水牛早期胚胎发育蛋白质糖基化机理及转基因克隆的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究主要探讨O-GlcNAc糖基化在水牛胚胎早期发育过程中的作用机理和水牛转基因克隆的相关影响因素,以便建立一套较为完善的水牛转基因克隆技术体系。具体的研究结果如下。
     1、建立了水牛早期胚胎O-GlcNAc糖基化蛋白和(beta-O-linked N-glycosylation, O-GlcNAcylation)相关基因的表达检测方法。免疫荧光染色抗体浓度优化的研究结果发现,当一抗浓度为1:200,二抗浓度为1:1000时,可清晰地观察到经抗体免疫后O-GlcNAc蛋白的分布,可用于O-GlcNAc蛋白的表达情况检测分析。为建立O-GlcNAc糖基化相关基因(GFPT、OGT和OGA)的mRNA表达荧光定量PCR检测分析方法,根据NCBI中GenBank所提供的人或牛GFPT、OGT、OGA基因的CDS序列设计水牛相关基因的PCR引物,克隆得到水牛的GFPT、OGT和OGA基因CDS序列,然后根据该序列设计合成实时荧光定量PCR引物。结果显示,PCR的CDS产物无杂带,条带均一,为特异性的目的片段扩增产物;QRT-PCR的熔解温度均一,熔解曲线表现为尖锐的单一峰,证实引物的有效性,说明该QRT-PCR体系可用于检测水牛早期胚胎GFPT、OGT和OGA基因的表达。
     2、以水牛孤雌激活(PA)、体外受精(IVF)和体细胞核移植(SCNT)早期胚胎为研究对象,研究分析了水牛早期胚胎发育过程中O-GlcNAc蛋白及相关基因(GFPT、OGT和OGA)的表达模式。免疫荧光染色结果显示,水牛PA、IVF和SCNT胚胎O-GlcNAc糖基化蛋白水平呈现相似地变化趋势,即从2-细胞期开始慢慢增加,到囊胚期达到最高;其中,IVF胚胎各阶段O-GlcNAc蛋白水平均显著高于SCNT和PA组(P<0.05),而SCNT胚胎各发育阶段O-GlcNAc蛋白水平显著高于PA组(P<0.05)。QRT-PCR的检测结果发现,水牛PA.IVF和SCNT胚胎的GFPT基因mRNA表达水平呈现先升后降的变化趋势,即从2-细胞到4-Cell期表达量升至最高,然后逐渐下降,到囊胚期达到最低;其中,GFPT的表达量在IVF胚胎各时期中表达量最高,均显著高于PA禾SCNT胚胎组(P<0.05),而SCNT胚胎组在8-细胞期后GFPT的表达量显著高于PA组(P<0.05)。OGT基因的mRNA表达量随着胚胎的发育逐渐增加,至囊胚期达到最高;其中,IVF胚胎各阶段OGT的mRNA表达量均显著高于PA胚胎(P<0.05),而在8-细胞期和桑椹胚期显著高于SCNT胚胎(P<0.05)。OGA基因的mRNA表达量从2-细胞期到4-细胞期呈下降趋势,而后又逐渐升高,到8-细胞期表达量达到最高,而后开始下降,到囊胚期降到最低,且IVF各个发育时期的胚胎OGA的mRNA表达量显著高于PA胚胎(P<0.05),但SCNT的8-细胞期和囊胚期胚胎OGA的mRNA表达量显著低于IVF胚胎(P<0.05)。
     3、研究探讨了糖基化底物—氨基葡糖(glucosamine, GlcN)对水牛早期胚胎发育、O-GlcNAc蛋白及相关基因表达水平的影响。当在PA、IVF和SCNT胚胎培养的0-72h添加不同浓度的GlcN(0、1、2和4mmol/L)时,2mmol/L组的囊胚率均显著高于对照组(23.75%vs13.38%;26.16%vs14.29%;25.52%vs12.70%,P<0.05),而各组之间分裂率差异不显著(P>0.05)。IF染色观察的结果显示,在各类水牛早期胚胎培养的0~72h添加2mmol/L GlcN, PA胚胎发育各阶段O-GlcNAc蛋白水平显著高于对照组(P<0.05);IVF胚胎除囊胚期外,其它各发育阶段O-GlcNAc蛋白水平均显著高于对照组(P<0.05); SCNT胚胎除8-细胞和桑椹胚期外,其它各发育阶段均显著高于对照组(P<0.05)。QRT-PCR检测结果显示,在水牛胚胎培养的0-72h添加2mmol/L GlcN, PA胚胎各发育时期的GFPT基因mRNA表达量均显著高于对照组(P<0.05);而IVF胚胎在4-细胞期和SCNT胚胎在4-细胞和8-细胞期的GFPT表达量均显著高于对照组(P<0.05),其它各发育阶段与对照组差异均不显著(P>0.05)。在胚胎OGT的表达方面,PA胚胎2mmol/L GlcN添加组在4-细胞期、IVF胚胎在囊胚期和SCNT胚胎2-细胞期和囊胚期的OGT表达量与对照组差异不显著(P>0.05),其余各阶段的OGT表达量均显著高于对照组(P<0.05)。在胚胎OGA的表达方面,IVF胚胎2mmol/L GlcN添加组在4-细胞期、8-细胞期、桑椹胚和囊胚期,SCNT胚胎在4-细胞期OGA表达量与对照组差异不显著(P>0.05),其它各阶段均显著低于对照组(P<0.05)。研究发现,在水牛胚胎发育0-72h间添加适宜浓度的O-GlcNAc蛋白糖基化底物(2mmol/L GlcN)有利于提高早期胚胎的发育能力;而且也可以促进早期胚胎O-GlcNAc蛋白的表达,上调OGT和GFPT基因,下调OGA基因的表达水平,从而促进胚胎的发育。
     4、主要探讨了影响供体细胞转染效率及转基因克隆胚胎发育的相关因素。电穿孔法、脂质体法、磷酸钙法及慢病毒法转染水牛胎儿成纤维细胞(BFF)筛选获得的转基因细胞作为核移植供体韵研究结果显示,电穿孔法构建的重构胚表达标记基因EGFP的阳性分裂率(48.00%)和阳性囊胚率(18.58%)极显著高于磷酸钙法(0%和0%)、慢病毒介导法(0%和0%)和脂质体包埋法(5.60%和3.72%)。采用电穿孔法二次转染BFF,其重构胚分裂率和囊胚率均略高于一次转染,但是差异不显著(71.23%vs68.37%;24.66%vs18.37%,P>0.05)。将内部核糖体接入位点(IRES)插入到表达载体与未插入IRES基因的表达载体比较发现,表达载体pEGFP-IRES-NEO的转基因克隆重构胚分裂率、阳性分裂率、阳性囊胚率均显著高于pEGFP-N1表达载体(71.43%vs57.77%;39.14%vs8.35%;17.64%vs5.20%,P<0.01)。将pEGFP-IRES-NEO表达载体进行单切或双切后分别转染供体细胞,单切载体重构胚的阳性分裂率和阳性囊胚率高于双酶切载体,但两组间差异不显著(37.39%vs32.41%;9.66%vs8.30%,P>0.05)。同时,在比较不同代数(6-10代)的供体细胞构建转基因克隆重构胚时发现,重构胚早期胚胎分裂和囊胚期EGFP表达率差异不显著(P>0.05)。不同性别的供体细胞转染EGFP基因用于构建核移植重构胚的结果显示,雌性细胞组阳性分裂率和阳性囊胚率显著高于雄性供体细胞组(67.63%vs42.76%;22.54%vs10.52%,P<0.05),分裂率和囊胚率也高于雄性供体细胞组,但差异不显著(71.10%vs68.42%;26.59%vs21.71%,P>0.05)。将得到的含有EGFP基因的6-8天囊胚进行胚胎移植,得到了表达EGFP的转基因克隆水牛5头,双胞胎中的一头不幸死亡。经过鉴定确认转基因克隆水牛表达EGFP基因。此外,用转干扰素(IFN)、生长素(GH)、促乳素(PRL)基因的供体细胞进行核移植,三种基因的转基因克隆胚胎分裂率、阳性分裂率、囊胚率和阳性囊胚率差异均不显著(66.44%vs62.50%、59.23%;54.11%vs57.35%、51.63%;17.81%vs19.12%、20.65%;16.44%vs13.60%、14.67%,P>0.05),且经胚胎移植给受体水牛后获得妊娠。上述结果表明:(1)电穿孔法较磷酸钙法、脂质体法和慢病毒转染法更适合制备转基因克隆水牛,使用该法能获得转基因克隆水牛;(2)水牛转基因克隆效率受供体细胞性别的影响,雌性胎儿成纤维细胞优于雄性,但不受供体细胞转染次数、代数以及载体的酶切方法的影响;(3)携带GH、IFN和PRL的转基因载体能够用于水牛转基因克隆胚胎生产,且胚胎移植后均可以在体内妊娠并进一步发育。
     5、探讨了Trichostatin A (TSA)处理供体细胞和转基因克隆重构胚对水牛转基因细胞表达EGFP及克隆重构胚发育的影响。流式细胞仪检测分离、纯化后的供体细胞结果显示,随着转EGFP供体细胞代数的增加(7-11代),表达EGFP细胞的数目有所降低,差异不显著(P>0.05)。将转EGFP基因的细胞分别用浓度为5nmol/L、10nmol/L、25nmol/L、50nmol/L TSA处理24h后显著提高细胞G0/G1期的比例,且从10nmol/L起表达EGFP细胞的数目开始显著地增加(P<0.05)。 TSA浓度为5nmol/L、10nmol/L时,乙酰化水平显著高于对照组(P<0.05),且供体细胞DNA甲基化水平显著低于对照组(P<0.05)。TSA处理24h供体细胞后进行核移植的结果发现,TSA浓度为10nmol/L时,重构胚的分裂率(85.71%vs60.40%)、阳性分裂率(84.82%vs55.45%)、囊胚率(49.11%vs26.73%)和阳性囊胚率(49.11%vs21.78%)显著高于对照组(P<0.05)。将转基因克隆重构胚后用5nmol/L、10nmol/Lv50nmol/L或100nmol/L的TSA处理6h后发现,50nmol/L TSA组的重构胚的分裂率(83.33%vs69.70%)、阳性分裂率(82.41%vs60.61%)、囊胚率(45.37%vs29.29%)和阳性囊胚率(43.52%vs21.21%)均显著高于对照组(P<0.05)。用50nmol/L TSA对重构胚分别处理3h、6h、9h或12h后发现,处理时间为9h的重构胚分裂率(86.17%vs74.31%)、阳性分裂率(82.20%vs70.64%)、囊胚率(49.15%vs33.94%)和阳性囊胚率(47.46%vs32.11%)均显著高于对照组(P<0.05),其余各组与对照组相比差异不显著。此外,水牛转基因克隆胚胎的乙酰化水平及相关基因的表达水平检测结果显示,50nmol/L TSA处理重构胚9h,能显著提高胚胎的乙酰化水平(P<0.05),显著提高HAT1基因的表达(P<0.05),显著降低HDAC1基因的表达(P<0.05)。以上结果表明:(1)转EGFP的水牛胎儿成纤维细胞随着细胞代数的增加(7-11代),表达EGFP细胞的数目呈逐渐降低的趋势;(2)采用10nmol/L的TSA处理供体细胞24h不但可以显著提高转EGFP基因水牛胎儿成纤维细胞处于G0/G1期的比例和表达EGFP细胞的数量,而且能提高细胞组蛋白H3K14组蛋白乙酰化水平,且降低细胞DNA甲基化水平,提高其核移植后的转基因克隆胚胎的体外发育率;(3)适当浓度(50nmol/L)的TSA处理水牛转基因克隆重构胚一定时间(9h),能提高水牛转基因克隆胚胎的乙酰化水平,且胚胎的HAT1表达水平显著上升,HDAC1的表达水平显著下降,从而促进水牛转基因克隆胚胎的发育能力。
The objective of this research is to explore the glycosylation mechanism of buffalo preimplantation embryos and factors affecting the efficiency of buffalo transgenic cloning, so as to establish an effective technique system for producing transgenic cloning buffalos. Works are summarized in following.
     1. Methods to detect the expression of O-GlcNAc (beta-O-linked N-glycosylation, O-GlcNAcylation) gene in buffalo embryos was set up. In immunofluorescence (IF) analysis, the appropriate concentration of the first antibody was proved to be1:200and concentration of the second antibody was proved to be1:1000, in which the protein of O-GlcNAc can be observed clearly after IF staining. In order to set up a method to detect the mRNA expression of O-GlcNAc using real-time fluorescence quantitative PCR, the CDS sequences of buffalo glutamine:fructose6-phosphate amidotransferase (GFPT), O-GlcNAc transferase (OGT) and O-GlcNAc-selective N-acetyl-β-D-glucosaminidase (OGA) genes were cloned using the primers designed according to the CDS sequence of human and bovine GFPT, OGT and OGA genes in GenBank. Then, the primers were designed and synthesized for real-time fluorescence quantitative PCR according to the cDNA sequence of three buffalo genes. The band of CDS was uniform and defined as the specific PCR product of target gene segment. The liquating temperature of QRT-PCR was uniform and liquating curve displayed a single peak, indicating that the primer is efficient and can be employed for detecting the expression of GFPT, OGT and OGA genes in the early buffalo embryos.
     2. The expression patterns of O-GlcNAc and expression of GFPT, OGT and OGA in the development of buffalo embryos derived from parthenogenetic activation (PA), in vitro fertilization (IVF) and somatic cell nuclear transfer (SCNT) was investigated using IF and QRT-PCR. The O-GlcNAc protein displayed a similar change pattern in the development of PA, IVF and SCNT embryos from the2-cell stage to the blastocyst stage, in which the O-GlcNAc begun to increase from the2-cell stage and arrived at a peak at the blastocyst stage. The level of O-GlcNAc in IVF embryos was significantly higher than PA and SCNT embryos (P<0.05), and level of O-GlcNAc in SCNT embryos was also significantly higher than PA embryos (P<0.05). QRT-PCR revealed that the level of GFPT mRNA in the three types of embryos increased from the2-cell stage to the4-cell stage, and then decreased till to the blastocyst stage. Among the three types of embryos, the GFPT expression level in IVF embryos was significantly higher than PA embryos and SCNT embryos (P<0.05), and SCNT embryos from the8-cell stage to the blastocyst stage was significantly higher than PA embryos (P<0.05). The expression of OGT increased gradually from the2-cell to the blastocyst stage, and arrived at the highest level in the blastocyst stage in the three type embryos. The OGT expression level in IVF embryos was significantly higher than PA embryos (P<0.05) and SCNT embryos from the8-cell stage to the morula stage (P<0.05). The OGA mRNA levels decreased from the2-cell to the4-cell stage, increased from the4-cell stage to the8-celln stage, and then decreased again. The OGA expression level in IVF embryos was significantly higher than PA embryos (P<0.05) and SCNT embryos at the8-cell stage and blastocyst stage (P<0.05).
     3. Effects of glucosamine (GlcN) on the in vitro development of buffalo PA, IVF and NT embryos, and expression of O-GlcNAc and its related genes were investigated. When buffalo embryos derived from PA, IVF and SCNT were cultured in the medium supplemented with different concentrations of GlcN (0mmol/L,1mmol/L,2mmol/L, and4mmol/L) during0to72h, addition of2mmol/L GlcN resulted in significantly higher blastocyst yield in comparison with other groups (PA:23.75%vs13.38%; IVF:26.16%vs14.29%; SCNT:25.52%vs12.70%, P<0.05). Therer was not significant difference in cleavage rate among the groups (P>0.05). Meanwhile, the O-GlcNAc level of embryos was higher than control group (P<0.05) with the exceptions of IVF blastocysts, eight-cell and morula SCNT embryos. In addition, the expression level of GFPT was also significantly higher than control (P<0.05) with the exceptions of IVF embryos at8-cell, morula and blastocyst stage, SCNT embryos at morula and blastocyst stage. As to the OGT expression, addition of2mmol/L GlcN to culture medium from0h to72h resulted in higher expression of OGT in the three type embryos with the exceptions of PA embryos at4-cell stage, IVF embryos at blastocyst stage and SCNT embryos at2-cell and blastocyst stage. The OGA expression of embryos cultured in the medium supplemented with2mmol/L GlcN during0-72h was lower than control groups (P<0.05) with the exceptions of IVF embryos. These results indicate that supplementation of2mmol/L GlcN into medium during culture of0-72h can improve the development of buffalo embryos, increases the expression of O-GlcNAc, OGT and GFPT, decreased the expression of OGA.
     4. Factors affecting the transfection effciciency of somatic cells and in vitro development of buffalo transgenic cloning embryos were investigated. Plasmide containing marker gene EGFP was transfected into the buffalo fetal fibroblast cells (BFF) by CaHPO4, liposome, electro-transfection and lentivirus respectively, and the transgenic-cells were used as donor cells for nuclear transfer. The percentage of EGFP-positive cleaved oocytes (48.00%) and EGFP-positive blastocysts (18.58%) was higher in SCNT embryos derived from donor cells by electro-transfection than lentivirus infection (0%&0%), CaHPO4transfection (0%&0%) and liposome transfection (5.60%&3.72%)(P<0.01). There was not different in cleavage rate and blastocyst yield between BFF transfected one and two times with electro-transfection (71.23%vs68.37%;24.66%vs18.37%, P>0.05). The cleavage rate, EGFP-positive cleavage rate and EGFP-positive blastocyst rate of SCNT embryos reconstructed with BFF containing pEGFP-IRES-NEO were significantly higher than pEGFP-N1group (71.43%vs57.77%;39.14%vs8.35%;17.64%vs5.20%, P<0.01). The cleavage and blastocyst rate of transgenic cloning embryos from pEGFP-IRES-NEO vector digested with double enzymes was not different from the vector digested with BamH I single enzyme (37.39%vs32.41%;9.66%vs8.30%, P>0.05). There was not significantly different in the embryonic development among embryos reconstructed with fetal fibroblasts derived from different generation (6-10generation)(P>0.05). The EGFP-positive cleavage rate and blastocyst rate of embryos derived from female BFF was significantly higher than male BFF (67.63%vs42.76%;22.54%vs10.52%; P<0.05). Five transgenic cloning swamp buffalos that express GFP gene were obtained following embryo transfer and one of them died at delivery. When buffalo fibroblast cells that had been transfected with IFN, GH and PRL were used as donor cells for production of transgenic cloning embryos, there was not significantly different in the cleavage rate, EGFP-positive cleaved eggs, blastocyst yield and EGFP-positive blastocysts among the three transgenic donor cells (66.44%vs62.50%,59.23%;54.11%vs57.35%,51.63%;17.81%vs19.12%,20.65%;16.44%vs13.60%,14.67%, P>0.05), and pregnancies were established following transfer of these embryos into recipients. In conclusions of these results,(1) electro-transfection is more suitable in preparing transgenic cloning buffalos than lentivirus, liposome and CaHPO4, and transgenic cloning buffalos can were obtained using this method;(2) buffalo transgenic cloning efficiency is related to the donor cell sex rather than transfection times, enzyme digestion method of vectors and passages of donor cells, female donor cells are superior to male donor cells;(3) buffalo transgenic cloning embryos can be produced using the plasmide containing IFN, GH or PRL genes, and can develop further after transfer into recipients.
     5Effects of TSA on the development of buffalo transgenic cloning embryos and EGFP expression were investigated. Results of flow cytometry analysis indicated that percentage of cells expressed EGFP trended to decrease with the increase of cell passages (7-11passages). Treatment of cells with5nmol/L,10nmol/L,25nmol/L or50nmol/L TSA resulted in higher proportion of G0/G1cells and EGFP-positive cells (P<0.05). In addition, treatment of cells with5nmol/L or10nmol/L decreased their DNA methylation and increased their histone acetylation (P<0.05). When donor cells were treated with10nmol/L TSA for24h before nuclear transfer, the cleavage rate (85.71%vs60.40%), EGFP-positive cleavage eggs (84.82%vs55.45%), blastocyst yield (49.11%vs26.73%) and EGFP-positive blastocysts (49.11%vs21.78%) were increased in comparison with the control group (P<0.05). When the transgenic cloning embryos were treated with5nmol/L,25nmol/L,50nmol/L and100nmol/L TSA for6h respectively, treatment with50nmol/L TSA resulted in higher cleavage rate (83.33%vs69.70%), EGFP-positive cleaved eggs (82.41%vs60.61%), blastocyst yield (45.37%vs29.29%) and EGFP-positive blastocysts (43.52%vs21.21%) in comparison with control group (P<0.05). When reconstructed embryos were treated with50nmol/L TSA for3h,6h,9h and12h, treatment for9h resulted in higher cleavage rate (86.17%vs74.31%), EGFP-positive cleaved eggs (82.20%vs70.64%), blastocyst yield (49.15%vs33.94%) and EGFP-positive blastocysts (47.46%vs32.11%) in comparison with control group (P<0.05). In addition, treatment of transgenic cloning embryos with50nmol/L TSA for9h increased their acetylation level of histone and HAT1expression, decreased the expression of HDAC1(P<0.05). In conclusions,(1) proportion of BFF expressed EGFP trends to decrease as their passage number increases;(2) treatment of donor cells with10nmol/L TSA can increase their proportion in G0/G1phases, expressed EGFP and H3K14acetylation of histone, reduce DNA methylation level, and then improve the development of transgenic cloning embryos reconstructed with these cells;(3) treatment of transgenic cloning embryos with50nmol/L TSA for9can increase their histone acetylation level, expression level of HAT1, reduce the expression of FIDAC1,and then improve their subsequent development.
引文
[1]Torres C R,Hart G W, Topography and polypeptide distribution of terminal N-acetylglucosamine residues on the surfaces of intact lymphocytes. Evidence for O-linked GlcNAc[J]. J Biol Chem, 1984.259(5):3308-17.
    [2]Wang Z, Udeshi N D, O'Malley M, et al., Enrichment and site mapping of O-linked N-acetylglucosamine by a combination of chemical/enzymatic tagging, photochemical cleavage, and electron transfer dissociation mass spectrometry[J]. Mol Cell Proteomics,2010.9(1):153-60.
    [3]Hart G W, Housley M P, and Slawson C, Cycling of O-linked beta-N-acetylglucosamine on nucleocytoplasmic proteins[J]. Nature,2007.446(7139):1017-22.
    [4]Wang Z, Gucek M, and Hart G W, Cross-talk between GlcNAcylation and phosphorylation: site-specific phosphorylation dynamics in response to globally elevated O-GlcNAc[J]. Proc Natl Acad Sci U S A,2008.105(37):13793-8.
    [5]Kearse K P,Hart G W, Lymphocyte activation induces rapid changes in nuclear and cytoplasmic glycoproteins[J]. Proc Natl Acad Sci U S A,1991.88(5):1701-5.
    [6]Kreppel L K, Blomberg M A, and Hart G W, Dynamic glycosylation of nuclear and cytosolic proteins. Cloning and characterization of a unique O-GlcNAc transferase with multiple tetratricopeptide repeats[J]. J Biol Chem,1997.272(14):9308-15.
    [7]Kreppel L K,Hart G W, Regulation of a cytosolic and nuclear O-GlcNAc transferase. Role of the tetratricopeptide repeats[J]. J Biol Chem,1999.274(45):32015-22.
    [8]Lubas W A, Frank D W, Krause M, et al., O-Linked GlcNAc transferase is a conserved nucleocytoplasmic protein containing tetratricopeptide repeats[J]. J Biol Chem,1997.272(14): 9316-24.
    [9]Lubas W A,Hanover J A, Functional expression of O-linked GlcNAc transferase. Domain structure and substrate specificity[J]. J Biol Chem,2000.275(15):10983-8.
    [10]Gao Y, Wells L, Comer F I, et al., Dynamic O-glycosylation of nuclear and cytosolic proteins: cloning and characterization of a neutral, cytosolic beta-N-acetylglucosaminidase from human brain[J]. J Biol Chem,2001.276(13):9838-45.
    [22]Khoury G A, Baliban R C, and Floudas C A, Proteome-wide post-translational modification statistics:frequency analysis and curation of the swiss-prot database[J]. Sci Rep,2011.1.
    [12]Dias W B,Hart G W, O-GlcNAc modification in diabetes and Alzheimer's disease[J]. Mol Biosyst, 2007.3(11):766-72.
    [13]Love D C,Hanover J A, The hexosamine signaling pathway:deciphering the "O-GlcNAc code"[J]. Sci STKE,2005.2005(312):re13.
    [14]Hanover J A, Krause M W, and Love D C, The hexosamine signaling pathway:O-GlcNAc cycling in feast or famine[J]. Biochim Biophys Acta,2010.1800(2):80-95.
    [15]Zhivkov V, Tosheva R, and Zhivkova Y, Concentration of uridine diphosphate sugars in various tissues of vertebrates[J]. Comp Biochem Physiol B,1975.51(4):421-4.
    [16]Veerababu G, Tang J, Hoffman R T, et al., Overexpression of glutamine:fructose-6-phosphate amidotransferase in the liver of transgenic mice results in enhanced glycogen storage, hyperlipidemia, obesity, and impaired glucose tolerance[J]. Diabetes,2000.49(12):2070-8.
    [17]Nelson B A, Robinson K A, and Buse M G, High glucose and glucosamine induce insulin resistance via different mechanisms in 3T3-L1 adipocytes[J]. Diabetes,2000.49(6):981-91.
    [18]Robinson L J, Razzack Z F, Lawrence J C, Jr., et al., Mitogen-activated protein kinase activation is not sufficient for stimulation of glucose transport or glycogen synthase in 3T3-L1 adipocytes[J]. J Biol Chem,1993.268(35):26422-7.
    [19]Wang J, Liu R, Hawkins M, et al., A nutrient-sensing pathway regulates leptin gene expression in muscle and fat[J]. Nature,1998.393(6686):684-8.
    [20]Rossetti L, Perspective:Hexosamines and nutrient sensing[J]. Endocrinology,2000.141(6): 1922-5.
    [21]Liu K., Paterson A J, Chin E, et al, Glucose stimulates protein modification by O-linked GlcNAc in pancreatic beta cells:linkage of O-linked GlcNAc to beta cell death[J]. Proc Natl Acad Sci U S A, 2000.97(6):2820-5.
    [22]Boehmelt G, Wakeham A, Elia A, et al., Decreased UDP-GlcNAc levels abrogate proliferation control in EMeg32-deficient cells[J]. EMBO J,2000.19(19):5092-104.
    [23]Boehmelt G, Fialka I, Brothers G, et al., Cloning and characterization of the murine glucosamine-6-phosphate acetyltransferase EMeg32. Differential expression and intracellular membrane association[J]. J Biol Chem,2000.275(17):12821-32.
    [24]Shafi R, Iyer S P, Ellies L G, et al., The O-GlcNAc transferase gene resides on the X chromosome and is essential for embryonic stem cell viability and mouse ontogeny[J]. Proc Natl Acad Sci U S A, 2000.97(11):5735-9.
    [25]Neufeld E J,Pastan 1, A mutant fibroblast cell line defective in glycoprotein synthesis due to a deficiency of glucosamine phosphate acetyltransferase[J]. Arch Biochem Biophys,1978.188(2): 323-7.
    [26]Pouyssegur J M,Pastan I, Mutants of Balb/c 3T3 fibroblasts defective in adhesiveness to substratum: evidence for alteration in cell surface proteins[J]. Proc Natl Acad Sci U S A,1976.73(2):544-8.
    [27]Pouyssegur J, Willingham M. and Pastan I, Role of cell surface carbohydrates and proteins in cell behavior:studies on the biochemical reversion of an N-acetylglucosamine-deficient fibroblast mutant[J]. Proc Natl Acad Sci U S A,1977.74(1):243-7.
    [28]Patti M E, Virkamaki A, Landaker E J, et al., Activation of the hexosamine pathway by glucosamine in vivo induces insulin resistance of early postreceptor insulin signaling events in skeletal muscle[J]. Diabetes,1999.48(8):1562-71.
    [29]Bruning J C, Winnay J, Cheatham B, et al., Differential signaling by insulin receptor substrate 1 (IRS-1)and IRS-2 in IRS-1-deficient cells[J]. Mol Cell Biol,1997.17(3):1513-21.
    [30]Kim Y B, Zhu J S, Zierath J R, et al., Glucosamine infusion in rats rapidly impairs insulin stimulation of phosphoinositide 3-kinase but does not alter activation of Akt/protein kinase B in skeletal muscle[J]. Diabetes,1999.48(2):310-20.
    [31]Cristofanelli B, Valentinis B, Soddu S, et al., Cooperative transformation of 32D cells by the combined expression of IRS-1 and V-Ha-Ras[J]. Oncogene,2000.19(29):3245-55.
    [32]Okuyama R,Marshall S, UDP-N-acetylglucosaminyl transferase (OGT) in brain tissue:temperature sensitivity and subcellular distribution of cytosolic and nuclear enzyme[J]. J Neurochem,2003. 86(5):1271-80.
    [33]Haltiwanger R S, Blomberg M A, and Hart G W, Glycosylation of nuclear and cytoplasmic proteins. Purification and characterization of a uridine diphospho-N-acetylglucosamine:polypeptide beta-N-acetylglucosaminyltransferase[J]. J Biol Chem,1992.267(13):9005-13.
    [34]Wells L, Gao Y, Mahoney J A, et al., Dynamic O-glycosylation of nuclear and cytosolic proteins: further characterization of the nucleocytoplasmic beta-N-acetylglucosaminidase, O-GlcNAcase[J]. J Biol Chem,2002.277(3):1755-61.
    [35]Hart G W, Greis K. D, Dong L Y, et al, O-linked N-acetylglucosamine:the "yin-yang" of Ser/Thr phosphorylation? Nuclear and cytoplasmic glycosylation[J]. Adv Exp Med Biol,1995.376: 115-23.
    [36]Screaton R A, Conkright M D, Katoh Y, et al., The CREB coactivator TORC2 functions as a calcium-and cAMP-sensitive coincidence detector[J]. Cell,2004.119(1):61-74.
    [37]Dentin R, Hedrick S, Xie J, et al., Hepatic glucose sensing via the CREB coactivator CRTC2[J]. Science,2008.319(5868):1402-5.
    [38]Koo S H, Flechner L, Qi L, et al., The CREB coactivator TORC2 is a key regulator of fasting glucose metabolism[J]. Nature,2005.437(7062):1109-11.
    [39]Yang X, Ongusaha P P, Miles P D, et al., Phosphoinositide signalling links O-GlcNAc transferase to insulin resistance[J]. Nature,2008.451(7181):964-9.
    [40]Vosseller K, Wells L, Lane M D, et al., Elevated nucleocytoplasmic glycosylation by O-GlcNAc results in insulin resistance associated with defects in Akt activation in 3T3-L1 adipocytes[J]. Proc Natl Acad Sci U S A,2002.99(8):5313-8.
    [41]McClain D A, Lubas W A, Cooksey R C, et al., Altered glycan-dependent signaling induces insulin resistance and hyperleptinemia[J]. Proc Natl Acad Sci U S A,2002.99(16):10695-9.
    [42]Nolte D,Muller U, Human O-GlcNAc transferase (OGT):genomic structure, analysis of splice variants, fine mapping in Xq13.1[J]. Mamm Genome,2002.13(1):62-4.
    [43]Love D C, Kochan J, Cathey R L, et al., Mitochondrial and nucleocytoplasmic targeting of O-linked GlcNAc transferase[J]. J Cell Sci,2003.116(Pt 4):647-54.
    [44]Lazarus B D, Roos M D, and Hanover J A, Mutational analysis of the catalytic domain of O-linked N-acetylglucosaminyl transferase[J]. J Biol Chem,2005.280(42):35537-44.
    [45]Dehennaut V, Hanoulle X, Bodart J F, et al., Microinjection of recombinant O-GlcNAc transferase potentiates Xenopus oocytes M-phase entry[J]. Biochem Biophys Res Commun,2008.369(2): 539-46.
    [46]Martinez-Fleites C, Macauley M S, He Y, et al., Structure of an O-GlcN Ac transferase homolog provides insight into intracellular glycosylation[J]. Nat Struct Mol Biol,2008.15(7):764-5.
    [47]O'Donnell N, Zachara N E, Hart G W, et al., Ogt-dependent X-chromosome-linked protein glycosylation is a requisite modification in somatic cell function and embryo viability[J]. Mol Cell Biol,2004.24(4):1680-90.
    [48]Dehennaut V, Lefebvre T, Sellier C, et al., O-linked N-acetylglucosaminyltransferase inhibition prevents G2/M transition in Xenopus laevis oocytes[J]. J Biol Chem,2007.282(17):12527-36.
    [49]Cherry J M, Ball C, Weng S, et al, Genetic and physical maps of Saccharomyces cerevisiae[J]. Nature,1997.387(6632 Suppl):67-73.
    [50]Hartweck L M, Scott C L, and Olszewski N E, Two O-linked N-acetylglucosamine transferase genes of Arabidopsis thaliana L. Heynh. have overlapping functions necessary for gamete and seed development[J]. Genetics,2002.161(3):1279-91.
    [51]Hartweck L M, Genger R K, Grey W M, et al., SECRET AGENT and SPINDLY have overlapping roles in the development of Arabidopsis thaliana L. Heyn[J]. J Exp Bot,2006.57(4):865-75.
    [52]Jacobsen S E, Binkowski K A, and Olszewski N E, SPINDLY, a tetratricopeptide repeat protein involved in gibberellin signal transduction in Arabidopsis[J]. Proc Natl Acad Sci U S A,1996. 93(17):9292-6.
    [53]Swain S M, Tseng T S, and Olszewski N E, Altered expression of SPINDLY affects gibberellin response and plant development[J]. Plant Physiol,2001.126(3):1174-85.
    [54]Sohn K C,Do S I, Transcriptional regulation and O-GIcNAcylation activity of zebrafish OGT during embryogenesis[J]. Biochem Biophys Res Commun,2005.337(1):256-63.
    [55]Kim E J, Kang D O, Love D C, et al., Enzymatic characterization of O-GlcNAcase isoforms using a fluorogenic GlcNAc substrate[J]. Carbohydr Res,2006.341(8):971-82.
    [56]Heckel D, Comtesse N, Brass N, et al., Novel immunogenic antigen homologous to hyaluronidase in meningioma[J]. Hum Mol Genet,1998.7(12):1859-72.
    [57]Schultz J,Pils B, Prediction of structure and functional residues for O-GlcNAcase, a divergent homologue of acetyltransferases[J]. FEBS Lett,2002.529(2-3):179-82.
    [58]Hanover J A, Cohen C K, Willingham M C, et al., O-linked N-acetylglucosamine is attached to proteins of the nuclear pore. Evidence for cytoplasmic and nucleoplasmic glycoproteins[J]. J Biol Chem,1987.262(20):9887-94.
    [59]Comer F 1, Vosseller K, Wells L, et al, Characterization of a mouse monoclonal antibody specific for O-linked N-acetylglucosamine[J]. Anal Biochem,2001.293(2):169-77.
    [60]Shikhman A R, Greenspan N S, and Cunningham M W, Cytokeratin peptide SFGSGFGGGY mimics N-acetyl-beta-D-glucosamine in reaction with antibodies and lectins, and induces in vivo anti-carbohydrate antibody response[J]. J Immunol,1994.153(12):5593-606.
    [61]Vocadlo D J, Hang H C, Kim E J, et al., A chemical approach for identifying O-GlcNAc-modified proteins in cells[J]. Proc Natl Acad Sci U S A,2003.100(16):9116-21.
    [62]Khidekel N, Ficarro S B, Peters E C, et al. Exploring the O-GlcNAc proteome:direct identification of O-GlcN Ac-modified proteins from the brain[J]. Proc Natl Acad Sci U S A,2004.101(36): 13132-7.
    [63]Nandi A, Sprung R, Barma D K, et al., Global identification of O-GlcN Ac-modified proteins[J]. Anal Chem,2006.78(2):452-8.
    [64]Goetz J A, Novotny M V, and Mechref Y, Enzymatic/chemical release of O-glycans allowing MS analysis at high sensitivity [J]. Anal Chem,2009.81(23):9546-52.
    [65]Cheng X,Hart G W, Alternative O-glycosylation/O-phosphorylation of serine-16 in murine estrogen receptor beta:post-translational regulation of turnover and transactivation activity[J]. J Biol Chem,2001.276(13):10570-5.
    [66]Matthews J A, Acevedo-Duncan M, and Potter R L, Selective decrease of membrane-associated PKC-alpha and PKC-epsilon in response to elevated intracellular O-GlcNAc levels in transformed human glial cells[J]. Biochim Biophys Acta,2005.1743(3):305-15.
    [67]Juang Y T, Solomou E E, Rellahan B, et al., Phosphorylation and O-linked glycosylation of Elf-1 leads to its translocation to the nucleus and binding to the promoter of the TCR zeta-chain[J]. J Immunol,2002.168(6):2865-71.
    [68]Zachara N E,Hart G W, The emerging significance of O-GlcNAc in cellular regulation [J]. Chem Rev,2002.102(2):431-8.
    [69]Hiromura M, Choi C H, Sabourin N A, et al., YY1 is regulated by O-linked N-acetylglucosaminylation (O-glcNAcylation)[J]. J Biol Chem,2003.278(16):14046-52.
    [70]Bekesi J G,Winzler R J, Inhibitory effects of D-glucosamine on the growth of Walker 256 carcinosarcoma and on protein, RNA, and DNA synthesis[J]. Cancer Res,1970.30(12):2905-12,
    [71]Kelly W G, Dahmus M E, and Hart G W, RNA polymerase Ⅱ is a glycoprotein. Modification of the COOH-terminal domain by O-GlcNAc[J]. J Biol Chem,1993.268(14):10416-24.
    [72]Guo H B, Lee I, Kamar M, et al., N-acetylglucosaminyltransferase V expression levels regulate cadherin-associated homotypic cell-cell adhesion and intracellular signaling pathways[J]. J Biol Chem,2003.278(52):52412-24.
    [73]Wells L, Vosseller K, and Hart G W, A role for N-acetylglucosamine as a nutrient sensor and mediator of insulin resistance[J]. Cell Mol Life Sci,2003.60(2):222-8.
    [74]Comer F I,Hart G W, Reciprocity between O-GlcNAc and O-phosphate on the carboxyl terminal domain of RNA polymerase Ⅱ[J]. Biochemistry,2001.40(26):7845-52.
    [75]Gordon J W, Scangos G A, Plotkin D J, et al, Genetic transformation of mouse embryos by microinjection of purified DNA[J]. Proc Natl Acad Sci U S A,1980.77(12):7380-4.
    [76]Palmiter R D, Brinster R L, Hammer R E, et al, Dramatic growth of mice that develop from eggs microinjected with metallothionein-growth hormone fusion genes[J]. Nature,1982.300(5893): 611-5.
    [77]Hill J R, Schlafer D H, Fisher P J, et al, Abnormal expression of trophoblast major histocompatibility complex class I antigens in cloned bovine pregnancies is associated with a pronounced endometrial lymphocytic response[J]. Biol Reprod,2002.67(1):55-63.
    [78]Cress W D,Seto E, Histone deacetylases, transcriptional control, and cancer[J]. J Cell Physiol,2000. 184(1):1-16.
    [79]Davie J R, Covalent modifications of histones:expression from chromatin templates[J]. Curr Opin Genet Dev,1998.8(2):173-8.
    [80]Kim J M, Liu H, Tazaki M, et al, Changes in histone acetylation during mouse oocyte meiosis[J]. J Cell Biol,2003.162(1):37-46.
    [81]Enright B P, Jeong B S, Yang X, et al, Epigenetic characteristics of bovine donor cells for nuclear transfer:levels of histone acetylation[J]. Biol Reprod,2003.69(5):1525-30.
    [82]Enright B P, Kubota C, Yang X, et al., Epigenetic characteristics and development of embryos cloned from donor cells treated by trichostatin A or 5-aza-2'-deoxycytidine[J]. Biol Reprod,2003. 69(3):896-901.
    [83]Shi W, Hoeflich A, Flaswinkel H, et al, Induction of a senescent-Iike phenotype does not confer the ability of bovine immortal cells to support the development of nuclear transfer embryos[J]. Biol Reprod,2003.69(1):301-9.
    [84]Li J, Svarcova O, Villemoes K, et al., High in vitro development after somatic cell nuclear transfer and trichostatin A treatment of reconstructed porcine embryos[J]. Theriogenology,2008.70(5): 800-8.
    [85]Mayer W, Niveleau A, Walter J, et al, Demethylation of the zygotic paternal genome[J]. Nature, 2000.403(6769):501-2.
    [86]Bourc'his D, Le Bourhis D, Patin D, et al., Delayed and incomplete reprogramming of chromosome methylation patterns in bovine cloned embryos[J]. Curr Biol,2001.11(19):1542-6.
    [87]Wu X L Y, Li GP, Yang D, Yue Y, Wang L, Li K, Xin P, Bou S, Yu H., Trichostatin A improved epigenetic modifications of transfected cells but did not improve subsequent cloned embryo development.[J]. Anim Biotechnol.,2008.19(4):14.
    [88]Santos F,Dean W, Epigenetic reprogramming during early development in mammals[J]. Reproduction,2004.127(6):643-51.
    [89]Wilmut I S A, McWhir J, et al, Viable offspring derived from fetal and adult mammalian cells[J].[J]. Nature,1997.385:810-813.
    [90]Wakayama T,Yanagimachi R, Effect of cytokinesis inhibitors, DMSO and the timing of oocyte activation on mouse cloning using cumulus cell nuclei[J]. Reproduction,2001.122(1):49-60.
    [91]Enright B P, Sung L Y, Chang C C, et al., Methylation and acetylation characteristics of cloned bovine embryos from donor cells treated with 5-aza-2'-deoxycytidine[J]. Biol Reprod,2005.72(4): 944-8.
    [92]Blelloch R, Wang Z, Meissner A, et al., Reprogramming efficiency following somatic cell nuclear transfer is influenced by the differentiation and methylation state of the donor nucleus[J]. Stem Cells,2006.24(9):2007-13.
    [93]Lee JH M M, Panarce M, Medina M,Campbell KHS., Establishment of pregnancy by ovine nuclear transfer embryos reconstructed using caffeine-treated in vitro matured oocytes as cytoplast recipients[J]. Reprod Fertil Dev,2006.18:2.
    [94]G B, Production of transgenic and possible application to pig breeding [J]. Soc Anim Prod,,1992. 12:16.
    [95]Kobata A, Structures and functions of the sugar chains of glycoproteins[J]. Eur J Biochem,1992. 209(2):483-501.
    [96]陆凤花,水牛体细胞核移植的研究[D].博士论文,广西大学,2004.
    [97]罗婵,水牛供体细胞组蛋白乙酰化与核移植胚胎发育能力相关性的研究[M].广西大学,2007.
    [98]Ririe K M, Rasmussen R P, and Wittwer C T, Product differentiation by analysis of DNA melting curves during the polymerase chain reaction[J]. Anal Biochem,1997.245(2):154-60.
    [99]Wong M L,Medrano J F, Real-time PCR for mRNA quantitation[J]. Biotechniques,2005.39(1): 75-85.
    [100]Chen H Y, Li X K, Cui B A, et al., A TaqMan-based real-time polymerase chain reaction for the detection of porcine parvovirus[J]. J Virol Methods,2009.156(1-2):84-8.
    [101]Qin B L, Chen X J, Shi Z D, et al., [Investigation of follicular development and oocyte maturation after cryopreservation and xenograft of newborn mouse ovaries.][J]. Sheng Li Xue Bao,2006. 58(1):41-6.
    [102]Bustin S A, Absolute quantification of mRNA using real-time reverse transcription polymerase chain reaction assays[J]. J Mol Endocrinol,2000.25(2):169-93.
    [103]Niesters H G, Quantitation of viral load using real-time amplification techniques[J]. Methods,2001. 25(4):419-29.
    [104]Bettegowda A, Patel O V, Ireland J J, et al., Quantitative analysis of messenger RNA abundance for ribosomal protein L-15, cyclophilin-A, phosphoglycerokinase, beta-glucuronidase, glyceraldehyde 3-phosphate dehydrogenase, beta-actin, and histone H2A during bovine oocyte maturation and early embryogenesis in vitro[J]. Mol Reprod Dev,2006.73(3):267-78.
    [105]Czechowski T, Stitt M, Altmann T, et al., Genome-wide identification and testing of superior reference genes for transcript normalization in Arabidopsis[J]. Plant Physiol,2005.139(1):5-17.
    [106]Lupberger J, Kreuzer K A, Baskaynak G, et al., Quantitative analysis of beta-actin, beta-2-microglobulin and porphobilinogen deaminase mRNA and their comparison as control transcripts for RT-PCR[J]. Mol Cell Probes,2002.16(1):25-30.
    [107]谢英,水牛卵母细胞体外受精及胚胎质量评定体系的研究[M].广西大学,2005.
    [108]Henery C C, Miranda M, Wiekowski M, et al., Repression of gene expression at the beginning of mouse development[J]. Dev Biol,1995.169(2):448-60.
    [109]Fu G, Ghadam P, Sirotkin A, et al., Mouse oocytes and early embryos express multiple histone H1 subtypes[J]. Biol Reprod,2003.68(5):1569-76.
    [110]Wiekowski M, Miranda M, Nothias J Y, et al., Changes in histone synthesis and modification at the beginning of mouse development correlate with the establishment of chromatin mediated repression of transcription[J]. J Cell Sci,1997.110 (Pt 10):1147-58.
    [111]Legube G,Trouche D, Regulating histone acetyltransferases and deacetylases[J]. EMBO Rep,2003. 4(10):944-7.
    [112]Worrad D M,Schultz R M, Regulation of gene expression in the preimplantation mouse embryo: temporal and spatial patterns of expression of the transcription factor Spl[J]. Mol Reprod Dev, 1997.46(3):268-77.
    [113]Dehennaut V, Lefebvre T, Leroy Y, et al, Survey of O-GlcNAc level variations in Xenopus laevis from oogenesis to early development[J]. Glycoconj J,2009.26(3):301-11.
    [114]Wells L, Vosseller K, and Hart G W, Glycosylation of nucleocytoplasmic proteins:signal transduction and O-GlcNAc[J]. Science,2001.291(5512):2376-8.
    [115]Du X L, Edelstein D, Dimmeler S, et al., Hyperglycemia inhibits endothelial nitric oxide synthase activity by posttranslational modification at the Akt site[J]. J Clin Invest,2001.108(9):1341-8.
    [116]Federici M, Menghini R, Mauriello A, et al., Insulin-dependent activation of endothelial nitric oxide synthase is impaired by O-linked glycosylation modification of signaling proteins in human coronary endothelial cells[J]. Circulation,2002.106(4):466-72.
    [117]Parker G J, Lund K. C, Taylor R P, et al., Insulin resistance of glycogen synthase mediated by o-linked N-acetylglucosamine[J]. J Biol Chem,2003.278(12):10022-7.
    [118]Han I, Roos, M.D., Kudlow, J.E., Interaction of the transcription factor Sp1 with the nuclear pore protein p62 requires the C-terminal domain of p62[J]. J. Cell. Biochem,1998.68:50-61.
    [119]Roos M D, Su K, Baker J R, et al., O glycosylation of an Spl-derived peptide blocks known Spl protein interactions[J]. Mol Cell Biol,1997.17(11):6472-80.
    [120]Yang X, Su K, Roos M D, et al., O-linkage of N-acetylglucosamine to Spl activation domain inhibits its transcriptional capability[J]. Proc Natl Acad Sci U S A,2001.98(12):6611-6.
    [121]Gao Y, Miyazaki J, and Hart G W, The transcription factor PDX-1 is post-translationally modified by O-linked N-acetylglucosamine and this modification is correlated with its DNA binding activity and insulin secretion in min6 beta-cells[J]. Arch Biochem Biophys,2003.415(2):155-63.
    [122]Duverger E, Carpentier V, Roche A C, et al., Sugar-dependent nuclear import of glycoconjugates from the cytosol[J]. Exp Cell Res,1993.207(1):197-201.
    [123]Monsigny M, Midoux P, Mayer R, et al., Glycotargeting:influence of the sugar moiety on both the uptake and the intracellular trafficking of nucleic acid carried by glycosylated polymers[J]. Biosci Rep,1999.19(2):125-32.
    [124]Bachmann M, Pfeifer K, Schroder H C, et al., The La antigen shuttles between the nucleus and the cytoplasm in CV-1 cells[J]. Mol Cell Biochem,1989.85(2):103-14.
    [125]Datta B, Ray M K, Chakrabarti D, et al., Glycosylation of eukaryotic peptide chain initiation factor 2 (eIF-2)-associated 67-kDa polypeptide (p67) and its possible role in the inhibition of eIF-2 kinase-catalyzed phosphorylation of the eIF-2 alpha-subunit[J]. J Biol Chem,1989.264(34): 20620-4.
    [126]Ray M K, Datta B, Chakraborty A, et al., The eukaryotic initiation factor 2-associated 67-kDa polypeptide (p67) plays a critical role in regulation of protein synthesis initiation in animal cells[J]. Proc Natl Acad Sci U S A,1992.89(2):539-43.
    [127]Han I,Kudlow J E, Reduced O glycosylation of Spl is associated with increased proteasome susceptibility[J]. Mol Cell Biol,1997.17(5):2550-8.
    [128]Cheng X, Cole R N, Zaia J, et al., Alternative O-glycosylation/O-phosphorylation of the murine estrogen receptor beta[J]. Biochemistry,2000.39(38):11609-20.
    [129]Watson A J, De Sousa P, Caveney A, et al., Impact of bovine oocyte maturation media on oocyte transcript levels, blastocyst development, cell number, and apoptosis[J]. Biol Reprod,2000.62(2): 355-64.
    [130]Nothias J Y, Majumder S, Kaneko K J, et al., Regulation of gene expression at the beginning of mammalian development[J]. J Biol Chem,1995.270(38):22077-80.
    [131]Memili E,First N L, Control of gene expression at the onset of bovine embryonic development^]. Biol Reprod,1999.61(5):1198-207.
    [132]Zachara N E,Hart G W, Cell signaling, the essential role of O-GlcNAc![J]. Biochim Biophys Acta, 2006.1761(5-6):599-617.
    [133]Slawson C, Zachara N E, Vosseller K, et al., Perturbations in O-linked beta-N-acetylglucosamine protein modification cause severe defects in mitotic progression and cytokinesis[J]. J Biol Chem, 2005.280(38):32944-56.
    [134]Hanover J A, Forsythe M E, Hennessey P T, et al., A Caenorhabditis elegans model of insulin resistance:altered macronutrient storage and dauer formation in an OGT-1 knockout[J]. Proc Natl Acad Sci U S A,2005.102(32):11266-71.
    [135]Forsythe M E, Love D C, Lazarus B D, et al., Caenorhabditis elegans ortholog of a diabetes susceptibility locus:oga-1 (O-GlcNAcase) knockout impacts O-GlcNAc cycling, metabolism, and dauer[J]. Proc Natl Acad Sci U S A,2006.103(32):11952-7.
    [136]Webster D M, Teo C F, Sun Y, et al, O-GlcNAc modifications regulate cell survival and epiboly during zebrafish development[J]. BMC Dev Biol,2009.9:28.
    [137]Kimura K, Iwata H, and Thompson J G, The effect of glucosamine concentration on the development and sex ratio of bovine embryos[J]. Anim Reprod Sci,2008.103(3-4):228-38.
    [138]Love J, Gribbin C, Mather C, et al., Transgenic birds by DNA microinjection[J]. Biotechnology (N Y),1994.12(1):60-3.
    [139]Cibelli J B, Stice S L, Golueke P J, et al, Cloned transgenic calves produced from nonquiescent fetal fibroblasts[J]. Science,1998.280(5367):1256-8.
    [140]McCreath K J, Howcroft J, Campbell K H, et al, Production of gene-targeted sheep by nuclear transfer from cultured somatic cells[J]. Nature,2000.405(6790):1066-9.
    [141]Yin X J, Lee H S, Yu X F, et al., Generation of cloned transgenic cats expressing red fluorescence protein[J]. Biol Reprod,2008.78(3):425-31.
    [142]Bondioli K, Ramsoondar J, Williams B, et al, Cloned pigs generated from cultured skin fibroblasts derived from a H-transferase transgenic boar[J]. Mol Reprod Dev,2001.60(2):189-95.
    [143]Li S, Guo Y, Shi J, et al., Transgene expression of enhanced green fluorescent protein in cloned rabbits generated from in vitro-transfected adult fibroblasts[J]. Transgenic Res,2009.18(2): 227-35.
    [144]崔奎青,转基因体细胞克隆水牛与广西水牛的遗传特性研究[D].广大学,2007.
    [145]Wadhwa N, Kunj N, Tiwari S, et al., Optimization of embryo culture conditions for increasing efficiency of cloning in buffalo (Bubalus bubalis) and generation of transgenic embryos via cloning[J]. Cloning Stem Cells,2009.11(3):387-95.
    [146]Huang Z, Wang L, Meng S, et al., Berberine reduces both MMP-9 and EMMPRIN expression through prevention of p38 pathway activation in PMA-induced macrophages[J]. Int J Cardiol,2011. 146(2):153-8.
    [147]韦精卫,孟凡丽,韦英明等.利用体细胞核移植技术生产黄牛和水牛同种、异种转基因克隆囊胚[J].自然科学进展,2008.18(7):857-862.
    [148]张运海,潘登科,孙秀柱等.利用体细胞核移植技术生产表达绿色荧光蛋白的猪转基因克隆胚胎[J].中国科学,C辑,2005 35(5):439-455.
    [149]Lee S K S, Hyun H, et al., Production of transgenic cloned piglets from genetically transformed fetal fibroblasts selected by green fluorescent protein [J].[J]. Theriogenology,2005,.63:19.
    [150]Brown M D, Schatzlein A G, and Uchegbu I F, Gene delivery with synthetic (non viral) carriers[J]. Int J Pharm,2001.229(1-2):1-21.
    [151]Nagano M, Shinohara T, Avarbock M R, et al., Retrovirus-mediated gene delivery into male germ line stem cells[J]. FEBS Lett,2000.475(1):7-10.
    [152]Cabot R A, Kuhholzer B, Chan A W, et al., Transgenic pigs produced using in vitro matured oocytes infected with a retroviral vector[J]. Anim Biotechnol,2001.12(2):205-14.
    [153]Escriou V, Carriere M, Bussone F, et al., Critical assessment of the nuclear import of plasmid during cationic lipid-mediated gene transfer[J]. J Gene Med,2001.3(2):179-87.
    [154]Tsong T Y, Electroporation of cell membranes[J]. Biophys J,1991.60(2):297-306.
    [155]Trezise A E, Palazon L, Davies W L, et al., In vivo gene expression:DNA electrotransfer[J]. Curr Opin Mol Ther,2003.5(4):397-404.
    [156]潘求真,陆全枝,王海等.山羊体细胞转基因方法的探讨[J].畜牧兽医学报,2004.35(2):4.121-124.
    [157]邓守龙,吕自力,王亮等.转GFP基因核移植牛胚胎的研究[J].中国畜牧兽医,2009.36(8):73-78.
    [158]Chen S H, Vaught T D, Monahan J A, et al., Efficient production of transgenic cloned calves using preimplantation screening[J]. Biol Reprod,2002.67(5):1488-92.
    [159]Martinez-Salas E, Internal ribosome entry site biology and its use in expression vectors[J]. Curr Opin Biotechnol,1999.10(5):458-64.
    [160]Kubota C, Yamakuchi H, Todoroki J, et al., Six cloned calves produced from adult fibroblast cells after long-term culture[J]. Proc Natl Acad Sci U S A,2000.97(3):990-5.
    [161]Kato Y, Tani T, Sotomaru Y, et al., Eight calves cloned from somatic cells of a single adult[J]. Science,1998.282(5396):2095-8.
    [162]Roh S, Shim H, Hwang W S, et al., In vitro development of green fluorescent protein (GFP) transgenic bovine embryos after nuclear transfer using different cell cycles and passages of fetal fibroblasts[J]. Reprod Fertil Dev,2000.12(1-2):1-6.
    [163]Wells D N, Misica P M, and Tervit H R, Production of cloned calves following nuclear transfer with cultured adult mural granulosa cells[J]. Biol Reprod,1999.60(4):996-1005.
    [164]Kasinathan P, Knott J G, Moreira P N, et al., Effect of fibroblast donor cell age and cell cycle on development of bovine nuclear transfer embryos in vitro[J]. Biol Reprod,2001.64(5):1487-93.
    [165]张运海,利用体细胞核移植技术生产猪克隆胚胎的研究[D].北京:中国农业大学,2005.
    [166]陈大元,李劲松,韩之明等.体细胞克隆牛:供休细胞和受体的影响[J].科学通报,2003.48(8): 768-773.
    [167]Shin T, Kraemer D, Pryor J, et al., A cat cloned by nuclear transplantation[J]. Nature,2002. 415(6874):859.
    [168]Keefer C L, Baldassarre H, Keyston R, et al, Generation of dwarf goat (Capra hircus) clones following nuclear transfer with transfected and nontransfected fetal fibroblasts and in vitro-matured oocytes[J]. Biol Reprod,2001.64(3):849-56.
    [169]Akiyama T, Kim J M, Nagata M, et al., Regulation of histone acetylation during meiotic maturation in mouse oocytes[J]. Mol Reprod Dev,2004.69(2):222-7.
    [170]Endo T, Naito K, Aoki F, et al., Changes in histone modifications during in vitro maturation of porcine oocytes[J]. Mol Reprod Dev,2005.71(1):123-8.
    [171]Hoshikawa Y, Kwon H J, Yoshida M, et al., Trichostatin A induces morphological changes and gelsolin expression by inhibiting histone deacetylase in human carcinoma cell lines[J]. Exp Cell Res,1994.214(1):189-97.
    [172]Grassi G, Maccaroni P, Meyer R, et al., Inhibitors of DNA methylation and histone deacetylation activate cytomegalovirus promoter-controlled reporter gene expression in human glioblastoma cell line U87[J]. Carcinogenesis,2003.24(10):1625-35.
    [173]Choi K H, Basma H, Singh J, et al., Activation of CMV promoter-controlled glycosyltransferase and beta -galactosidase glycogenes by buryrate, tricostatin A, and 5-aza-2'-deoxycytidine[J]. Glycoconj J,2005.22(1-2):63-9.
    [174]Verma I M,Somia N, Gene therapy-promises, problems and prospects[J]. Nature,1997. 389(6648):239-42.
    [175]Mutskov VJFelsenfeld G, Silencing of transgene transcription precedes methylation of promoter DNA and histone H3 lysine 9[J]. EMBO J,2004.23(1):138-49.
    [176]Krishnan M, Park J M, Cao F, et al., Effects of epigenetic modulation on reporter gene expression: implications for stem cell imaging[J]. FASEB J,2006.20(1):106-8.
    [177]Ou JN, Torrisani J, Unterberger A, et al., Histone deacetylase inhibitor Trichostatin A induces global and gene-specific DNA demethylation in human cancer cell lines[J]. Biochem Pharmacol, 2007.73(9):1297-307.
    [178]Peterson C L,Workman J L, Promoter targeting and chromatin remodeling by the SW1/SNF complex[J]. Curr Opin Genet Dev,2000.10(2):187-92.
    [179]Agalioti T, Chen G, and Thanos D, Deciphering the transcriptional histone acetylation code for a human gene[J]. Cell,2002.111(3):381-92.
    [180]Sebastiano V, Gentile L, Garagna S, et al., Cloned pre-implantation mouse embryos show correct timing but altered levels of gene expression[J]. Mol Reprod Dev,2005.70(2):146-54.
    [181]Kishigami S, Mizutani E, Ohta H, et al., Significant improvement of mouse cloning technique by treatment with trichostatin A after somatic nuclear transfer[J]. Biochem Biophys Res Commun, 2006.340(1):183-9.
    [182]lager A E, Ragina N P, Ross P J, et al., Trichostatin A improves histone acetylation in bovine somatic cell nuclear transfer early embryos[J]. Cloning Stem Cells,2008.10(3):371-9.
    [183]Cervera R P, Marti-Gutierrez N, Escorihuela E, et al., Trichostatin A affects histone acetylation and gene expression in porcine somatic cell nucleus transfer embryos[J]. Theriogenology,2009.72(8): 1097-110.
    [184]Ding X, Wang Y, Zhang D, et al., Increased pre-implantation development of cloned bovine embryos treated with 5-aza-2'-deoxycytidine and trichostatin A[J]. Theriogenology,2008.70(4): 622-30.
    [185]J.XU L-Y S, J.Zhang, trichostatin A improved the quality of rabbit nuclear transfer embryos[J]. Reproduction,Fertility and Development,2007.
    [186]Shi L H, Miao Y L, Ouyang Y C, et al., Trichostatin A (TSA) improves the development of rabbit-rabbit intraspecies cloned embryos, but not rabbit-human interspecies cloned embryos[J]. Dev Dyn,2008.237(3):640-8.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700