高精度电流光学传感技术的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着国家坚强智能电网建设的不断发展,法拉第磁光效应光学电流传感器以其测量准确化、传输光纤化和输出数字化等优点必将成为服务于智能电网的理想传感器;然而,在实际应用中,由于受到温漂等外界因素的影响,光学电流传感器不能长期稳定工作,使得其一直没有得到大范围使用。为了解决影响光学电流传感器稳定运行的温漂问题,本文首次提出了解决影响光学电流传感器测量精度的温漂问题的双闭环负反馈自校正方法。本文从理论上论证了温度变化对法拉第磁光效应光学传感的作用机理,并且通过大量的实验对作用机理进行了验证。在此基础上,设计了全新的光学电流传感器双闭环负反馈自校正系统。该系统包括内环和外环两个独立系统:对于内环系统,通过在光源的输出口增加一个分束器,将初始光强按一定比例进行分离,并将部分光强反馈回直流源的控制系统,从而形成内环,稳定初始光强。对于外环系统,在原有光学电流传感器的基本组成结构上,将光电转换后的电信号进行高精度微弱信号处理,再进行高精度交直流信号的分离,提取出受温度影响的直流信号作为外环闭环量,将直流信号与光源设定电源输出的基本光强信号进行比较,比较值输入到高稳定度可控直流光源中。由此形成光学电流传感器的双闭环负反馈自校正系统。同时,再利用DSP系统对信号进行实时分析和处理,实现了系统的动态负反馈调整,实验结果达到了预期,抵消了温度变化对光学电流传感器测量精度的影响,从而进一步提高了传感器的测量精度和运行稳定性。
With the development of State Strong Smart Grid, optical current transducer based on Faraday magneto-optical effect will become an ideal transducer to service the grid. Because it has many advantages, such as high measurement accuracy, optical fiber transmission, digital output and so on. However, due to the impact of external factors such as temperature drift in practice, optical current transducer can not work in the long-term stable situation, making it having not been used in a large range. To solve the problem caused by temperature drift, the double closed-loop self-tuning method is proposed in this paper for the first time. It has theoretically demonstrated the mechanism how temperature change affect the optical current transducer based on Faraday magneto-optical effect. And the mechanism has also been verified by a large number of experiments. On this basis, a new type of optical current transducer system has been designed. That is the double closed-loop self-tuning system. This system includes two independent systems, the inner and outer loop system. For the inner loop system, a beam splitter is added to the optical source output port to separate the initial light intensity according to a certain percentage. And part of the initial light intensity is fed back to DC source control system to form the inner loop system, making the initial light intensity stable. For the outer loop system, in the original optical current transformer basic structure, the photoelectric conversion electric signals are processed by the high-precision weak signal processing method, and then separated by the high-precision AC and DC signals separation method. The DC signal affected by temperature change is extracted as outer loop component. After DC signal is compared with the basic light intensity that is set by optical source, the compared value is input into the high-stability optical source with controllable DC source and the DC source current is provided to the optical source of optical current transducer. Thus, the double closed-loop self-tuning system is formed. At the same time, DSP system is used to analyze and process signals realtimely. So it has realized dynamics negative feedback adjustment and the experimental results have reached expected targets. And the influence, caused by temperature change, is also offseted, which will further enhance the measurement accuracy and operational stability of optical current transducer.
引文
[1]FAN J, BORLASE S. The evolution of distributio:too meet challenges, smart girds need advanced distribution management systems[J]. IEEE Power and Energy Magazine.2009,7(2):63-68,64
    [2]李兴源,魏巍,王渝红等.坚强智能电网发展技术的研究[J].电力系统保护与控制.2009,37(17):1-6,2
    [3]傅书逷.中国智能电网发展建议.电力系统自动化[J].2009,33(20):23-26,23
    [4]邸荣光,刘仕兵.光电式电流互感器技术的研究现状与发展[J].电力自动化设备.2006,26(8):98-100,98
    [5]王峰.光学电流互感器温度特性分析[D].哈尔滨工程大学硕士论文,2005
    [6]高翔.数字化变电站应用技术[M].中国电力出版社,2008
    [7]刘延冰,李红斌,余春雨等.电子式互感器原理技术及应用[M].科学出版社,2009
    [8]Stephan Mohr, Thomas Bosselman. A high dynamic range magnetooptic current transformer with advanced signal processing[J]. IEEE Sensors Journal. 2003,3(6):744-751,750
    [9]贺家李,宋从矩.电力系统继电保护原理[M].中国电力出版社,2004
    [10]刘青,王增平,徐岩等.光学电流互感器对继电保护系统的影响研究[J].电网技术.2005,29(1):11-14,12
    [11]娄凤伟.光学电流传感器的现状与发展[J].电工技术杂志.2002,23:90-93,92
    [12]张德赛,罗道军,彭剑.国内外光电式电流互感器研究现状[J].四川电力技术.1999,2:53-55,55
    [13]吕砚山等.利用激光及法拉第效应测量电磁量的研究[J].仪器仪表学报.1993,14(1):39-44,40
    [14]Emerging Technologies Working Group, Fiber Optics Sensors Working Group. Optical Current Transducers for Power Systems[J]. IEEE Transactions on power delivery.1994,9(4):1778-1788,1784
    [15]张艳.光学电流互感器数字信号处理系统的研究[D].华中科技大学硕士论文,2004
    [16]国家电网公司. Q/GDW XXX-2009.国家电网公司企业标准-智能变电站技术导则[M],2009
    [17]李岩松.高精度自适应光学电流互感器及其稳定性研究[D].华北电力大学博士论文,2004
    [18]曲艳华.光学电流互感器在继电保护中的应用[D].华北电力大学硕士论文,2005
    [19]王贵忠.集磁环式光学电流互感器性能研究[D].华北电力大学硕士论文,2008
    [20]王政平,康崇,张雪原等.全光纤光学电流互感器研究进展[J].激光与光 电子学进展.2005,42(3):36-40,36-37
    [21]陆宇航.基于光纤电流传感器的局部放电检测方法研究[D].天津大学博士论文,2008
    [22]S.Saito, Y.Fujii, K.Yokoyama, et al. The Laser Current Transformer for EVH Power Transmission Lines[J]. IEEE J. QE,1966, QE-2:255-259,256
    [23]A.J.Rogers. Optical Technique for Measurement of Current at High Voltage[J], Proc. IEE,120(1973):167-261,167
    [24]Madden W L, Michie W C, Cruden A. Temperature compensation for optical current sensors[J]. Optical Engineering.1999,38(10):1699-1707,1700
    [25]乔峨,安作平,罗承沐等.光电式电流互感器的开发与应用-21世纪互感器技术展望[J].变压器.2000,37(1):41-43,42
    [26]T.W.Cease, Judy G.Driggans, Scott J.Weikel. Optical voltage and current sensors used in a revenue metering system[J]. IEEE Transactions on Power Delivery.1991,12(4):1422-1427,1422
    [27]T.D.Maffetone. T.M.McDlelland.345kV Substation Optical Current Measurement System for Revenue Metering and Protective Relaying[J]. IEEE Transactions on Power Delivery.1991,6(4):1430-1437,1435
    [28]Allen H.Rose, S.M.Etzel, Kent B.Rochford. Optical fiber current sensors in high electric field environments[J]. Lightwave Technology.1999,17(6):1042-1048, 1045
    [29]Masao Takahashi, Hideki Noda, Kiyohisa Terai. Optical current transformer for gas insulated switchgear using silica optical fiber[J]. IEEE Transactions on Power Delivery.1997,12(4):1422-1427,1422
    [30]T Werneck, Marcelo Martins, Abrantes, et al. Fiber-optic-based Current and Voltage Measuring System for High-voltage Distribution Lines[J]. IEEE Transactions on Power Delivery,2004,19(3):947-951,950
    [31]陈金玲.基于比较测量法的光学电流互感器的研究[D].华中科技大学博士论文,2007
    [32]南书明.浅析光纤电流互感器[J].科技信息.2007,6:64
    [33]哈尔滨工业大学掌握光学电流互感器关键技术[OL].[2009-06-18].http://www.edu.cn/gao_xiao_zi_xun_1091/20090618/t200906018_384936.shtml
    [34]世界规模最大的光学电流互感器整站工程在辽宁投入运行[OL].[2010-11-15].http://zk.shejis.com/hyzx/hyxw/201011/article_19059.html
    [35]王政平,刘晓瑜.线性双折射对不同类型光学玻璃电流互感器输出特性的影响[J].中国电机工程学报.2006,26(14):75-79,78
    [36]尚秋峰.光学电流互感器实用化方法的研究[D].华北电力大学博士论文,2004
    [37]W.lain Madden, W.Craig Michie, Andrew Cruden. Temperature Compensation for Optical Current Sensors[J]. Optical Engineering.1999,38(10):1699-1707, 1700
    [38]Xianyun Ma, Chengmu Luo. A method to Eliminate Birefringence of A Magneto-optic AC Current Transducer With Glass Ring Sensor Head[J]. IEEE Transactions on Power Delivery.1998,13(4):1015-1019,1016
    [39]李红斌,刘延冰.光学电流互感器温度补偿方法[J].仪表技术与传感器.2004(4):32-33,39
    [40]H. Katsukawa, H. Ishikawa, H. Okajima, et al. Development of An Optical Current Transducer with A Bulk Type Faraday Sensor for Metering[J], IEEE Transactions on Power Delivery.1996,11(2):702-707,703
    [41]Xianyun Ma, Chengmu Luo. A method to Eliminate Birefringence of A Magneto-optic AC Current Transducer With Glass Ring Sensor Head[J], IEEE Transactions on Power Delivery.1998,13(4):1015-1019,1016
    [42]Sohail Hamid Zaidi, Ralph P Tatam. Faraday-effect Magnetometry Compensation for the Temperature-Dependent Verdet Constant[J]. Science Technology.1994:1471-1479,1475
    [43]Michie W C, Cruden A, Niewczas P. Harmonic analysis of current waveforms using optical current sensor[J]. IEEE Transactions on Instrumentation and Measurement.2002,51(5):1023-1026,1026
    [44]M.玻恩,E.沃耳夫.光学原理[M].电子工业出版社,2005
    [45]刘公强.磁光学[M].上海科学技术出版社,2001
    [46]B.Culshaw, J.Dakin.光纤传感器[M].华中理工出版社,1997
    [47]潘琢金译.C8051F310/1/2/3/4/5/8/16 KB ISP FLASH微控制器数据手册[M].新华龙电子有限公司,2004
    [48]吕振,刘宝良,徐崇丽.数字电位器X9241与PIC单片机的接口与程序设计[J].单片机与嵌入式系统应用.2002(7):69-71,70
    [49]季宏峰,吴军辉,徐立鸿.I2C总线技术及应用实例[J].控制系统的设计.2002(4):21-23,21
    [50]郭文华.基于I2C总线的串行E2PROM及其应用[J].常熟理工学院学报(自然科学).2008,22(10):70-74,71
    [51]李国平,武海艳.C51实现12C总线的应用研究[J].福建电脑.2006,9:181-182,181
    [52]刘连浩,刘耀,王加阳等.非易失性数字电位器X9241及其与C8051的接口[J].湖南工业职业技术学院学报.2002,2(4):20-23,21
    [53]季遥遥,李岩松,刘君等.基于闭环负反馈高精度电流光学传感器技术的研究[J].电力系统保护与控制.2010,38(19):165-169,167-168
    [54]谷亚林,徐天成,宋耀良.数字信号处理中IIR数字滤波器设计的教法研究[J].理工高教研究.2003,22(4):124-126,125
    [55]高学军,周志华,温世伶.有源滤波器中数字低通滤波器的设计及其DSP实现[J].电气传动.2008,38(1):60-64,64
    [56]许春梅,孙江峰.基于TMS320F2812的FIR数字滤波器设计[J].大众科技.2007,96:87-89,88
    [57]武卫华.基于MATLAB的IIR数字滤波器的设计[J].自动化仪表.2003,24(7):19-22,21
    [58]曹梦婷.基于TMS320F2812的数据采集及数字滤波[D].中北大学硕士论文,2008
    [59]刘听祺-基于TMS320F2812的数据采集和滤波的研究与实现[D].南京理工大学硕士论文,2007
    [60]苏奎峰,吕强,耿庆锋等.TMS320F2812原理与开发[M].电子工业出版社,2006
    [61]陈立功.一种基于TMS320F2812的数字滤波器的快速设计方法[J].国外电子测量技术.2005,8:12-13,13
    [62]Texas Instruments Incorporated. TI DSP集成化开发环境(CCS)使用手册[M].清华大学出版社,2005
    [63]张自伟,陈健,吴小丹等.基于DSP及AD7656的电能质量在线监测终端的设计[J].江苏电机工程.2008,27(2):35-39,35
    [64]王胜辉,沈洋,于光平等.AD7656及其在光电电流互感器中的应用[J].沈阳工程学院学报(自然科学版).2009,5(3):222-225,223
    [65]霍毅,杨苹.TMS320系列DSP与C51单片机之间一种全新串行通信模式[J].中国电工技术学会电力电子学会第十届学术年会论文集,2006
    [66]Robert H.Bishop. LabVIEW 7实用教程[M].电子工业出版社,2005

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700