and stochastic loss of mariner-like transposable elements[J]. Mol Biol Evol,1995.12(1):62-72.
    [141]Lampe D J, Churchill M E, Robertson H M. A purified mariner transposase is sufficient to mediate transposition in vitro[J]. Embo J,1996.15(19):5470-9.
    [142]Vos J C, De Baere Ⅰ, Plasterk R H. Transposase is the only nematode protein required for in vitro transposition of Tcl [J]. Genes Dev,1996.10(6):755-61.
    [143]Loukeris T G, Livadaras Ⅰ, Arca B, et al. Gene transfer into the medfly, Ceratitis capitata, with a Drosophila hydei transposable element[J]. Science,1995.270(5244):2002-5.
    [144]Gueiros-Filho F J,Beverley S M. Trans-kingdom transposition of the Drosophila element mariner within the protozoan Leishmania[J]. Science,1997.276(5319):1716-9.
    [145]Cary L C, Goebel M, Corsaro B G, et al. Transposon mutagenesis of baculoviruses:analysis of Trichoplusia ni transposon IFP2 insertions within the FP-locus of nuclear polyhedrosis viruses[J]. Virology,1989.172(1):156-69.
    [146]Fraser M J, Cary L, Boonvisudhi K, et al. Assay for movement of Lepidopteran transposon IFP2 in insect cells using a baculovirus genome as a target DNA[J]. Virology,1995.211 (2):397-407.
    [147]Fraser M J, Ciszczon T, Elick T, et al. Precise excision of TTAA-specific lepidopteran transposons piggyBac (IFP2) and tagalong (TFP3) from the baculovirus genome in cell lines from two species of Lepidoptera[J]. Insect Mol Biol,1996.5(2):141-51.
    [148]Handler A M. Use of the piggyBac transposon for germ-line transformation of insects[J]. Insect Biochem Mol Biol,2002.32(10):1211-20.
    [149]Perera O P, Harrell I R, Handler A M. Germ-line transformation of the South American malaria vector, Anopheles albimanus, with a piggyBac/EGFP transposon vector is routine and highly efficient[J]. Insect Mol Biol,2002.11(4):291-7.
    [150]Sumitani M, Yamamoto D S, Oishi K, et al. Germline transformation of the sawfly, Athalia rosae (Hymenoptera:Symphyta), mediated by a piggyBac-derived vector[J]. Insect Biochem Mol Biol, 2003.33(4):449-58.
    [151]Sarkar A, Sim C, Hong Y S, et al. Molecular evolutionary analysis of the widespread piggyBac transposon family and related "domesticated" sequences[J]. Mol Genet Genomics,2003.270(2): 173-80.
    [152]Ding S, Wu X, Li G, et al. Efficient transposition of the piggyBac (PB) transposon in mammalian cells and mice[J]. Cell,2005.122(3):473-83.
    [153]Wu S C, Meir Y J, Coates C J, et al. piggyBac is a flexible and highly active transposon as compared to sleeping beauty, Tol2, and Mosl in mammalian cells[J]. Proc Natl Acad Sci U S A, 2006.103(41):15008-13.
    [154]Wilson M H, Coates C J, George A L, Jr. PiggyBac Transposon-mediated Gene Transfer in Human Cells[J]. Mol Ther,2007.15(1):139-45.
    [155]Kahlig K M, Saridey S K, Kaja A, et al. Multiplexed transposon-mediated stable gene transfer in human cells[J]. Proc Natl Acad Sci U S A,2010.107(4):1343-8.
    [156]Ivics Z, Li M A, Mates L, et al. Transposon-mediated genome manipulation in vertebrates[J]. Nat Methods,2009.6(6):415-22.
    [157]Wang N, Jiang C Y, Jiang M X, et al. Using chimeric piggyBac transposase to achieve directed interplasmid transposition in silkworm Bombyx mori and fruit fly Drosophila cells[J]. J Zhejiang Univ Sci B,2010.11(9):728-34.
    [158]Nakanishi H, Higuchi Y, Kawakami S, et al. Comparison of piggyBac transposition efficiency between linear and circular donor vectors in mammalian cells[J]. J Biotechnol,2011.154(4): 205-8.
    [159]Kim S, Saadeldin I M, Choi W J, et al. Production of transgenic bovine cloned embryos using piggybac transposition[J]. J Vet Med Sci,2011.73(11):1453-7.
    [160]Izsvak Z, Ivics Z, Hackett P B. Characterization of a Tcl-like transposable element in zebrafish (Danio rerio)[J]. Mol Gen Genet,1995.247(3):312-22.
    [161]Ivics Z, Hackett P B, Plasterk R H, et al. Molecular reconstruction of Sleeping Beauty, a Tcl-like transposon from fish, and its transposition in human cells[J]. Cell,1997.91(4):501-10.
    [162]Takeuchi H, Georgiev O, Fetchko M, et al. In vivo construction of transgenes in Drosophila[J]. Genetics,2006.
    [163]Park C W, Kren B T, Largaespada D A, et al. DNA methylation of Sleeping Beauty with transposition into the mouse genome[J]. Genes Cells,2005.10(8):763-76.
    [164]Dupuy A J, Fritz S, Largaespada D A. Transposition and gene disruption in the male germline of the mouse[J]. Genesis,2001.30(2):82-8.
    [165]Fischer S E, Wienholds E, Plasterk R H. Regulated transposition of a fish transposon in the mouse germ line[J]. Proc Natl Acad Sci U S A,2001.98(12):6759-64.
    [166]Horie K, Kuroiwa A, Ikawa M, et al. Efficient chromosomal transposition of a Tcl/mariner-like transposon Sleeping Beauty in mice[J]. Proc Natl Acad Sci U S A,2001.98(16):9191-6.
    [167]Zagoraiou L, Drabek D, Alexaki S, et al. In vivo transposition of Minos, a Drosophila mobile element, in mammalian tissues[J]. Proc Natl Acad Sci U S A,2001.98(20):11474-8.
    [168]Park C W, Park J, Kren B T, et al. Sleeping Beauty transposition in the mouse genome is associated with changes in DNA methylation at the site of insertion[J]. Genomics,2006.88(2): 204-13.
    [169]Leaver M J. A family of Tcl-like transposons from the genomes of fishes and frogs:evidence for horizontal transmission[J]. Gene,2001.271(2):203-14.
    [170]Clark K J, Carlson D F, Foster L K,et al. Enzymatic engineering of the porcine genome with transposons and recombinases[J]. BMC Biotechnol,2007.7:42.
    [171]Clark K. J, Carlson D F, Leaver M J, et al. Passport, a native Tcl transposon from flatfish, is functionally active in vertebrate cells[J]. Nucleic Acids Res,2009.37(4):1239-47.
    [172]Sambrook J, Russell D,黄培堂等译,分子克隆实验指南(第三版).3rd ed.2002.8,北京:科学出版社.
    [173]王兴春,杨致荣,王敏,等.高通量测序技术及其应用[J].中国生物工程杂志,2012(01):109-114.
    [174]Dos Santos C O, Rebbeck C, Rozhkova E, et al. Molecular hierarchy of mammary differentiation yields refined markers of mammary stem cells[J]. Proc Natl Acad Sci U S A,2013.
    [175]Munch E M, Harris R A, Mohammad M, et al. Transcriptome profiling of microRNA by Next-Gen deep sequencing reveals known and novel miRNA species in the lipid fraction of human breast milk[J]. PLoS One,2013.8(2):e50564.
    [176]Sigl T, Meyer H H, Wiedemann S. Gene expression analysis of protein synthesis pathways in bovine mammary epithelial cells purified from milk during lactation and short-term restricted feeding[J]. J Anim Physiol Anim Nutr (Berl),2013.
    [177]Singh M, Thomson P C, Sheehy P A, et al. Comparative transcriptome analyses reveal conserved and distinct mechanisms in ovine and bovine lactation[J]. Funct Integr Genomics,2013.13(1): 115-31.
    [178]侯晓明,奶牛乳腺发育及泌乳重要功能基因的筛选.2009,东北农业大学.
    [179]Medrano J, Rincon G, Islas-Trejo A. Comparative analysis of bovine milk and mammary gland transcriptome using RNA-Seq. in 9th World Congress on Genetics applied to Livestock Production; Leipzig, Germany.2010.
    [180]侯晓明,李庆章,黄田英.泌乳期奶牛乳腺基因表达谱研究[J].中国科学:生命科学,2010(03):231-238.
    [181]张丽娟,罗军,武会娟,等.山羊与牛乳腺差异表达基因的筛选及半定量RT-PCR分析[J].动物学报,2007(04):710-716.
    [182]Groenen M A, Dijkhof R J, van der Poel J J. Characterization of a GlyCAMl-like gene (glycosylation-dependent cell adhesion molecule 1) which is highly and specifically expressed in the lactating bovine mammary gland[J]. Gene,1995.158(2):189-95.
    [183]Ogg S L, Weldon A K, Dobbie L, et al. Expression of butyrophilin (Btnlal) in lactating mammary gland is essential for the regulated secretion of milk-lipid droplets[J]. Proc Natl Acad Sci U S A, 2004.101(27):10084-9.
    [184]Kaushik R, Singh K P, Kumari A, et al. Isolation, characterization, and EGFP expression in the buffalo (Bubalus bubalis) mammary gland epithelial cell line[J]. In Vitro Cell Dev Biol Anim, 2013.49(1):1-7.
    [185]Anand V, Dogra N, Singh S, et al. Establishment and characterization of a buffalo (Bubalus bubalis) mammary epithelial cell line[J]. PLoS One,2012.7(7):e40469.
    [186]孟凡丽,慢病毒载体介导与受精卵胞质内DNA注射在转基因水牛制备中的应用研究.2011,广西大学.
    [187]王丹,应用ICSI-Tr和受精卵胞质注射技术生产转基因水牛胚胎的初步研究.2011,广西大学.
    [188]陆凤花,水牛体细胞核移植的研究.2004,广西大学.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700