基于ARM的高精度半导体光源驱动控制技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
半导体光源是由以半导体材料构成的PN结为工作物质的半导体器件,它以注入电流为激励源。这种器件的量子效率极高,但是它对电冲击的承受能力很弱,弱小的电流变化都可能会导致器件参数发生变化,电流突变甚至会导致半导体器件的老化或损坏,因此驱动电流的稳定性对器件的输出有着直接的影响。光源器件的工作物质是PN结,对温度极其敏感,温度变化会直接影响到半导体光源器件的阈值电流及输出光功率的稳定性,严重破坏半导体光源的工作特性。为了能使半导体光源正常工作,必须控制半导体光源器件的工作温度。为了使输出的光功率稳定,本文对自动功率控制方法进行了研究,并采用与恒流源、自动温度控制相结合的方式来实现光功率的稳定输出。
     首先,本文对半导体光源的工作原理和特性进行了介绍,在大量查阅了国内外相关参考文献的前提下,分析了半导体光源对驱动电源的要求,并对半导体光源的光控和温控理论进行了分析,在此基础上设计了基于ARM高精度的半导体光源驱动控制器。它包括数字化恒流源驱动电路,光电检测电路和温控电路等。恒流源与光电检测电路构成了光控电路,恒流源由ADuC7026微控制器及其DAC、慢启动电路和V/I转换电路等组成。它的整体设计思路是利用高性能斩波稳零运算放大器和负反馈原理,使整个闭环系统处于动态的平衡中,从而达到稳定输出电流的目的。温控电路利用专用温度控制芯片ADN8830对TEC进行PID闭环自动控制,采用半导体光源组件内部的热敏电阻作为温度传感器。
     其次,设计了数字化控制系统的相关软件。具体包括系统的初始化,DA转换、AD转换、数字化光功率控制的实现、温度的设定和温度、光功率以及驱动电流的采集和显示。
     最后,本文通过实验获得了驱动电流的稳定度、温度的稳定度和在有无光控和温控的条件下输出光功率的稳定度,验证了前面理论分析的正确性和可行性。证明了本文设计的驱动控制器满足我们的要求。该半导体光源驱动控制器可以提供高精度的光源,具有广泛的应用前景。
Semiconductor illuminant is a semiconductor device which takes PN knot as working material and it takes inject current as excitation.It is a kind of device with high and efficiency power.Its ability to withstand the impact of current is very weak. Semiconductor illuminant is a current drive device. Weak drive current and will lead to its changing of optical power or device parameters. Even current mutations can lead to damage of semiconductor devices. So the stability of the drive current has thedirect influence on the light power. The operationmaterial of semiconductor illuminant is PN knot,which is very sensitive to temperature.Temperature change will directly affect the semiconductor illuminant threshold current and the stability of optical power. Even seriously damage the working characteristic of semiconductor illuminant. In order to work well,the working temperature of semiconductor illuminant must be under the control.In this paper, the study mainly on constant-current source、optical power control and temperature control.
     First of all,this paper introduces the principle and characters of semiconductor illuminant、analyses the necessity of designing a special driver power with high quality and analysis the theory of optical power control and temperature control by referring a lot of domestic and foreign references.Designed the semiconductor illuminant driver based on ARM. It includes Digital constant-current source driver circuit、Photoelectric detection circuit and temperature control circuit. Optical power control circuits are constituted of constant-current source circuit and photoelectric detection circuit. The constant-current circuit is constituted of ADuC7026 micro controller and its DA converters、slow start-up circuit and V/I convert circuit.The whole design idea is to use Super chopper-stabilized amplifier and principle of negative feedback to stabilize output current which obtains the lowest current error and the highest current stability. TEC was controlled automatically using closed-loop PID by ADN8830.The thermistor internal of Semiconductor illuminant components is used as temperature sensor. Designed the software of the digital control system,which includes system initialization, DA conversion、AD conversion、optical power control and temperature、optical power and drive current acquisition and display.
     In the last part of the paper,the stability of the drive current、operating temperature and optical power under the control of temperature and optical power or no are validated by experiments.It proves that the semiconductor illuminant driver designed in this paper can work well. Under the control of the semiconductor illuminant driver, we can obtain very stable optical power.
引文
[1]半导体激光器驱动电源及其调控[D].哈尔滨工业大学硕士论文,2006.
    [2]半导体激光器功率稳定性研究[D].哈尔滨理工大学硕士论文,2008.
    [3]陆宇航.基于光纤电流传感器的局部放电检测方法研究[D].天津大学硕士学位论文,2008.
    [4] David F.Welch.A Brief History of High-Power Semiconductor Lasers.IEEE Journal of Selected Topics In Quantum Electronics.2000:29-31.
    [5]曹瑞明.半导体激光器功率稳定性研究[D].哈尔滨理工大学硕士论文,2008.
    [6]基于谐波检测技术的光谱吸收光纤乙炔气体传感器的研究[D].燕山大学硕士论文,2005.
    [7]偏振光位移传感器及其绝对位移检测方法研究[D].浙江大学硕士论,2005.
    [8] Yih-Jun Wong,Chih-Wei Hsu,and C.C.Yang.Characteristics of a Dual-Wavelength Semiconductor Laser Near 1550nm.IEEE Photonics Technology Letters. 1999,11(2):173-175.
    [9]丁晓映.基于光纤微弯损耗原理的光纤微弯压力传感器的设计[D].厦门大学硕士论文,2002.
    [10]苏红艳.光纤气体传感器在检测气体浓度中的应用[D].江南大学硕士论文,2009.
    [11]芦圣.偏振光位移传感器及其绝对位移检测方法研究[D].浙江大学硕士论文,2005.
    [12] Hiroo Ukita,Yoshinobu Karaki,A Wavelength and Spectrum Measurement of an Extremely- Short-External-Cavity Laser Diode by Precisely Controlling Slider Flying Height.Optical Review.2004,11(3):188-192
    [13]曲洪丰.光电探测器特性一体化实验系统研究[D].浙江大学硕士论文,2006.
    [14]刘彬,张秋婵.光电检测前置放大电路的设计[J].燕山大学学报,2003,27(3):193-196.
    [15] MCKEOWN N. The iSLIP scheduling algorithm for input queued switches [J]. IEEE Trans on Net working,1999, 7 (2) : 188– 201.
    [16]潘英俊,邹建.光电子技术[M].重庆:重庆大学出版社,2000.
    [17]郝子强.大功率半导体激光器控制及调制技术的研究[D].长春理工大学硕士论文,2008.
    [18] Shlomi Arnon.Power versus Stabilization for laser satellite.communication Applied Optics. 2003, 38 (5):3229~3223.
    [19]齐凤玲.大功率半导体激光器温度控制算法的研究[D].长春理工大学硕士论文,2008.
    [20] Wang Zhuoran,Yu Linling,Zhang Aixu,et al.Simulation and Experiment Study of the Parameters of a 10GHz DFB-LD.Optoelectronics Laser.2003,14(12):1299~1302.
    [21]顾兴志.稳定光源和光功率计的研制[D].重庆大学硕士论文,2004.
    [22]陈卓.半导体激光器高温定度电源的研究[D].华中科技大学硕士论文,2007.
    [23] Hiroo Ukita,Yoshinobu Karaki.A Wavelength and Spectrum Measurement ofan Extremely-Short -External-Cavity Laser Diode by Precisely Controlling SliderFlying Height.Optical Review. 2004,11(3):188-192.
    [24]马鑫,张东来,徐殿国.光电二极管电参数模型及I/V转化稳定性分析[J].哈尔滨工大学学报, 2009,41(7):89-92.
    [25] JIANG Y, HAMD IM. A fully desynchronized Round Robin matching scheduler for a VOQ packet switch architecture [C].Pr oceedings of IEEE Workshop on High Performance S witching and Routing . Dallas : IEEE communications Society, 2002: 58– 63.
    [26]霍戌文,李伟,李进,陈科.光电探测微信号放大器设计[J].浙江理工大学学报,2005,22(3):259-262.
    [27] Janos P.Makai, Jozsef J.Makai,Janos Balaz.noisecharacteristics of bootstrapped photovoltaic and photoconductive detectors ,SPIE 3794.
    [28]戎慧.SLD光源测控系统的设计[D].中北大学硕士论文,2008.
    [29] Katsu Okada.Wavelength Tuning Characteristics of a Vertival CavitySurface Emitting Laser Diode with an External Short Cavity.Optical Review.2004,11(3):193-198.
    [30]李春华.基于半导体激光器很稳温控制的数据采集系统设计[D].吉林大学硕士论文,2005.
    [31] Masakatsu Okada.Wavelength Tuning Characteristics of a Vertival Cavity Surface Emitting Laser Diode with an External Short Cavity.Optical Review.2004,11(3):193-198
    [32]祝红彬,李伟,刘子骥,蒋亚东.一种高精度非致冷红外焦平面温度控制系统的设计[J].2009,31(3):144-147.
    [33] BJ. Huang, C.L. Duang.System dynamic model and temperature control of a thermoelectric cooler[J].International Journal of Refrigeration.2000.23:197—207.
    [34]尹世刚.超辐射发光二极管的数字化稳定控制技术研究[D].浙江大学硕士论文,2004.
    [35] Seiichi Kakuma,Ryoji Ohba.Practical Accurate Optical Ranging Based on Polarization Self Modulation of a Vertical-Cavity Surface-Emitting Laser Diode.Optical Review.2003,10(6): 511-513
    [36]石慧.基于ARM的主流式ET-CO_2检测模块的研制及软件设计[D].北京协和医学院硕士论文,2010.
    [37]邹建,杜海涛,姬兴.一种实用半导体激光器阈值电流测试仪[J].实验室研究与索, 2010,29(10):42-44.
    [38] ADI.ADN8830 Thermoelectric Cooler Controller Data Sheer (REV.C).2003.
    [39] G.Hancock,V.Kasyutich,G.Ritchie.Wavelength Modulation Spectroscopy Using a Frequency-doubled Current-modulated Diode Laser.Applied Physics B,2002(74):569-575
    [40]覃喜庆,曾祥鸿,董静,李平.基于ADN8830的高性能TEC控制电路光学与光电技术[J]. 2004,2(1):20-22.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700