船舶综合液压推进技术基础研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
针对现有船舶推进方式的不足,同时结合现代船舶的发展需要,提出船舶综合液压推进原理(IHP),即通过液压泵将多台主机(两台及以上)输出的机械能转变为液压油的压力能,经功率叠加以及分配后,分别驱动螺旋桨(液压马达)、舵机、船舶侧推装置以及其它辅助装置,应用轴带发电机取代船舶辅机。
     基于船舶综合液压推进原理,设计一船舶综合液压推进装置,通过其工况配合特性曲线对该装置的工况配合特性规律进行分析,提出恒功率与变功率联合控制策略(CVCC),当综合液压推进船舶在采用CVCC控制方法以后,无论是在轻载或者重载工况下,船舶主机都可发出设计功率,具有非常优良的工况配合特性。
     为对综合液压推进装置传动效率进行分析,建立传动系统的效率模型,通过该模型对系统压力、温度、管径以及泄漏系数等参数对传动效率的影响规律进行仿真分析。结果表明系统传动效率可以达到0.85,系统压力、温度、管径以及泄漏系数对系统效率影响显著。在泄漏系数不变的情况下,随着管径的增大,传动效率逐渐增大,取得效率最大值的区域将从高温高压区移动至低温高压区,最后移动至低温低压区;随着泄漏系数的增大,效率在逐渐降低,传动效率取得最大值的区域将从低温高压区移动至低温低压区。虽然IHP系统的传动效率比直接推进系统(DP)要低,但当船舶实际工况偏离设计工况一定量时,IHP系统的总效率将比DP系统要高,综合液压推进装置重量与体积的大幅减小以及轴带发电机的采用将有力地提高综合液压推进船舶的经济性。
     为进一步提高液压系统传动效率,提出液压系统热能回收利用方法并设计热能回收利用装置,通过该装置可将液压系统运行过程中产生的热能回收后重新回馈到液压系统中,而不是将其通过冷却等方式直接散失掉。
     在对综合液压推进装置工况配合特性、控制策略以及传动效率分析、优化的基础上,开发一模拟试验台,并建立船舶综合液压推进系统的动态数学模型,通过试验台对该数学模型进行修改与验证。基于该数学模型将综合液压推进系统与直接推进系统进行仿真对比实验,结果表明综合液压推进系统的机动性明显优于直接推进系统,并具有优良的工况配合特性,CVCC控制策略对IHP系统是有效的;同时对IHP系统参数响应情况进行了分析,结果表明油液温度、载重量以及海水密度对系统动静态特性影响比较明显,油液弹性模量的变化对船舶的动、静态特性影响不太明显。
     由于船舶综合液压推进装置具有机动性高、工况配合特性好、工作模式多、功率重量比大、安全可靠性好、过载保护能力强以及可进行惯性能回收等突出优点,将成为某些大型船舶、工程船舶以及特种船舶的首选推进方式之一。
A new ship propulsion method, Integrated Hydraulic Propulsion (IHP), is proposed to improve the traditional ship propulsion system and then promote the modern ship development. In this method, the output power of several (two and more) main engines is transformed to fluid power by the means of hydraulic pumps to drive propellers (hydraulic motors), steering engines, side thrusters, and etc. Meanwhile, auxiliary engines are replaced by electric generators that are driven by main engines.
     Based on the IHP specified, an IHP propulsion system is designed. Working condition matching characteristic (WMC) principle of the system is studied through their WMC curves. An IHP ship control strategy, CVCC, is put forward based on the principle. The engines on IHP ship can always work well under designed working condition with CVCC.
     An efficiency model is developed to analyze the efficiency of the IHP hydraulic transmission system, using which effects of system pressure, oil temperature, pipe diameter, and leakage coefficient on transmission efficiency (TE) are studied. Results show that the TE can reach 0.85 and the system pressure, oil temperature, pipe diameter, and leakage coefficient influence the TE significantly. On one hand, the TE can be larger as the pipe diameter increases, if the leakage coefficient is constant. The TE of max (TEM) moves from high temperature and high pressure area to low temperature and high pressure area and then to low temperature and low pressure area finally. On the other hand, the TE can be lower as the leakage coefficient decreases. The TEM moves from low temperature and high pressure area to low temperature and low pressure area. Although the TE of the IHP system is lower than the Direct Propulsion (DP) system, the total efficiency of the IHP system is still higher than the DP system if the IHP ship works under certain off-design working conditions. The economical efficiency of the IHP ship can be apparently improved by decreasing the weight and volume of the propulsion system and in the way auxiliary engines are replaced by electric generators that are driven by main engines.
     Furthermore, in order to promote the TE of hydraulic system, Thermo energy recovery method and apparatus is developed to recover the thermo energy produced in working process instead of to dissipate it through a cooler and etc.
     Moreover, based on the WMC principle, the CVCC control strategy, and the TE analysis of the IHP system, an IHP model experimental rig and an IHP dynamic mathematic model (DMM) are developed. The DMM is then validated by the experimental rig. Accordingly, simulation comparison between the IHP system and the DP system is implemented using the DMM. Results show that the maneuverability and WMC characteristic of the IHP ship is evidently better than the DP ship, and the CVCC is effective for the IHP ship. In the mean time, the response characteristic of the IHP system is analyzed to demonstrate the significant influences of oil temperature, carrying capacity and seawater density to the IHP ship characteristic and slight influences of the oil modulus.
     In conclusion, the IHP ship is of better maneuverability, better working condition matching characteristic, more working patterns, better safe reliability, and larger power to weight ratio, which can protect the propulsion system against overloading easily and also recover the energy generated in ship baking process etc. So, the IHP system is one of the best propulsion systems particularly for some large ships, engineering ships and special ships.
引文
[1]吴锦元.http://www.ship2000.com.cn/zhenceyanjiu/200118.htm.
    [2]张乐天.民用船舶动力装置.武汉:人民交通出版社,1985.
    [3]杨承参,施润华.船舶动力装置.上海:上海交通大学出版社,1996.
    [4]樊印海.电力推进自动控制.大连:大连海事大学出版社,1998.
    [5]刘赟,徐绍佐.船舶综合电力推进系统综述.柴油机,2004(2):1-3.
    [6]谭作武.磁流体推进.北京:北京工业大学出版社,1998.
    [7]D.L.Mitchell,D.U.Gubser.Magnetohydrodynamic ship propulsion with superconducting magnets.Journal of Superconductivity,1988,1(4):349-364.
    [8]刘柱.几种船舶推进系统的比较.青岛远洋船员学院学报,2003,24(3):40-44.
    [9]金平仲.船舶喷水推进.北京:国防工业出版社,1986.
    [10]Allison,J.L.,Marine waterjet propulsion.SNAME Transaction 10,1993,275-335.
    [11]徐筱欣.船舶动力装置.上海:上海交通大学出版社,2007.
    [12]吴伯才.船舶液压推进的可行性探讨.宁波大学学报(理工版).2002,15(2):76-77.
    [13]菊地忠雄.船舶液压化的展望.油压技术(日本),1976(15):47-59.
    [14]殷乾训.国外新型船舶液压推进装置.船海工程,1984:30-33.
    [15]王益群,张伟.流体传动及控制技术评述.机械工程学报,2003,39(10):95-99.
    [16]Ken Ichiryu.Recent trend and future forecast of hydraulic system and control.9~(th) Achener Fluidtechnisches Kolloquium,1990:345-369.
    [17]路甬祥.流体传动与控制技术的历史进展与展望.机械工程学报,2001,37(10):2-9.
    [18]杨尔庄.液压技术的发展动向及展望.液压气动与密封,2003(4):1-7.
    [19]Brin R.White,Vince E.Notareschi,Grant W.Hines.HYDROSTATIC PROPULSION SYSTEM FOR A MARINE VESSEL.United States,US 6099367.2000.
    [20]Young Ju Kim,Taejon.PARALLEL-OPERATED HYDRAULIC MOTOR TYPE STERN PROPULSION APPARATUS FOR BOATS AND HYDRAULIC SYSTEM FOR CONTROLLING THE SAME.United States,US 6547610 B2.2003.
    [21]Kazuhiko Ohtsuki.BOAT PROPULSION SYSTEM.United States,US 7168997 B2.2007.
    [22]Czeslaw Dymarski.Comparative analysis of selected design variants of propulsion system for an inland waterways ship.Polish Marine Research,2006(13):3-7.
    [23]阎欣.船舶综合液压推进系统设计及动态仿真:(硕士学位论文).大连:大连海事大 学,2006.
    [24]沈岩.船舶液压推进之推进特性的研究:(硕士学位论文).大连:大连海事大学,2006.
    [25]吴世海,邱中梁.深海载人潜水器液压系统研究.液压与气动,2004(6):54-56.
    [26]许乐平,詹玉龙.船舶动力装置技术管理.大连:大连海事大学出版社,2006.
    [27]张利平.液压传动系统及设计.北京:化学工业出版社,2005.
    [28]成大先.机械设计手册(液压传动).北京:化学工业出版社,2004.
    [29]张彦廷.基于混和动力与能量回收的液压挖掘机节能研究:(博士学位论文).杭州:浙江大学,2006.
    [30]Margolis,D.Energy regenerative actuator for motion control with application to fluid power systems.ASME Journal of Dynamic System,Measurement,and control,2005,127:33-40.
    [31]Daniel B.Shore,Prospect Heihtes,Peter J.Dix,Naperville.Energy recovery system for work vehicle including hydraulic drive circuit and method of recovering energy.United States Patent,US 6971463 B2.2005.
    [32]林建杰,徐兵,杨华勇.蓄能器作为压力油源的液压电梯节能系统研究.中国机械工程,2003,14(24):2081-2083.
    [33]A.Pourmovahed,N.H.Beachley,F.J.Fronczak.Modeling of a Hydraulic Energy Regeneration System—Part Ⅱ:Experimental Program.Journal of Dynamic Systems,Measurement,and Control,1992(114):160-165.
    [34]张银彩,苑士华,胡纪滨.城市公交车辆液压节能装置的研究.农业机械学报,2007,38(6):34-37.
    [35]朱树文,陆志强.船机桨工况与配合.上海:上海交通大学出版社,1990.
    [36]吴恒.船舶动力装置技术管理.大连:大连海事大学出版社,1999.
    [37]雷天觉.液压工程手册.北京:机械工业出版社,1990.
    [38]秦曾煌.电工学.北京:高等教育出版社,1998.
    [39]Ji Yulong,Sun Yuqing,Chen Haiquan,et al.Study on Control Strategy of Integrated Hydraulic Propulsion Ship.Proceeding of the 2007 IEEE International Conference on Mechatronics and Automation.China:Harbin Engineering University,2007:1878-1883.
    [40]何清华,常毅华,郝鹏.液压挖掘机恒功率与变功率协调控制节能系统研究.建筑机械,2006(3):55-58.
    [41]陆廷海.温度对液压泵主要性能参数的影响.机械工程学报,1994,30(3):60-64.
    [42]K.Sadashivappa,M.Singaperumal,K.Narayanasamy.On the efficiency of the axial piston motor considering piston form deviations.Mechatronics,1996,6(3):283-301.
    [43]B.Ulanicki,J.Kahler,B.Coulbeck.Modeling the efficiency and power characteristics of a pump group.Journal of Water Resources Planning and Management,2008,134(1):88-93.
    [44]李翔晟,邓海英,唐晓红.新型传动试验装置能量再生系统效率分析.中南林学院学报,2005,25(6):106-109.
    [45]李翔晟,常思勤.静液压储能传动汽车动力源系统的匹配效率.中国公路学报,2007,20(1):118-122.
    [46]薛晓虎,杜金凤.柱塞泵效率特性的分析和研究.液压与气动,2003(12):43-46.
    [47]成大先.机械设计手册(液压控制).北京:化学工业出版社,2004.
    [48]何存兴.液压传动与气压传动.上海:华中科技大学出版社,2000.
    [49]盛敬超.液压流体力学.北京:机械工业出版社,1980.
    [50]路甬祥.液压气动技术手册.北京:机械工业出版社,2001.
    [51]路华鹏,马彪,孙宪林等.静液传动系统容积效率试验研究.机床与液压,2007,35(3):71-73.
    [52]蔡廷文.一种功率回收式液压试验系统的效率计算.研究开发,2002,40(460):26-27.
    [53]王永奇,王鹏程,李建军.推土机变量泵—变量马达传动系统效率研究.矿山机械,2004(6):39-41.
    [54]张百海,苑士华.联体液压泵—马达系统的效率分析和试验研究.北京理工大学学报,1998,18(2):247-250.
    [55]P.Kaliafetis and TH.Costopoulos.Modelling and Simulation of Hydraulic Components and Systems.TR-931 Machine Elements Laboratory Mechanical Engineering N.T.U.A.,1993.
    [56]罗德刚,舒代游.轴向柱塞泵在不同工况下的效率.流体传动与控制,2004(6):37-40.
    [57]柯明纯,丁凡,李宾等.被压对液压马达效率影响的探讨.农业机械学报,2006,37(10):127-131.
    [58]R.M.Davies,J.Watton.Intelligent control of an electrohydraulic motor drive system.Mechatronics,1995,5(5):527-540.
    [59]Xu Bing,Yang Jian,Yang Huayong.Comparison of energy-saving on the speed control of the VVVF hydraulic elevator with and without the pressure accumulator.Mechatronics,2005(15):1159-1174.
    [60]张栋.基于功率匹配的挖掘机节能控制技术的研究:(博士学位论文).长春:吉林大学,2005.
    [61]尹志斌,孙培廷,黄连中.船用主机轴带发电机.世界海运,2002,25(3):53-54.
    [62]徐国毅.1000t级巡视船轮机经济效益初探.船舶,2000(3):35-38.
    [63]曹关桐.海船实用节能方法及其经济效益评价.天津航海,1985(2):21-34.
    [64]曲云霞.地源热泵系统模型与仿真:(博士学位论文).西安:西安建筑科技大学,2004.
    [65]郁永章.热泵原理与应用.北京:机械工业出版社,1993.
    [66]Benson,R.S.,Ledger,J.D.,Whitehouse,N.D.et al.Comparison of Experimental and Simulated Transient Responses of a Turbocharged Diesel Engine,SAE paper:No.730666,1973.
    [67]R.D.Reitz,C.J.Rutland.3-D Modeling of Diesel Engine Intake Flow,Combustion and Emissions,SAE paper:No.911789,1991.
    [68]郭晓平,王占杰.直喷式柴油机燃烧数值计算研究.工程热物理学报,2005,26(增刊):61-64.
    [69]R.D.Reitz,C.J.Rutland.Development and Testing of Diesel Engine CFD models.Prog.Energy Combust.SCI,1995(21):173-196.
    [70]Gerstle,M.,Merker,G.P.Evaluation on two-stroke engines scavenging models,SAE paper:No.970358,1997.
    [71]Time Sebastian Strauss,Georg Wolfgang.Combustion in a Swirl Chamber Diesel Engine simulation by Computational of Fluid Dynamics,SAE paper:No.950280,1995.
    [72]王海燕.大型低速柴油机建模与系统仿真:(博士学位论文).大连:大连海事大学,2006.
    [73]Watson N,Marzouk M.A nonlinear model for a diesel engine under transient conditions.SAE Paper:No.770123,1977.
    [74]Dimitrios T.Mountalas.Prediction of marine diesel engine performance under fault conditions.Applied Thermal Engineering,2000,20(2000):1753-1783.
    [75]彭水生.轮机模拟器6S60MC柴油主机仿真系统与故障模拟:(博士学位论文).大连:大连海事大学,2000.
    [76]E.Hendricks.Mean value modeling of large turbocharged two-stroke diesel engines.SAE Paper:No.890564,1989.
    [77]J.P.Jensen,A.F.Kristensen,S.C.Sorenson,et al.Mean value modeling of a small turbocharged Diesel engine.SAE Paper:No.910070,1991.
    [78]Merten Jung.Mean-value modeling and robust control of the air path of a turbocharged diesel engine:(Thesis for Ph.D).UK:University of Cambridge,2003.
    [79]Byungho Lee.Methodology for rapid static and dynamic model-based engine calibration and optimization:(Thesis for Ph.D).USA:The Ohio State University,2005.
    [80]S.Ouenou-Gamo,A.Rachid,M.Ouladsine.A Nonlinear Controller of a Turbocharged Diesel Engine Using Sliding Mode.The 1997 IEEE International Conference on Control Applications.USA:Hartford,1997:803-805.
    [81]Mrdian Jankovic,Miroslava Jankovic,Ilya Kolmanovsky.Constructive lyapunov control design for turbocharged diesel engines.IEEE Transactions on Control System Technology,2000,8(2):288-299.
    [82]张均东.轮机工程系统状态空间建模:(博士学位论文).大连:大连海事大学,1998.
    [83]孙建波,郭晨.大型低速二冲程柴油机动力装置的准稳态仿真.内燃机学报,2006,24(4):351-356.
    [84]John R.Wagner,Darren M.Dawson,Liu Zeyu.Nonlinear air-to-fuel ratio and engine speed control for hybrid vehicles.IEEE Transactions on Vehicular Technology,2003,52(1):184-195.
    [85]Piero Azzoni,Giorgio Minelli,Davide Moro.Air-fuel ratio control for a high performance engine using throttle angle information.SAE Paper:No.1999-01-1169,1999.
    [86]王海燕,任光,张均东.船用大型低速二冲程柴油机的动态模型.内然机学报,2006,24(5):452-458.
    [87]冯国胜,杨绍普.柴油机及其电控系统仿真.系统仿真学报.2005,17(9):2276-2279.
    [88]帅英梅,高世伦.涡轮增压柴油机的平均值模型及仿真.柴油机设计与制造.2004,107(2):19-23.
    [89]曾丹苓,敖越,张新铭等.工程热力学(第三版).北京:高等教育出版社,2002.
    [90]Sergey Edward Lyshevski,A.S.C.Sinha,J.P.Seger.Modeling and control of turbocharged diesels for medium and heavy vehicles.Proceeding of the American Control Conference.USA:California,1999:2688-2692.
    [91]岳丹婷.工程热力学和传热学.大连:大连海事大学出版社,2002.
    [92]江国和,刘西全.柴油机转速智能控制系统仿真.计算机仿真,2006,23(1):165-167.
    [93]刘长年.液压伺服系统的分析与设计.北京:科学出版社,1989.
    [94]Ji Yulong,Sun Yuqing,Chen Lei,et al.Modeling and simulation of IHP ship.Proceeding of the 2nd International Conference On Computational Methods in Fluid Power.Denmark:Aalborg University,2006:E5.
    [95]P.Kaliafetis and TH.Costopoulos.Modeling and simulation of an axial piston variable displacement pump with pressure.Mechanism and Machine Theory,1995,30(4):599-612.
    [96]N.D.Manring,R.E.Johnson.Modeling and Designing a Variable-Displacement Open-Loop Pump.Journal of Dynamic Systems,Measurement,and ContrOl,1996(118):267-271.
    [97]Guangfu Sun and Jie Liu.Dynamic responses of hydraulic crane during luffing motion.Mechanism and Machine Theory,2006,41(11):1273-1288.
    [98]彭天好.变频泵控马达调速及补偿特性的研究:(博士学位论文).杭州:浙江大学,2003.
    [99]纪玉龙,孙玉清,陈海泉等.船舶综合液压推进系统仿真.大连海事大学学报,2007,33(2):101-105.
    [100]The MathWorks.SimHydraulics Reference.The MathWorks,2006.
    [101]Duqiang Wu,Richard Burton,Greg Schoenau,et al.Modeling of orifice flow rate at very small openings.International Journal of Fluid Power,2003,4(1):31-39.
    [102]J.D.Burton,K.A.Edge,C.R.Burrows.Modeling Requirements for the Parallel Simulation of Hydraulic Systems.Journal of Dynamic Systems,Measurement,and Control,1994(116):137-145.
    [103]A.Pourmovahed,N.H.Beachley,F.J.Fronczak.Modeling of a Hydraulic Energy Regeneration System—Part Ⅰ:Analytical Treatment.Journal of Dynamic Systems,Measurement,and Control,1992(114):155-159.
    [104]权凌霄,孔详东,高英杰等.不考虑进口特性的蓄能器冲击理论及试验.机械工程学报,2007,43(9):29-32.
    [105]战兴群,张炎华,赵克定.二次调节系统中液压蓄能器模型的研究.中国机械工程,2001,12(增):45-46.
    [106]Osama Gad,M.Galal Rabie,Refaat M.EI-Taher.Prediction and Improvement of Steady-State Performance of a Power Controlled Axial Piston Pump.Journal of Dynamic Systems,Measurement,and Control,2002(124):443-451.
    [107]权龙,李凤兰,田惠琴等.变量泵、比例阀和蓄能器复合控制差动缸回路原理及应用.机械工程学报,2006,42(5):115-119.
    [108]郭初生,王向周,王渝.汽车行使取力发电系统的建模与仿真.系统仿真学报,2005,17(8):1809-1812.
    [109]Duqiang Wu.Modeling and Evaluation of a Load-Sensing and Pressure Compensated Hydraulic System:(Thesis for Ph.D).Canada:University of Saskatchewan,2003.
    [110]Bora Eryilmaz.Improved Nonlinear Modeling and Control of Electro-Hydraulic Systems:(Thesis for Ph.D).USA:Northeastern University,2000.
    [111]Amit Shukla.Stability Analysis and Design of Servo-hydraulic Systems:(Thesis for Ph.D).USA:University of Cincinnati,2002.
    [112]Noah D.Manring.The control and containment forces on the swash plate of an axial piston pump utilizing a secondary swash-plate angle.Proceedings of the American Control Conference.America:Anchorage,2002:4837-4842.
    [113]Noah D.Manring.The Control and Containment Forces on the Swash Plate of an Axial-Piston Pump.Journal of Dynamic Systems,Measurement,and Control,1999(121):599-605.
    [114]G.J.Schoenau,R.T.Burton,G.P.Kavanagh.Dynamic Analysis of a Variable Displacement Pump.Journal of Dynamic Systems,Measurement,and Control,1990(112):122-132.
    [115]徐绳武.柱塞式液压泵.北京:机械工业出版社,1985.
    [116]王世富,马俊功,王占林.机载智能液压泵的建模与仿真.中国机械工程,2004,15(5):398-401.
    [117]Cho,Junhee.Dynamic Modeling and Analysis for Swash-Plate Type Axial Pump Controi Utilizing Indexing Valve Plate:(Thesis for Ph.D).Columbia:University of Missouri,2000.
    [118]李殿璞.船舶运动与建模.哈尔滨:哈尔滨工程大学出版社,1999.
    [119]张伟.船舶电力推进仿真研究:(硕士学位论文).武汉:武汉理工大学,2003.
    [120]杨晓丽.吊舱式电力推进系统的动态仿真的研究:(硕士学位论文).上海:上海海事大 学,2004.
    [121]刘勇,丛望.螺旋桨负载动态仿真实验的研究.船电技术,2002(4):22-25.
    [122]李殿璞.基于螺旋桨特性四象限Chebyshev拟合式的深潜艇正倒航变速推进模型.哈尔滨工程大学学报,2002,23(1):52-57.
    [123]哈瓦尔特.船舶阻力与推进.大连:大连理工大学出版社,1989.
    [124]邵世明.船舶阻力.北京:国防工业出版社,1995.
    [125]李世谟,周俊麟.船舶阻力.武汉:武汉水运工程学院出版社,1984.
    [126]陈海泉,谷学华,孙玉清.液压介质的仿真.大连海事大学学报,2002,28(2):97-92.
    [127]时培成,王幼民,王立涛.液压油液数字建模与仿真.农业机械学报,2007,38(12):148-151.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700