小波分析技术在两相流检测中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
两相流系统是一个复杂的非线性动态系统,相间存在着界面效应和相对速度,致使两相流参数检测的难度较大,在国际上,也是一个急待发展的探索研究领域。在两相流系统中,流型是一个重要的检测参数,它不但影响两相流的流动特性和传热传质等性能,而且影响两相流系统其它参数的准确测量,因此两相流的流型辨识是该领域中的一个重要研究方向。
     本文基于小波分析技术,辅以电容层析成像技术、多传感器信息融合技术以及模糊处理技术,对气固流化床、气液两相流和油田两相流系统的流型进行了分析和辨识,并在自行设计和建立的装置以及大庆油田测井研究所模拟井装置上进行了实验验证,得到了一些有益的结论:
     ● 提出了一种将小波分析技术应用于气固流化床流型分析与辨识的新方法,并构造了相应的特征值。首先利用所采集到的压力波动信号的小波分解,对气固流化床流型的转变进行了分析,发现在不同流型下,经小波分解后的信号有着不同的表现形式。在此基础上,构造出特征值——尺度能量百分比,并建立了气固流化床从固定床到鼓泡床的判别准则,经实验验证所提出的方法是有效的,取得了良好的流型辨识效果。
     ● 将电容层析成像系统成功地应用于气固流化床的流型(固定床、鼓泡床和湍动床)辨识中,并提出了一种新型的电容层析成像图像重建算法:利用Tikhonov正则化原理和ART算法相结合的组合型图像重建算法来实现整体空隙率的测量。此算法通过Tikhonov正则化克服了图像重建过程中的不适定性,从而保证了初始图像的准确性和有效性,并利用ART算法的收敛性,改善了图像的重建质量,从而提高了由图像重建得到的空隙率计算的准确度,为将电容层析成像系统应用于气固流化床的流型辨识中提供了更可靠的依据。
     ● 为了进一步提高气固流化床流型辨识的准确率,本论文引入了多传感器信息融合技术。采用微差压和电容层析成像两种传感器,在利用压力波动信号的小波分解进行流型辨识以及利用空隙率波动信号进行流型辨识的基础上,对每个传感器的辨识结果利用D-S证据理论,在
    
     摘 要
     决策级上进行了合理的信息融合处理,得到最终的辨识结果。初步实
     验表明,所采用的信息融合方法对提高流型辨识的准确率是有效的,
     使气固流化床中固定床、鼓泡床和湍动床的辨识准确率分别提高到
     95%、90%和 85%。
    .对于水平管气水两相流系统,本文建立了流型辨识的软测量模型:利
     用简单易测的差压波动信号作为辅助变量,结合小波分析技术和模糊
     模式识别方法,对主导变量——流型进行了辨识,提出了不同管径下
     的气水两相流流型的综合辨识方法。经实验验证,所提出的方法是有
     效的。
    .本文初步尝试了将小波分析技术应用于油田两相流系统中。对油田中
     大管径竖直上升管气水两相流进行了初步分析,结果表明,不同流型
     下,大管径竖直上升管的差压波动信号的小波分解在时间-尺度上的分
     布存在着较大的差异,可以用来进行流型的分析和辨识。
The two-phase flow system is a complex, nonlinear and dynamic system. There are interface effect and relative velocity between the two phases, so the measurement of two-phase flow is more difficult. In the parameter measurement technique of the two-phase flow, the identification of the flow regimes (patterns) is one of most important research fields. Heat transfer, mass transfer and the measurement accuracy of other flow parameters depend on the flow regimes.
    In this thesis, the author applies the wavelet analysis, ECT, multisensor information fusion and fuzzy technology to the identification of the flow regimes of gas-solid fluidized bed and gas-liquid two-phase flow. The experimental results on the self-designed equipment of gas-solid fluidized bed and gas-liquid two-phase flow show that the presented methods are effective. The main works are written as the following:
     A new method of the application of wavelet analysis to the identification of the flow regimes of gas-solid fluidized bed is proposed, and the eigenvalues used in identification of flow regimes are constructed. In different flow regimes of gas-solid fluidized bed, the decomposed signals of the pressure fluctuation signal have obvious differences. The eigenvalues of 'scale energy percent' are obtained to identify the flow regimes of fixed bed and bubbling bed of gas-solid fluidized bed, and the rules of identification are also established. The experimental results show that the method is effective.
     The electrical capacitance tomography(ECT for short) system is successfully applied to the identification of flow regimes of gas-solid fluidized bed by the voidage measurement of gas-solid fluidized bed, and a new combinatorial image reconstruction algorithm which combines Tikhonov regularization theory with ART (Algebraic Reconstruction Techniques) algorithm is presented to implement the global voidage measurement of gas-solid fluidized bed. The use of Tikhonov regularization theory is to solve the ill-posed problem of image reconstruction and the use of ART algorithm is to improve the quality of the final reconstructed image that determines the precision of the voidage measurement.
    
    
     For improving the accuracy of identification of regimes of gas-solid fluidized bed, the multisensor information fusion technique is introduced. In the dissertation, the pressure transducer and the ECT transducer are applied to provide the different signals-pressure fluctuation signal and voltage fluctuation signal. Based on the results of the identification of flow regimes using wavelet decomposition of pressure fluctuation signal and voidage fluctuation signal, using the D-S evidence theory of information fusion, the author identifies the flow regimes of fixed bed, bubbling bed and turbulent bed successfully, and the results show that the method is effective. The accuracies of identification of fixed bed, bubbling bed and turbulent bed have improved to 95%, 90% and 85% respectively.
     In gas-liquid two phase flow system, the model of soft-sensoring technique is constructed: regarding the differential pressure fluctuation signal as the secondary variable and combining the wavelet analysis and fuzzy identification technique, the primary variable of flow regimes of gas-water two-phase flow is measured. An identification method applied to the gas-water two-phase flow with different pipe diameter is presented. The results show that the method is effective.
     The wavelet analysis is used in oil-flied two-phase flow system primarily. In the large-diameter upright pipe of Institute of Oil Logging of Daqing Oil Field, the wavelet analysis of differential pressure fluctuation signals along the pipe shows that the wavelet analysis can be used to identify the regime of the upright gas-water two phase flow and the deep research will continue.
引文
Akay M, Welkowitz W., et al. (1994), Investigating the effects of vasodilator drugs on the turbulent sound cased by femoral astery stenosis using short-term Fourier and wavelet transform methods, IEEE BME, 41(11):921~928
    Argoul F., et al.(1989), Wavelet analysis of turbulence reveals the multifractal nature of the richardson cascade, Nature, 338(2): 51
    Baker R. C.(1991) et al., Response of bulk flowmeters to multiphase flows, Proc. Instr. Mech. Engrs., 205: 217~229
    Bakshi B. R., Zhong H., Jiang P. et al. (1995), Analysis of flow in gas-liquid bubble columns using multi-resolution methods, Trans. IChemE, 73: 608~614, PartA
    Banerjee S., Lahey R. T. (1981), Advances in two-phase flow instrumentation, Advances Nuclear Science Technology, 13: 227~414
    Banholzer W. F. et al. (1981), Direct imaging of time-average flow pattern in a fluidized reactor using X-ray computed tomography, Ind. Chem. Res., 26: 763~767
    Barnea D., Shoham O., Taitel Y. (1982a), Flow-pattern transition for vertical downward two phase flow, Chem. Eng. Sci., 37: 741~746
    Barnea D., Shoham O., Taitel Y. (1982b), Flow-pattern transition for downward inclined two phase flow: horizontal to vertical, Chem. Eng. Sci., 37: 735~740
    Barnea D., Shoham O., Taitel Y. (1985), Gas-liquid flow in inclined tubes: flow pattern transitions for upward flow, Chem. Eng. Sci., 40(1): 131~136
    Barnea D. (1987), A unified model for predicting flow-pattern transitions for the whole range of pipe inclinations, Int. J. Multiphase Flow, 13(1): 1~12
    Beck M. S., Bayars M., Dyakowski T., Waterfall R., He R., Wang S. J., Yang
    
    W. Q. (1997), Principles and industrial applications of electrical capacitance tomography, Measurement+Control, 30: 97~200
    Biage M., Delhaye J. M. & Nakach R. (1989), The flooding transition: an experimental appraisal of the chaotic aspect of liquid film flow before the flooding point, 26th National Heat Transfer Conf., Philadelphia, USA, AIChE Symp, 274~279
    Bony J. M. (1981), Calcul symbolique et propogation des singularities pour les equations anx derivees partielles non lineares, Ann. Soc. Ec. Norm. Sup., 14, 209~246
    Bruun H. H., Samways A. L. (1995), Hot-film measurements techiques in the two-phase flows, ISMTMF, 49~56
    Cai Y., Wambaganss M. W., Jendrzejczyk J. A. (1996), Application of chaos theory in identification of two-phase flow patterns and transitions in a small, horizontal, rectangular channel, ASME J. Fluid Engineering, 118: 383~390
    Cheng Huiping, Huang Suyi, Yang Jinguo(1995), Determination of local void fraction and flow regime of Freon-113 two-phase flow in a tube bundle by an optical probe, ISMTMF, 19~26
    Chui C. K. (1992), An introduction to wavelets, Academic Press, Inc., Boston
    Coifman R. & Rochberg R. (1980), Representation theorems of holomophic and hamonic functions in L~p, Asterisque, 77: 249~254
    Coifman R., Wickerhauser V. (1989), Best-adapted wave packet bases, Numerical Algorithms Research Group, Dept. of Math, Yale University, New Haven, CT 06520, USA
    Couthard J., Yan Y. (1993), Ultrasonic cross-correlation flowmeter, Measurement & Control, 26
    Daubechies I.(1991), Ten lectures on wavelets, CBMS-NSF Series in Appl. Math., SIAM Publ., Philadelphia
    
    
    De Vaono A. C. et al. (1980), Design of an isotopic CT scanner for two-phase flow measurements, IEEE Trans. Nucl. Sci., NS-27 (1): 814~820
    Donoho D. L. (1995), De-noising by soft-thresholding, IEEE Trans. Inform. Theory, 41 (3): 613~627
    Donoho D. L., Johnstone I. M. (1994), Ideal spatial adaptation via wavelet shrinkage, Biometrika, 81: 425~455
    Dyakowski T., Edwards R. E., Xie C. G., Williams R. A. (1997), Applications of capacitance tomography to gas-solid flow, Chem. Eng. Sci., 52(13): 2099~2110
    Editor(1983), Physical modeling of multiphase flow, Control and Instr., 15 (7): 37~45
    Embrechts M. J. (1996), et al, The application of neural networks to two-phase flow regime identification, Proceeding of the American Power Conference, 860~864
    Fan L. T., Kang Y., Neogi D., Yashima M. (1993), Fractal analysis of fluidized particle behavior in liquid-solid fluidized beds, AIChE J. 39(3): 513~517
    Fan L. T., Neogi D., Yashima M. (1990), Stochastic analysis of a three-phase fluidized bed: fractal approach, AIChE J., 36(10): 1529~1534
    Fasching G. E., Smith N. S. (1991), A capacitive system for three-dimensional imaging of fluidized beds, Rev. Sci. Instrum., 62(9): 2243~2251
    Flandrin P.(1992), Wavelet analysis and synthesis of fractional brownian motion, IEEE Trans Info Theory, 38(2), Part Ⅱ: 910~917
    Foscolo P. U., Gibilaro L. G. (1984), A fully prediction criterion for the transition between particulate and aggregative fluidization, Chem. Eng. Sci., 39: 1667
    Franca F., Acikgoz M., Lahey R. T., Clausse A. (1991), An application of fractal techniques to flow regime identification, Proc. 5th Int. Conf. Multiphase Production, Canns, France, 281~293
    
    
    Grace J. R.(1986), Contacting modes and beheviour classification of gas-solid and other two-phase suspensions, AIChE, 64: 353~363
    Grossman A., Morlet J.(1984), Decomposition of hardy function into square intergrable wavelets of constant shape, SIAM. J. Math. Anal., 15: 723~726
    Govier G. W., Omer M. M.(1962), The horizontal pipeline flow of air-water mixtures, Can. J. Chem. Engr., 40: 93~104
    Griffith P., Wallis G. B. (1961), Two-phase slug flow, J. Heat Transfer, 83(3): 307~318
    He M. et al. (1986), Flow pattern identification and correction in gas-liquid two-phase flowrate measurement using fuzzy criteria, Proceedings of MICONEX'86, 182~192
    He Ming(1990) et al., Flow pattern measurement and image display system used in gas liquid two phase flow, Proc. of MICONEX'90, 315~319
    Hewitt G. F.(1978), Measurement of two phase flow parameters, Academic Press, London
    Hilton M. L.(1997), Wavelet and wavelet packet compression of electrocardiograms, IEEE Trans. Biomed. Eng., 44(5): 394~401
    Huang S. M., Plaskowski A. B., Xie C. G., Beck M. S.(1989), Tomographic imaging of two-component flow using capacitance sensor, J. Phys. E: Sci. Instrum., 22: 173~177
    Huang Zhiyao, Wang Baoliang, Li Haiqing(2001), An Intelligent Measurement System for Powder Flowrate Measurement in pneumatic Conveying System[C], Proceedings of the 18th IEEE Instrumentation and Measurement Technology Conference (IMTC/2001), 21-23 May, 2001, Budapest, Hungary, 2: 1237~1240
    Hubbard M. G., Dukler A. E, (1966), The characterization of flow regimes for horizontal two-phase flow, In: Saad M. A., Moller J. A., eds, Proc of the
    
    1966 Heat Transfer and Fluid Mechanica Institute, Stanford University Press, 100~121
    Isaksenφ. (1996), A review of reconstruction techniques for capacitance tomography, Meas. Sci. Technol., 7: 325~337
    Johansen G. A., Froystein T. et al. (1995), The Development of a dual mode tomography for three-component flow imaging, the Chemical Engineering Journal, 56(3): 175~182
    Johansen G. A., Froystein T. et al. (1996), A dual sensor flow imaging tomographic system, Meas. Sci. Technol., 7(3): 297~307
    Jones O. C., Zuber N. (1975), The interrelation between void fraction fluctuations and flow patterns in two-phase flow, Int. J. Multiphase Flow, 2: 273~306
    Kadambi V. (1982), Stability of annular flow in horizontal tubes, Int. J. Multiphase Flow, 8: 311~328
    Kordyban E. S., Ranov T.(1970), Mechanism of slug formation in horizontal two-phase flow, Trans. ASME, J. Basic Engineering, 92: 857~864
    Kozma R., Kok H., et al. (1996), Characterization of two-phase flows using fractal analysis of local temperature fluctuations, Int. J. Multiphase Flow, 22 (5): 953-968
    Lao Liyun, Zhang Hongjiang & Li Haiqing(1998), The relationships between the WVD characteristics of pressure drop and gas-liquid two-phase flow patterns in horizontal pipeline, ISMTMF'98, Beijing, 181~186
    Lapidus L., Elgin J. C.(1957), Mechanics of vertical-moving fluidized systems, AIChE. J., 3: 63~68
    Leung L. S.(1980), The ups and downs of gas-solid flow: a review, In: Fluidization, eds, Grace J. R., Matsen J. M., Plenum, New York, 25~68
    Li Y., Kwauk M. (1980), The dynamics of fast fluidization, In: Fluidization IV, eds, Kunii D., Toei R., Engineering Foundation, New York, 225~232
    
    
    Liu S., Fu L., Yang W. Q.(1999), Optimization of an iterative image reconstruction algorithm for electrical capacitance tomography, Meas. Sci. Technol., 10: 37~39
    Lin P. Y., Hanratty T. J.(1986), Prediction of the initiation of slugs with linear stability theory, Int. J. Multiphase Flow, 12(1): 79~98
    Lockhart R. W., Martinelli R. C.(1949), Proposed correlation of data for isothermal two-phase, two-component flow in pipes, Chem. Eng. Progr., 45: 39~48
    Lu Zhongqi, Zhang Xi(1994), Identification of flow patterns of two-phase flow by mathematical modeling, Nuclear Engineering and Design, 149: 111~116
    Lynch G. F., Segal S. L.(1977), Direct measurement of the void fraction of a two-phase fluid by nuclear magnetic resonance, Int. J. of Mass Transfer, 20(1): 7~14
    Mallat S. (1989a), Multi~requency channel decomposition of images and wavelet model, IEEE Trans. ASSP, 37(12): 2091~2110
    Mallat S. (1989b), A theory for multiresolution signal decomposition: The wavelet representation, IEEE Trans. PAMI, 11(7): 674~693
    Mallat S. (1989c), Multiresolution approximation and wavelet orthonormal bases of L~2(R), Trans. Amer. Math. Soci., 315(1): 68~87
    Mallat S. (1992a), Singularity detection and processing with wavelets, IEEE Trans. Information Theory, 38(2): 617~643
    Mallat S., Zhong S.(1992b), Characterization of signals multiscale edges, IEEE Trans. PAMI, 14(7): 710~732
    Mandhane J. M., Gregory G. A., Aziz K. (1974), A flow pattern map for gas liquid flow in horizontal pipes, Int. J. Multiphase Flow, 1: 537~553
    Matsui G. (1986), Automatic identification of flow regimes in vertical two-phase flow using differential pressure fluctuations, Nuclear Engineering and Design, 95: 221~231
    Mcquillan K. W., Whalley P. B.(1985), Flow patterns in vertical two phase flow,
    
    Int. J. Multiphase Flow, 11: 161~175
    Meng Jianbo(1995), The new approach to the vortex flowmeter, Int. Symposium on measuring techniques for multiphase flow, 348~355
    Meste O., Rix H., Caminal P., et al. (1994), Ventricularlate potentials characterization in time-frequency domain by means of a wavelet transform, IEEE BME, 41(7): 625~634
    Meyer Y. (1987), Wavelets and operators to appear, Proc. Special Year in Analysis, Urbana
    Meyer Y. (1990), Ondelettes, I, Ondelettes et Operateurs, Hermann
    Meyer Y. (1993), Wavelets algorithms & applications, SIAM
    Mi Y., Ishii M., Tsoukalas L. H. (1998), Vertical two-phase flow identification using advanced instrumentation and neural networks, Nuclear Engineering and Design, 184: 409~420
    Mishima K., Ishii M. (1984), Flow regime transition criteria for upward two-phase flow in vertical tubes, Int. J. Heat Mass Transfer, 27(5): 723~737
    Monji H., Matsui G. (1998), Flow pattern identification of gas-liquid two-phase flow using a neural network, The Third International Conference on Multiphase Flow, ICMF'98
    Mukherjee H., Brill J. P.(1985), Empirical equations to predict flow patterns in two-phase inclined flow, Int. J. Multiphase Flow, 11 (3): 299~315
    Nicolai Rainer, Yen Zhoulin, Reh Lothar(1995), Characterizing two phase gas-solid flow in CFB by an optical probe, ISMTMF, 27~35
    Nooralahiyan, A. Y., Hoyle, B. S. et al. (1994), Neural network for pattern association in electrical capacitance tomography, IEE Proc. -Circuits Devices Syst., 141(6): 517~521
    Oddie G. M. (1991), On the detection of a low-dimensional attractor in disperse two-component (oil-water) flow in a vertical pipe, Flow Meas. Instrum., 2:
    
    225-229
    Oshinowo T., Charles M. E. (1974), Vertical two-phase flow, Part Ⅰ: Flow pattern correlations, Can J. Chem. Eng., 52: 25~35
    Peng Y. (1995), et al., Characterization of fluctuating signals of multiphase flows using wavelet transform, Proceeding of Modem Measuring Techniques for Multiphase Flows, 281~288
    Reh L. (1971), Fluid bed processing, Chem. Eng. Progr., 67(21): 58~63
    Roger Baker(1989), Multi-phase flow moves on, C&I, 2: 35~36
    Romero J. B., Johanson L. N.(1962), Factors affection fluidized bed quality, Chem. Eng. Progr. Symp. Ser., 58(38): 28
    Semmes S.(1989), Nonlinear Fourier analysis, Bull. AMS, 20(1), 1~18
    Sirok B., Grabec I.(1988), Chaotic properties of a pulsating solid particles/gas flow, Stroj. Vest. 34(10-12): 162~165
    Spedding P. L. and Nguyen T. V. (1980), Regime maps for air-water two-phase flow, Chem. Eng. Sci., 35: 779~793
    Struart O. Nelson(1991), Measurement and use of dielectric properties of agricultural products, IEEE Conference Record on Instrumentation and Measurement Technology, 636~640
    Su B., Zhang Y., Peng L., Yao D., Zhang B. (2000), The use of simultaneous iterative reconstruction technique for electrical capacitance tomography, Chem. Eng. J, 77: 37~41
    Taitel Y., Dukle A. E. (1976), A model for predicating flow regime transitions in horizontal and near horizontal gas-liquid flow, AIChE J., 22(1): 47~55
    Taitel Y,, Bornea D., Dukler A. E. (1980), Modeling flow pattern transitions for steady upward gas-liquid flow in vertical tubes, AIChE J. 26: 345~354
    Thomes J. Mcavoy(1992), Contemplative stance for chemical process control, An IFAC Report, Automatica, 28(2): 441
    
    
    Toral H. A. (1981), Study of the hot-wire anemometer for measuring void fraction in two phase flow, J. of Physics E Sci. Instr. 14(7): 822~827
    Tutu N. K.(1982), Pressure fluctuations and flow pattern recognition in vertical two phase gas-liquid flows, Int. J. Multiphase Flow, 8(4): 443~447
    Unser M., Aldroubi A.(1996), A review of wavelets in biomedical applicaiotns, Proc. IEEE, 84(4): 626~638
    Vermenulen C., Hancke Gerhard P.(1991), The on-line measurement of the water content of coal on a conveyor beft, IEEE Conference Record on Instrumentation and Measurement Technology, 117~119
    Wallis G. B., Dobson J. E.(1973), The onset of slugging in horizontal stratified air water flow, Int. J Multiphase Flow, 1: 173~193
    Wang Hao, He Ming, Li Haiqing(1988), Measurement of gas-liquid two phase flow meter using electromagnetic flowmeter, Proc. of MICONEX'88, 302~307
    Wang Wenqi, Yu Rongxian, Ceng Zhongwong, Wu Jianping(1995), Gas-particles measurment using an extended-throat Venturmeter, ISMTMF, 342~347
    Weisman J. (1979), Effects of fluid properties and pipes diameter on two phase flow patterns in horizontal lines, Int. J. Multiphase Flow, 5: 437~462
    Weisman J., Kang S. Y. (1981), Flow pattern transitions in vertical and upwardly inclined lines, Int. J. Multiphase Flow, 7: 271~291
    Wilhelm R. H., Kwauk M.(1948), Fluidization of solid particles, Chem. Eng. Progr., 44: 201~218
    Wu Haojiang, Zhou Fangde, Wu Yuyuan(2001), Intelligent identification system of flow regime of oil-gas-water multiphase flow. Int. J. Multiphase Flow, 21: 459~475
    Wyatt. D. G.(1986), Electromagnetic flowmeter sensitivity with two phase flow, Int. J. Multiphase Flow, 12(6): 1009~1017
    
    
    Xie C. G., Huang S. M., Hoyle B. S., Lenn C. P., Beck M. S.(1992), Transputer-based electrical capacitance tomography for real-time imaging of oil-field flow pipelines, Proc. of ECAPT'92, 281~294
    Xu. L. A., Xu. L. J. et al (1994) Process tomography techniques and its application to two-phase flow measurement, Modern Measuring Techniques for Multiphase Flows, 213~221
    Yamada M. et al.(1990), Orthonormal wavelet expansion and its application to turbulence, Prog. Theor. Phys., 83(5): 819
    Yang Tao, Cheng Yongyuang, Yuan Yousheng(1995), et al., Local void fraction profile measuring by a capacitance probe under dense pulberized coal jet conditions for MHD conbustor, ISMTMF, 44~48
    Yerushalmi J., Cankurt N. T., Liss B.(1978), Flow regimes in vertical gas-solid contact systems, AIChE. J., 74: 1~13
    Zadeh L. A.(1965), Fuzzy sets, Information and Control, 8: 338~353
    Zenz F. A.(1949), Two-phase fluid-solid flow, Ind. Eng. Chem. 41: 2801~2806
    白博峰,郭烈锦,赵亮(2001),汽(气)液两相流流型在线识别的研究进展,力学进展,31(3):437~446
    蔡平,金涌,俞芷青,汪辰文(1986),鼓泡流态化向湍动流态化过渡的判别,化工学报,4:391~400
    陈逢时(1998),子波变换理论及其在信号处理中的应用,北京:国防工业出版社
    陈甘棠(1986),前言,第一届全国多相流检测机技术学术讨论会论文集
    陈甘棠,王樟茂(1996),流态化技术的理论和应用,北京:中国石化出版社
    陈珙(1999a),小波分析技术在两相流流型辨识中的应用,浙江大学博士论文
    陈珙,黄志尧,王保良,李海青(1999b),小波变换辨识流型的一种新方法研究,仪器仪表学报,20(2):117~120
    
    
    陈学俊(1996),迅速发展中的一门新兴交叉学科—多相流热物理的进展,西安交通大学出版社,30 (4):9~17
    邓东皋,林伟(2000),富有生命力的小波分析,国际学术动态,4:28~29
    邓东皋,彭立中(1991),小波分析,数学进展,20(3):294~310
    高宁,杨献勇(1986),气、液两相流中局部含气率的电导探针测量法,第一届全国多相流检测技术学术讨论会论文集,372~384
    高宁,杨献勇(1986),气、液两相流中气泡速度的电导探针测量法,第一届全国多相流检测技术学术讨论会论文集,427~436
    郭桂蓉,庄钊文(1993),信息处理中的模糊技术,国防科技大学出版社
    何友,王国宏,陆大金,彭应于(2000),多传感器信息融合及应用,北京:电子工业出版社
    黄志尧,陈珙,金宁德,李海青(1996),两相流流型辨识新方法的研究,浙江大学学报,30(4):40~47
    黄志尧,金宁德,李海青(1996),层析成像技术在多相流检测中的应用,化学反应工程与工艺,12(4):395~405
    黄志尧,王保良,李海青(2001),关于电容层析成像图像重建的讨论,东北大学学报,21(S1):143~145
    金宁德(1996),油井多相流测量系统模型建立及分析方法研究,浙江大学博士学位论文
    金涌等(2001),流态化工程原理,北京:清华大学出版社
    金涌,俞芷青(1990),流体—颗粒体系流型的划分及其相互转变,化学工程师,3:20~23,52
    金涌,俞芷青(1990),流体—颗粒体系流型的划分及其相互转变,化学工程师,4:26~30,36
    康耀红(1997),数据融合理论与应用,西安:西安电子科技大学出版社
    李兵兵,常义林,胡征(1993),小波分析在图象数据压缩中的应用,电子科
    
    技杂志,3:14~19
    李海青等编著(1991),两相流参数检测及其应用,杭州:浙江大学出版社
    李海青,黄志尧(2000a),软测量技术原理及应用,北京:化学工业出版社
    李海青,黄志尧(2000b),特种检测技术及应用,杭州:浙江大学出版社
    李海青,乔贺堂(1996),多相流检测技术进展,石油工业出版社
    李建平主编(1997),小波分析与信号处理—理论、应用及软件实现,重庆:重庆出版社
    李建平,唐远炎(1999),小波分析方法的应用,重庆:重庆大学出版社
    陆继东,钱诗智,周浩生(2000),流化床中瞬态颗粒浓度信号的小波分析,工程热物理学报,21 (2):261~264
    林宗虎,王栋,王树众,林益(2001),多相流的近期工程应用趋向,西安交通大学学报,35 (9):886~890
    林宗虎,王栋,王树众,林益(2001),近期多相流基础理论研究综述,西安交通大学学报,35(9):881~885
    吕砚山,张进明(1992),气液两相流特征参数的电子测量,济南:山东科技出版社
    刘德彰,袁保宁,高潮(1988),用移动式电导探针测量管内沸腾气液两相流动沿程“流型”的新方法,第二届全国多相流检测技术学术讨论会论文集,619~635
    刘贵忠,邸双亮(1992),小波分析及其应用,西安:西安电子科技大学出版社
    刘玉英,刘盛禄,周巍,刘增厚,董沛(1988),水煤浆超生流量仪的研制,第二届全国动力学检测技术学术讨论会论文集,283~291
    刘玉英,刘增厚(1990),液固两相流中固相浓度超生测量仪的研制及应用,第三届全国多相流检测技术学术讨论会论文集,247~251
    钱诗智,陆继东,赫俏,谢松法(1999),气固流化床内微观瞬态特性的多尺度分析,自然科学进展,9(1):90~94
    
    
    秦前清,杨宗凯(1994),实用小波分析,西安:电子科技大学出版社
    王保良(1998),电容层析成象技术及其在两相流参数检测中的应用研究,浙江大学博士学位论文
    汪培庄,李洪兴著(1996),模糊系统理论与模糊计算机,北京:科学出版社
    王中铭(1988),脉冲激光全息在气雾两相流检测中的应用,第二届全国多相流检测技术学术讨论会论文集,268~282
    吴浩江,蔡正敏,周芳德(1999),利用小波变换消除多相流流型信号中的噪声,西安交通大学学报,33 (11):105~107
    吴胜,王中铭,陆振华(1990),全息技术在燃气轮机气水分离装置检测中的应用,第三届全国多相流检测技术学术讨论会论文集,138~149
    夏靖波(1998),电容层析成象在两相流参数检测中的应用,东北大学博士学位论文
    谢松法,钱诗智,陆继东(1999),小波分析在流化床两相流信号处理中的应用,信号处理,15 (4):372~375
    徐苓安(1988),相关流量测量技术,天津:天津大学出版社
    徐苓安,徐立军(1995),过程层析成象技术的研究现状和发展展望,中国仪器仪表学会过程检测控制仪表分会第三届年会论文集,63~71
    许佩霞,孙功宪(1996),小波分析与应用实例,合肥:中国科学技术大学出版社
    杨福生(1999),小波变换的工程分析与应用,北京:科学出版社
    张济宇(1998),流态化技术应用的未来挑战,福建化工,4:1~4
    张贤达(1995),现代信号处理,北京:清华大学出版社
    张贤达,保铮(1998),非平稳信号分析与处理,北京:国防工业出版社
    赵松年,熊小芸(1996),子波变换与子波分析,北京:电子工业出版社
    
    
    郑之初(1988),多相流研究和多相流检测技术,第二届全国多相流检测技术学术讨论会论文集,1~8

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700